Abstract

We experimentally demonstrate heterodyne coherent detection of 8 × 112-Gb/s ultra-density wavelength-division-multiplexing (WDM) polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) signal after 1120-km single-mode fiber-28 (SMF-28) transmission. The spectral efficiency (SE) is 4b/s/Hz. It is the first time to realize WDM signal transmission with high SE by adopting heterodyne coherent detection. At the heterodyne coherent receiver, intermediate frequency (IF) down conversion is realized in digital frequency domain after analog-to-digital conversion. A digital post filter and 1-bit maximum likelihood sequence estimation (MLSE) adopted after carrier phase estimation (CPE) in the conventional digital-signal-processing (DSP) process is used to suppress the enhanced noise and crosstalk as well as overcome the filtering effects. The bit-error ratio (BER) for all channels is under the forward-error-correction (FEC) limit of 3.8 × 10−3 after 1120-km SMF-28 transmission.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Zhou and J. Yu, “Multi-level, multi-dimensional coding for high-speed and high spectral-efficiency optical transmission,” J. Lightwave Technol.27(16), 3641–3653 (2009).
    [CrossRef]
  2. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express16(2), 753–791 (2008).
    [CrossRef] [PubMed]
  3. S. Zhang, M. F. Huang, F. Yaman, E. Mateo, D. Qian, Y. Zhang, L. Xu, Y. Shao, I. Djordjevic, T. Wang, Y. Inada, T. Inoue, T. Ogata, and Y. Aoki, “40×117.6 Gb/s PDM-16QAM OFDM transmission over 10,181 km with soft-decision LDPC coding and nonlinearity compensation,” in Proc. OFC/NFOEC2012, Los Angeles, CA, paper PDP5C.4.
  4. C. Yu, P. Y. Kam, S. Zhang, and J. Chen, “Phase estimation in coherent optical fiber communication systems with advanced modulation formats,” in Proc. OFC/NFOEC2012, Los Angeles, CA, paper OTu2G.7.
  5. P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol.28(4), 547–556 (2010).
    [CrossRef]
  6. J. Yu, X. Zhou, M. F. Huang, D. Qian, L. Xu, and P. Ji, “Transmission of hybrid 112 and 44 Gb/s PolMUX-QPSK in 25 GHz channel spacing over 1600 km SSMF employing digital coherent detection and EDFA-only amplification,” in Proc. OFC/NFOEC2009, San Diego, CA, paper OThR3.
  7. J. Yu, Z. Dong, H. C. Chien, Z. Jia, X. Li, D. Huo, M. Gunkel, P. Wagner, H. Mayer, and A. Schippel, “Transmission of 200 G PDM-CSRZ-QPSK and PDM-16 QAM with a SE of 4 b/s/Hz,” J. Lightwave Technol.31(4), 515–522 (2013).
    [CrossRef]
  8. X. Li, J. Yu, Z. Dong, H. C. Chien, Z. Jia, and N. Chi, “WDM transmission of 108.4-Gbaud PDM-QPSK signals (40 × 433.6-Gb/s) over 2800-km SMF-28 with EDFA-only,” Opt. Express20(26), B217–B222 (2012).
    [CrossRef] [PubMed]
  9. J. M. Kahn, A. M. Porter, and U. Padan, “Heterodyne detection of 310-Mb/s Quadriphase-Shift Keying using fourth-power optical phase-locked loop,” IEEE Photon. Technol. Lett.4(12), 1397–1400 (1992).
    [CrossRef]
  10. R. Zhu, K. Xu, Y. Zhang, Y. Li, J. Wu, X. Hong, and J. Lin, “QAM coherent subcarrier multiplexing system based on heterodyne detection using intermediate frequency carrier modulation,” in Proc. Of APMP, 165–168 (2008).
  11. M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou, “20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser,” Electron. Lett.42(12), 710–712 (2006).
    [CrossRef]
  12. X. Li, J. Yu, N. Chi, Z. Dong, J. Zhang, and J. Yu, “The reduction of the LO number for heterodyne coherent detection,” Opt. Express20(28), 29613–29619 (2012).
    [CrossRef] [PubMed]
  13. J. Zhang, Z. Dong, J. Yu, N. Chi, L. Tao, X. Li, and Y. Shao, “Simplified coherent receiver with heterodyne detection of eight-channel 50 Gb/s PDM-QPSK WDM signal after 1040 km SMF-28 transmission,” Opt. Lett.37(19), 4050–4052 (2012).
    [CrossRef] [PubMed]
  14. Z. Dong, X. Li, J. Yu, and J. Yu, “Generation and transmission of 8 × 112-Gb/s WDM PDM-16QAM on a 25-GHz grid with simplified heterodyne detection,” Opt. Express21(2), 1773–1778 (2013).
    [CrossRef] [PubMed]
  15. ITU-T Recommendation G.975.1, “Forward error correction for high bit-rate DWDM submarine system,” 2004.
  16. J. G. Proakis, Digital Communications, 4th ed. (McGraw-Hill, New York, 2000).
  17. J. X. Cai, C. R. Davidson, A. Lucero, H. Zhang, D. G. Foursa, O. V. Sinkin, W. W. Patterson, A. N. Pilipetskii, G. Mohs, and N. S. Bergano, “20 Tbit/s transmission over 6860 km with sub-Nyquist channel spacing,” J. Lightwave Technol.30(4), 651–657 (2012).
    [CrossRef]
  18. J. Li, E. Tipsuwannakul, M. Karlsson, and P. A. Andrekson, “Low complexity duobinary signaling and detection for sensitivity improvement in Nyquist-WDM coherent system,” in Proc. OFC/NFOEC2012, Los Angeles, CA, paper OM3H.2.
  19. I. Lyubomirsky, “Quadrature duobinary for high-spectral efficiency 100G transmission,” J. Lightwave Technol.28(1), 91–96 (2010).
    [CrossRef]
  20. Z. Dong, J. Yu, Z. Jia, H. C. Chien, X. Li, and G. K. Chang, “7x224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation,” IEEE Photon. Technol. Lett.24(13), 1157–1159 (2012).
    [CrossRef]
  21. H. C. Chien, J. Yu, Z. Jia, Z. Dong, and X. Xiao, “Performance assessment of noise-suppressed Nyquist-WDM for Terabit superchannel transmission,” J. Lightwave Technol.30(24), 3965–3971 (2012).
    [CrossRef]
  22. T. Gui, C. Li, Q. Yang, X. Xiao, L. Meng, C. Li, X. Yi, C. Jin, and Z. Li, “Auto bias control technique for optical OFDM transmitter with bias dithering,” Opt. Express21(5), 5833–5841 (2013).
    [CrossRef] [PubMed]

2013 (3)

2012 (6)

2010 (2)

2009 (1)

2008 (1)

2006 (1)

M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou, “20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser,” Electron. Lett.42(12), 710–712 (2006).
[CrossRef]

1992 (1)

J. M. Kahn, A. M. Porter, and U. Padan, “Heterodyne detection of 310-Mb/s Quadriphase-Shift Keying using fourth-power optical phase-locked loop,” IEEE Photon. Technol. Lett.4(12), 1397–1400 (1992).
[CrossRef]

Barros, D. J. F.

Bergano, N. S.

Buhl, L. L.

Cai, J. X.

Chang, G. K.

Z. Dong, J. Yu, Z. Jia, H. C. Chien, X. Li, and G. K. Chang, “7x224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation,” IEEE Photon. Technol. Lett.24(13), 1157–1159 (2012).
[CrossRef]

Chi, N.

Chien, H. C.

Davidson, C. R.

Doerr, C. R.

Dong, Z.

J. Yu, Z. Dong, H. C. Chien, Z. Jia, X. Li, D. Huo, M. Gunkel, P. Wagner, H. Mayer, and A. Schippel, “Transmission of 200 G PDM-CSRZ-QPSK and PDM-16 QAM with a SE of 4 b/s/Hz,” J. Lightwave Technol.31(4), 515–522 (2013).
[CrossRef]

Z. Dong, X. Li, J. Yu, and J. Yu, “Generation and transmission of 8 × 112-Gb/s WDM PDM-16QAM on a 25-GHz grid with simplified heterodyne detection,” Opt. Express21(2), 1773–1778 (2013).
[CrossRef] [PubMed]

X. Li, J. Yu, N. Chi, Z. Dong, J. Zhang, and J. Yu, “The reduction of the LO number for heterodyne coherent detection,” Opt. Express20(28), 29613–29619 (2012).
[CrossRef] [PubMed]

Z. Dong, J. Yu, Z. Jia, H. C. Chien, X. Li, and G. K. Chang, “7x224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation,” IEEE Photon. Technol. Lett.24(13), 1157–1159 (2012).
[CrossRef]

H. C. Chien, J. Yu, Z. Jia, Z. Dong, and X. Xiao, “Performance assessment of noise-suppressed Nyquist-WDM for Terabit superchannel transmission,” J. Lightwave Technol.30(24), 3965–3971 (2012).
[CrossRef]

J. Zhang, Z. Dong, J. Yu, N. Chi, L. Tao, X. Li, and Y. Shao, “Simplified coherent receiver with heterodyne detection of eight-channel 50 Gb/s PDM-QPSK WDM signal after 1040 km SMF-28 transmission,” Opt. Lett.37(19), 4050–4052 (2012).
[CrossRef] [PubMed]

X. Li, J. Yu, Z. Dong, H. C. Chien, Z. Jia, and N. Chi, “WDM transmission of 108.4-Gbaud PDM-QPSK signals (40 × 433.6-Gb/s) over 2800-km SMF-28 with EDFA-only,” Opt. Express20(26), B217–B222 (2012).
[CrossRef] [PubMed]

Foursa, D. G.

Gnauck, A. H.

Gui, T.

Gunkel, M.

Hongou, J.

M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou, “20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser,” Electron. Lett.42(12), 710–712 (2006).
[CrossRef]

Huo, D.

Ip, E.

Jia, Z.

Jin, C.

Kahn, J. M.

E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express16(2), 753–791 (2008).
[CrossRef] [PubMed]

J. M. Kahn, A. M. Porter, and U. Padan, “Heterodyne detection of 310-Mb/s Quadriphase-Shift Keying using fourth-power optical phase-locked loop,” IEEE Photon. Technol. Lett.4(12), 1397–1400 (1992).
[CrossRef]

Kasai, K.

M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou, “20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser,” Electron. Lett.42(12), 710–712 (2006).
[CrossRef]

Lau, A. P. T.

Li, C.

Li, X.

Li, Z.

Lucero, A.

Lyubomirsky, I.

Magarini, M.

Mayer, H.

Meng, L.

Mohs, G.

Nakazawa, M.

M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou, “20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser,” Electron. Lett.42(12), 710–712 (2006).
[CrossRef]

Padan, U.

J. M. Kahn, A. M. Porter, and U. Padan, “Heterodyne detection of 310-Mb/s Quadriphase-Shift Keying using fourth-power optical phase-locked loop,” IEEE Photon. Technol. Lett.4(12), 1397–1400 (1992).
[CrossRef]

Patterson, W. W.

Pilipetskii, A. N.

Porter, A. M.

J. M. Kahn, A. M. Porter, and U. Padan, “Heterodyne detection of 310-Mb/s Quadriphase-Shift Keying using fourth-power optical phase-locked loop,” IEEE Photon. Technol. Lett.4(12), 1397–1400 (1992).
[CrossRef]

Schippel, A.

Shao, Y.

Sinkin, O. V.

Tao, L.

Wagner, P.

Winzer, P. J.

Xiao, X.

Yang, Q.

Yi, X.

Yoshida, M.

M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou, “20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser,” Electron. Lett.42(12), 710–712 (2006).
[CrossRef]

Yu, J.

J. Yu, Z. Dong, H. C. Chien, Z. Jia, X. Li, D. Huo, M. Gunkel, P. Wagner, H. Mayer, and A. Schippel, “Transmission of 200 G PDM-CSRZ-QPSK and PDM-16 QAM with a SE of 4 b/s/Hz,” J. Lightwave Technol.31(4), 515–522 (2013).
[CrossRef]

Z. Dong, X. Li, J. Yu, and J. Yu, “Generation and transmission of 8 × 112-Gb/s WDM PDM-16QAM on a 25-GHz grid with simplified heterodyne detection,” Opt. Express21(2), 1773–1778 (2013).
[CrossRef] [PubMed]

Z. Dong, X. Li, J. Yu, and J. Yu, “Generation and transmission of 8 × 112-Gb/s WDM PDM-16QAM on a 25-GHz grid with simplified heterodyne detection,” Opt. Express21(2), 1773–1778 (2013).
[CrossRef] [PubMed]

X. Li, J. Yu, N. Chi, Z. Dong, J. Zhang, and J. Yu, “The reduction of the LO number for heterodyne coherent detection,” Opt. Express20(28), 29613–29619 (2012).
[CrossRef] [PubMed]

X. Li, J. Yu, N. Chi, Z. Dong, J. Zhang, and J. Yu, “The reduction of the LO number for heterodyne coherent detection,” Opt. Express20(28), 29613–29619 (2012).
[CrossRef] [PubMed]

H. C. Chien, J. Yu, Z. Jia, Z. Dong, and X. Xiao, “Performance assessment of noise-suppressed Nyquist-WDM for Terabit superchannel transmission,” J. Lightwave Technol.30(24), 3965–3971 (2012).
[CrossRef]

Z. Dong, J. Yu, Z. Jia, H. C. Chien, X. Li, and G. K. Chang, “7x224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation,” IEEE Photon. Technol. Lett.24(13), 1157–1159 (2012).
[CrossRef]

J. Zhang, Z. Dong, J. Yu, N. Chi, L. Tao, X. Li, and Y. Shao, “Simplified coherent receiver with heterodyne detection of eight-channel 50 Gb/s PDM-QPSK WDM signal after 1040 km SMF-28 transmission,” Opt. Lett.37(19), 4050–4052 (2012).
[CrossRef] [PubMed]

X. Li, J. Yu, Z. Dong, H. C. Chien, Z. Jia, and N. Chi, “WDM transmission of 108.4-Gbaud PDM-QPSK signals (40 × 433.6-Gb/s) over 2800-km SMF-28 with EDFA-only,” Opt. Express20(26), B217–B222 (2012).
[CrossRef] [PubMed]

X. Zhou and J. Yu, “Multi-level, multi-dimensional coding for high-speed and high spectral-efficiency optical transmission,” J. Lightwave Technol.27(16), 3641–3653 (2009).
[CrossRef]

Zhang, H.

Zhang, J.

Zhou, X.

Electron. Lett. (1)

M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou, “20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser,” Electron. Lett.42(12), 710–712 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. M. Kahn, A. M. Porter, and U. Padan, “Heterodyne detection of 310-Mb/s Quadriphase-Shift Keying using fourth-power optical phase-locked loop,” IEEE Photon. Technol. Lett.4(12), 1397–1400 (1992).
[CrossRef]

Z. Dong, J. Yu, Z. Jia, H. C. Chien, X. Li, and G. K. Chang, “7x224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation,” IEEE Photon. Technol. Lett.24(13), 1157–1159 (2012).
[CrossRef]

J. Lightwave Technol. (6)

Opt. Express (5)

Opt. Lett. (1)

Other (7)

R. Zhu, K. Xu, Y. Zhang, Y. Li, J. Wu, X. Hong, and J. Lin, “QAM coherent subcarrier multiplexing system based on heterodyne detection using intermediate frequency carrier modulation,” in Proc. Of APMP, 165–168 (2008).

S. Zhang, M. F. Huang, F. Yaman, E. Mateo, D. Qian, Y. Zhang, L. Xu, Y. Shao, I. Djordjevic, T. Wang, Y. Inada, T. Inoue, T. Ogata, and Y. Aoki, “40×117.6 Gb/s PDM-16QAM OFDM transmission over 10,181 km with soft-decision LDPC coding and nonlinearity compensation,” in Proc. OFC/NFOEC2012, Los Angeles, CA, paper PDP5C.4.

C. Yu, P. Y. Kam, S. Zhang, and J. Chen, “Phase estimation in coherent optical fiber communication systems with advanced modulation formats,” in Proc. OFC/NFOEC2012, Los Angeles, CA, paper OTu2G.7.

J. Yu, X. Zhou, M. F. Huang, D. Qian, L. Xu, and P. Ji, “Transmission of hybrid 112 and 44 Gb/s PolMUX-QPSK in 25 GHz channel spacing over 1600 km SSMF employing digital coherent detection and EDFA-only amplification,” in Proc. OFC/NFOEC2009, San Diego, CA, paper OThR3.

ITU-T Recommendation G.975.1, “Forward error correction for high bit-rate DWDM submarine system,” 2004.

J. G. Proakis, Digital Communications, 4th ed. (McGraw-Hill, New York, 2000).

J. Li, E. Tipsuwannakul, M. Karlsson, and P. A. Andrekson, “Low complexity duobinary signaling and detection for sensitivity improvement in Nyquist-WDM coherent system,” in Proc. OFC/NFOEC2012, Los Angeles, CA, paper OM3H.2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

An illustration of 9-QAM signal generation by digital post filter.

Fig. 2
Fig. 2

Experimental setup. Insets (a) and (b) show optical spectra (0.1-nm resolution) before and after WSS for odd channel, while insets (c) and (d) even channel. Insets (e) and (f) show optical spectra (0.1-nm resolution) for all channels before and after 1120-km SMF-28 transmission. Inset (g) shows optical spectrum (0.01-nm resolution) after polarization-diversity splitting. Inset (h) shows electrical spectrum after analog-to-digital conversion.

Fig. 3
Fig. 3

BTB BER versus OSNR for the single channel and WDM channel both at 1549.34nm. Insets (a) and (b) show the Y-polarization constellations for the WDM channel at 1549.34nm after CPE and post filtering, respectively.

Fig. 4
Fig. 4

(a) BTB BER versus 3-dB bandwidth of TOF. (b) BER/OSNR versus transmission distance. Inset (I) and (II) show the X-polarization constellations after CPE and post filtering.

Fig. 5
Fig. 5

(a) BER/OSNR versus total input power into fiber. (b) BER of all channels. Insets (I) and (II) show the constellations after CPE, while insets (III) and (IV) after post filtering.

Metrics