Abstract

Various superimposed chirped relief gratings, acting as diffracting holographic lenses, were photo-inscribed on azo-polymer films upon exposure to the interference pattern of a plane and a curved laser light wavefronts. Depending on the configuration used, this resulted in incident light being focused independently of polarization along the 0th or 1st diffracted order of the grating. The focal point and focalization angle of the resulting holographic lenses were easily tuned during the fabrication process. Furthermore, a dual-focus chirped holographic lens grating was fabricated and shown to exhibit a far-field interference pattern.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett.60(1), 4–5 (1992).
    [CrossRef]
  2. P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett.66(2), 136–138 (1995).
    [CrossRef]
  3. C. J. Barrett, A. L. Natansohn, and P. L. Rochon, “Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films,” J. Phys. Chem.100(21), 8836–8842 (1996).
    [CrossRef]
  4. R. J. Stockermans and P. L. Rochon, “Narrow-band resonant grating waveguide filters constructed with azobenzene polymers,” Appl. Opt.38(17), 3714–3719 (1999).
    [CrossRef] [PubMed]
  5. D. Wang, G. Ye, X. Wang, and X. Wang, “Graphene functionalized with azo polymer brushes: Surface-initiated polymerization and photoresponsive properties,” Adv. Mater.23(9), 1122–1125 (2011).
    [CrossRef] [PubMed]
  6. L. Lévesque and P. Rochon, “Surface plasmon photonic bandgap in azopolymer gratings sputtered with gold,” J. Opt. Soc. Am. A22(11), 2564–2568 (2005).
    [CrossRef] [PubMed]
  7. C. Falldorf, C. Dankwart, R. Gläbe, B. Lünemann, C. Kopylow, and R. B. Bergmann, “Holographic projection based on diamond-turned diffractive optical elements,” Appl. Opt.48(30), 5782–5785 (2009).
    [CrossRef] [PubMed]
  8. R. Shi, J. Liu, J. Xu, D. Liu, Y. Pan, J. Xie, and Y. Wang, “Designing and fabricating diffractive optical elements with a complex profile by interference,” Opt. Lett.36(20), 4053–4055 (2011).
    [CrossRef] [PubMed]
  9. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics4(7), 466–470 (2010).
    [CrossRef]
  10. L. Chrostowski, “Optical gratings: Nano-engineered lenses,” Nat. Photonics4(7), 413–415 (2010).
    [CrossRef]
  11. G. Martinez-Ponce, T. Petrova, N. Tomova, V. Dragostinova, T. Todorov, and L. Nikolova, “Bifocal-polarization holographic lens,” Opt. Lett.29(9), 1001–1003 (2004).
    [CrossRef] [PubMed]
  12. J. Zhang, H. Ming, P. Wang, L. Tang, J. Xie, Q. Zhang, and J. Liu, “Holographic lens in azobenzene liquid crystal polymer films,” in SPIE Proceedings 5281, C. F. Lam, C. Fan, N. Hanik, and K. Oguchi, eds., 614–618 (2004).
    [CrossRef]

2011

D. Wang, G. Ye, X. Wang, and X. Wang, “Graphene functionalized with azo polymer brushes: Surface-initiated polymerization and photoresponsive properties,” Adv. Mater.23(9), 1122–1125 (2011).
[CrossRef] [PubMed]

R. Shi, J. Liu, J. Xu, D. Liu, Y. Pan, J. Xie, and Y. Wang, “Designing and fabricating diffractive optical elements with a complex profile by interference,” Opt. Lett.36(20), 4053–4055 (2011).
[CrossRef] [PubMed]

2010

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics4(7), 466–470 (2010).
[CrossRef]

L. Chrostowski, “Optical gratings: Nano-engineered lenses,” Nat. Photonics4(7), 413–415 (2010).
[CrossRef]

2009

2005

2004

1999

1996

C. J. Barrett, A. L. Natansohn, and P. L. Rochon, “Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films,” J. Phys. Chem.100(21), 8836–8842 (1996).
[CrossRef]

1995

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett.66(2), 136–138 (1995).
[CrossRef]

1992

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett.60(1), 4–5 (1992).
[CrossRef]

Barrett, C. J.

C. J. Barrett, A. L. Natansohn, and P. L. Rochon, “Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films,” J. Phys. Chem.100(21), 8836–8842 (1996).
[CrossRef]

Batalla, E.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett.66(2), 136–138 (1995).
[CrossRef]

Beausoleil, R. G.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics4(7), 466–470 (2010).
[CrossRef]

Bergmann, R. B.

Chrostowski, L.

L. Chrostowski, “Optical gratings: Nano-engineered lenses,” Nat. Photonics4(7), 413–415 (2010).
[CrossRef]

Dankwart, C.

Dragostinova, V.

Falldorf, C.

Fattal, D.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics4(7), 466–470 (2010).
[CrossRef]

Fiorentino, M.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics4(7), 466–470 (2010).
[CrossRef]

Gläbe, R.

Gosselin, J.

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett.60(1), 4–5 (1992).
[CrossRef]

Kopylow, C.

Lévesque, L.

Li, J.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics4(7), 466–470 (2010).
[CrossRef]

Liu, D.

Liu, J.

Lünemann, B.

Martinez-Ponce, G.

Natansohn, A.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett.66(2), 136–138 (1995).
[CrossRef]

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett.60(1), 4–5 (1992).
[CrossRef]

Natansohn, A. L.

C. J. Barrett, A. L. Natansohn, and P. L. Rochon, “Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films,” J. Phys. Chem.100(21), 8836–8842 (1996).
[CrossRef]

Nikolova, L.

Pan, Y.

Peng, Z.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics4(7), 466–470 (2010).
[CrossRef]

Petrova, T.

Rochon, P.

L. Lévesque and P. Rochon, “Surface plasmon photonic bandgap in azopolymer gratings sputtered with gold,” J. Opt. Soc. Am. A22(11), 2564–2568 (2005).
[CrossRef] [PubMed]

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett.66(2), 136–138 (1995).
[CrossRef]

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett.60(1), 4–5 (1992).
[CrossRef]

Rochon, P. L.

R. J. Stockermans and P. L. Rochon, “Narrow-band resonant grating waveguide filters constructed with azobenzene polymers,” Appl. Opt.38(17), 3714–3719 (1999).
[CrossRef] [PubMed]

C. J. Barrett, A. L. Natansohn, and P. L. Rochon, “Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films,” J. Phys. Chem.100(21), 8836–8842 (1996).
[CrossRef]

Shi, R.

Stockermans, R. J.

Todorov, T.

Tomova, N.

Wang, D.

D. Wang, G. Ye, X. Wang, and X. Wang, “Graphene functionalized with azo polymer brushes: Surface-initiated polymerization and photoresponsive properties,” Adv. Mater.23(9), 1122–1125 (2011).
[CrossRef] [PubMed]

Wang, X.

D. Wang, G. Ye, X. Wang, and X. Wang, “Graphene functionalized with azo polymer brushes: Surface-initiated polymerization and photoresponsive properties,” Adv. Mater.23(9), 1122–1125 (2011).
[CrossRef] [PubMed]

D. Wang, G. Ye, X. Wang, and X. Wang, “Graphene functionalized with azo polymer brushes: Surface-initiated polymerization and photoresponsive properties,” Adv. Mater.23(9), 1122–1125 (2011).
[CrossRef] [PubMed]

Wang, Y.

Xie, J.

Xie, S.

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett.60(1), 4–5 (1992).
[CrossRef]

Xu, J.

Ye, G.

D. Wang, G. Ye, X. Wang, and X. Wang, “Graphene functionalized with azo polymer brushes: Surface-initiated polymerization and photoresponsive properties,” Adv. Mater.23(9), 1122–1125 (2011).
[CrossRef] [PubMed]

Adv. Mater.

D. Wang, G. Ye, X. Wang, and X. Wang, “Graphene functionalized with azo polymer brushes: Surface-initiated polymerization and photoresponsive properties,” Adv. Mater.23(9), 1122–1125 (2011).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett.60(1), 4–5 (1992).
[CrossRef]

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett.66(2), 136–138 (1995).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. Chem.

C. J. Barrett, A. L. Natansohn, and P. L. Rochon, “Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films,” J. Phys. Chem.100(21), 8836–8842 (1996).
[CrossRef]

Nat. Photonics

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics4(7), 466–470 (2010).
[CrossRef]

L. Chrostowski, “Optical gratings: Nano-engineered lenses,” Nat. Photonics4(7), 413–415 (2010).
[CrossRef]

Opt. Lett.

Other

J. Zhang, H. Ming, P. Wang, L. Tang, J. Xie, Q. Zhang, and J. Liu, “Holographic lens in azobenzene liquid crystal polymer films,” in SPIE Proceedings 5281, C. F. Lam, C. Fan, N. Hanik, and K. Oguchi, eds., 614–618 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Experimental set-up for inscribing a surface-relief grating.

Fig. 2
Fig. 2

Modified experimental set-up for chirped grating inscription.

Fig. 3
Fig. 3

Experimental set-up for measuring the lens grating focusing.

Fig. 4
Fig. 4

Laser beam geometry.

Fig. 5
Fig. 5

The theoretical relative irradiance as a function distance along the sample’s surface.

Fig. 6
Fig. 6

Light focalization representation in transmission from superimposed (a) chirped lens gratings with the same linear spacing and different focal points (b) chirped lens gratings with different linear spacing and same focal points (c) chirped lens grating and a linear grating with the same spacing.

Fig. 7
Fig. 7

Pictures taken as a function of distance travelled along the 1st backward diffracted order of a chirped grating of a cylindrical holographic lens.

Fig. 8
Fig. 8

Pictures taken as a function of distance travelled along the 1st backward diffracted order of a chirped holographic lens grating.

Fig. 9
Fig. 9

Pictures taken as a function of distance travelled along the 1st backward diffracted order of a dual-focus chirped holographic lens grating.

Fig. 10
Fig. 10

Light intensity profile as a function of horizontal pixel position and distance travelled for (a) single chirped holographic lens grating (b) dual-focus chirped holographic lens grating.

Fig. 11
Fig. 11

Pictures taken as a function of distance travelled along the 1st backward diffracted orders of a dual-focus holographic lens grating with two different spacings.

Fig. 12
Fig. 12

Pictures taken as a function of distance travelled along the 0th order for a superimposed lens grating with a linear grating having the same spacing.

Fig. 13
Fig. 13

Interference pattern from the dual-focus chirped lens grating at 20 cm away from the sample’s surface.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

I cos 2 ( δ 2 ) ,
δ= k 1 r k 2 r +ϕ ,
r =x x ^ +y y ^ k 1 = 2π λ 0 ( sinθ x ^ cosθ y ^ ) k 2 = 2π λ 0 ( sinθ x ^ cosθ y ^ ) ,
δ L = 4πxsinθ λ 0 ,
I cos 2 ( 2π λ 0 xsinθ ) ,
Λ= λ 0 2sinθ ,
f+Δ= f 2 + t 2 ,
Δ t 2 2f ,
Δ x 2 cos 2 θ 2f ,
δ c δ l + 2π λ 0 ( x 2 cos 2 θ 2f ) ,
I cos 2 ( π λ 0 ( 2xsinθ+ x 2 cos 2 θ 2f ) ) ,
k light =± 2π m 1 Λ 1 ± 2π m 2 Λ 2 ,
k light = 2π λ sin θ m ,

Metrics