Abstract

We demonstrate experimentally and numerically a method using the incoherent delayed self-interference (DSI) of chaotic light from a semiconductor laser with optical feedback to generate wideband chaotic signal. The results show that, the DSI can eliminate the domination of laser relaxation oscillation existing in the chaotic laser light and therefore flatten and widen the power spectrum. Furthermore, the DSI depresses the time-delay signature induced by external cavity modes and improves the symmetry of probability distribution by more than one magnitude. We also experimentally show that this DSI signal is beneficial to the random number generation.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature437(7066), 343–346 (2005).
    [CrossRef] [PubMed]
  2. A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett.100(19), 194101 (2008).
    [CrossRef] [PubMed]
  3. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
    [CrossRef]
  4. I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett.103(2), 024102 (2009).
    [CrossRef] [PubMed]
  5. F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron.10(5), 991–997 (2004).
    [CrossRef]
  6. F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron.40(6), 815–820 (2004).
    [CrossRef]
  7. Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett.20(19), 1636–1638 (2008).
    [CrossRef]
  8. A. B. Wang, M. J. Zhang, H. Xu, and Y. C. Wang, “Location of wire faults using chaotic signal,” IEEE Electron Device Lett.32(3), 372–374 (2011).
    [CrossRef]
  9. A. B. Wang, N. Wang, Y. B. Yang, B. J. Wang, M. J. Zhang, and Y. C. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” J. Lightwave Technol.30(21), 3420–3426 (2012).
    [CrossRef]
  10. A. B. Wang, Y. C. Wang, and H. C. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor Laser with optical feedback,” IEEE Photon. Technol. Lett.20(19), 1633–1635 (2008).
    [CrossRef]
  11. K. Hirano, T. Yamazaki, S. Morikatsu, H. Okumura, H. Aida, A. Uchida, S. Yoshimori, K. Yoshimura, T. Harayama, and P. Davis, “Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers,” Opt. Express18(6), 5512–5524 (2010).
    [CrossRef] [PubMed]
  12. D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron.45(7), 879–891 (2009).
    [CrossRef]
  13. Y. Wu, Y. C. Wang, P. Li, A. B. Wang, and M. J. Zhang, “Can fixed time delay signature be concealed in chaotic semiconductor laser with optical feedback?” IEEE J. Quantum Electron.48(11), 1371–1379 (2012).
    [CrossRef]
  14. R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett.81(3), 558–561 (1998).
    [CrossRef]
  15. A. Uchida, T. Heil, P. Yun Liu, Davis, and T. Aida, “High-frequency broadband signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron.39(11), 1462–1467 (2003).
    [CrossRef]
  16. Y. Takiguchi, K. Ohyagi, and J. Ohtsubo, “Bandwidth-enhanced chaos synchronization in strongly injection-locked semiconductor lasers with optical feedback,” Opt. Lett.28(5), 319–321 (2003).
    [CrossRef] [PubMed]
  17. A. B. Wang, Y. C. Wang, and J. F. Wang, “Route to broadband chaos in a chaotic laser diode subject to optical injection,” Opt. Lett.34(8), 1144–1146 (2009).
    [CrossRef] [PubMed]
  18. M. J. Zhang, T. G. Liu, P. Li, A. B. Wang, J. Z. Zhang, and Y. C. Wang, “Generation of broadband chaotic laser using dual-wavelength optically injected Fabry–Pérot laser diode with optical feedback,” IEEE Photon. Technol. Lett.23(24), 1872–1874 (2011).
    [CrossRef]
  19. S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron.48(8), 1069–1076 (2012).
    [CrossRef]
  20. D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett.32(20), 2960–2962 (2007).
    [CrossRef] [PubMed]
  21. J.-G. Wu, G.-Q. Xia, X. Tang, X.-D. Lin, T. Deng, L. Fan, and Z.-M. Wu, “Time delay signature concealment of optical feedback induced chaos in an external cavity semiconductor laser,” Opt. Express18(7), 6661–6666 (2010).
    [CrossRef] [PubMed]
  22. J.-G. Wu, G.-Q. Xia, and Z.-M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Opt. Express17(22), 20124–20133 (2009).
    [CrossRef] [PubMed]
  23. N. Oliver, M. C. Soriano, D. W. Sukow, and I. Fischer, “Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation,” Opt. Lett.36(23), 4632–4634 (2011).
    [CrossRef] [PubMed]
  24. S.-S. Li, Q. Liu, and S.-C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE J. Photonics4(5), 1930–1935 (2012).
    [CrossRef]
  25. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron.16(3), 347–355 (1980).
    [CrossRef]
  26. R. M. Nguimdo, M. C. Soriano, and P. Colet, “Role of the phase in the identification of delay time in semiconductor lasers with optical feedback,” Opt. Lett.36(22), 4332–4334 (2011).
    [CrossRef] [PubMed]
  27. A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dary, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” NIST Special Publication 800–22 Revision 1a (2010).

2012

A. B. Wang, N. Wang, Y. B. Yang, B. J. Wang, M. J. Zhang, and Y. C. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” J. Lightwave Technol.30(21), 3420–3426 (2012).
[CrossRef]

Y. Wu, Y. C. Wang, P. Li, A. B. Wang, and M. J. Zhang, “Can fixed time delay signature be concealed in chaotic semiconductor laser with optical feedback?” IEEE J. Quantum Electron.48(11), 1371–1379 (2012).
[CrossRef]

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron.48(8), 1069–1076 (2012).
[CrossRef]

S.-S. Li, Q. Liu, and S.-C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE J. Photonics4(5), 1930–1935 (2012).
[CrossRef]

2011

M. J. Zhang, T. G. Liu, P. Li, A. B. Wang, J. Z. Zhang, and Y. C. Wang, “Generation of broadband chaotic laser using dual-wavelength optically injected Fabry–Pérot laser diode with optical feedback,” IEEE Photon. Technol. Lett.23(24), 1872–1874 (2011).
[CrossRef]

N. Oliver, M. C. Soriano, D. W. Sukow, and I. Fischer, “Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation,” Opt. Lett.36(23), 4632–4634 (2011).
[CrossRef] [PubMed]

R. M. Nguimdo, M. C. Soriano, and P. Colet, “Role of the phase in the identification of delay time in semiconductor lasers with optical feedback,” Opt. Lett.36(22), 4332–4334 (2011).
[CrossRef] [PubMed]

A. B. Wang, M. J. Zhang, H. Xu, and Y. C. Wang, “Location of wire faults using chaotic signal,” IEEE Electron Device Lett.32(3), 372–374 (2011).
[CrossRef]

2010

2009

J.-G. Wu, G.-Q. Xia, and Z.-M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Opt. Express17(22), 20124–20133 (2009).
[CrossRef] [PubMed]

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron.45(7), 879–891 (2009).
[CrossRef]

A. B. Wang, Y. C. Wang, and J. F. Wang, “Route to broadband chaos in a chaotic laser diode subject to optical injection,” Opt. Lett.34(8), 1144–1146 (2009).
[CrossRef] [PubMed]

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett.103(2), 024102 (2009).
[CrossRef] [PubMed]

2008

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett.100(19), 194101 (2008).
[CrossRef] [PubMed]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
[CrossRef]

A. B. Wang, Y. C. Wang, and H. C. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor Laser with optical feedback,” IEEE Photon. Technol. Lett.20(19), 1633–1635 (2008).
[CrossRef]

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett.20(19), 1636–1638 (2008).
[CrossRef]

2007

2005

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature437(7066), 343–346 (2005).
[CrossRef] [PubMed]

2004

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron.10(5), 991–997 (2004).
[CrossRef]

F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron.40(6), 815–820 (2004).
[CrossRef]

2003

A. Uchida, T. Heil, P. Yun Liu, Davis, and T. Aida, “High-frequency broadband signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron.39(11), 1462–1467 (2003).
[CrossRef]

Y. Takiguchi, K. Ohyagi, and J. Ohtsubo, “Bandwidth-enhanced chaos synchronization in strongly injection-locked semiconductor lasers with optical feedback,” Opt. Lett.28(5), 319–321 (2003).
[CrossRef] [PubMed]

1998

R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett.81(3), 558–561 (1998).
[CrossRef]

1980

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron.16(3), 347–355 (1980).
[CrossRef]

Aida, H.

Aida, T.

A. Uchida, T. Heil, P. Yun Liu, Davis, and T. Aida, “High-frequency broadband signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron.39(11), 1462–1467 (2003).
[CrossRef]

Amano, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
[CrossRef]

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature437(7066), 343–346 (2005).
[CrossRef] [PubMed]

Argyris, A.

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett.100(19), 194101 (2008).
[CrossRef] [PubMed]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature437(7066), 343–346 (2005).
[CrossRef] [PubMed]

Aviad, Y.

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett.103(2), 024102 (2009).
[CrossRef] [PubMed]

Bogris, A.

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett.100(19), 194101 (2008).
[CrossRef] [PubMed]

Bünner, M. J.

R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett.81(3), 558–561 (1998).
[CrossRef]

Chan, S.-C.

S.-S. Li, Q. Liu, and S.-C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE J. Photonics4(5), 1930–1935 (2012).
[CrossRef]

Chlouverakis, K. E.

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett.100(19), 194101 (2008).
[CrossRef] [PubMed]

Citrin, D. S.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron.45(7), 879–891 (2009).
[CrossRef]

D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett.32(20), 2960–2962 (2007).
[CrossRef] [PubMed]

Colet, P.

R. M. Nguimdo, M. C. Soriano, and P. Colet, “Role of the phase in the identification of delay time in semiconductor lasers with optical feedback,” Opt. Lett.36(22), 4332–4334 (2011).
[CrossRef] [PubMed]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature437(7066), 343–346 (2005).
[CrossRef] [PubMed]

Davis,

A. Uchida, T. Heil, P. Yun Liu, Davis, and T. Aida, “High-frequency broadband signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron.39(11), 1462–1467 (2003).
[CrossRef]

Davis, P.

K. Hirano, T. Yamazaki, S. Morikatsu, H. Okumura, H. Aida, A. Uchida, S. Yoshimori, K. Yoshimura, T. Harayama, and P. Davis, “Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers,” Opt. Express18(6), 5512–5524 (2010).
[CrossRef] [PubMed]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
[CrossRef]

Deng, T.

Fan, L.

Fischer, I.

N. Oliver, M. C. Soriano, D. W. Sukow, and I. Fischer, “Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation,” Opt. Lett.36(23), 4632–4634 (2011).
[CrossRef] [PubMed]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature437(7066), 343–346 (2005).
[CrossRef] [PubMed]

García-Ojalvo, J.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature437(7066), 343–346 (2005).
[CrossRef] [PubMed]

Giaquinta, A.

R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett.81(3), 558–561 (1998).
[CrossRef]

Hamacher, M.

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett.100(19), 194101 (2008).
[CrossRef] [PubMed]

Harayama, T.

He, H. C.

A. B. Wang, Y. C. Wang, and H. C. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor Laser with optical feedback,” IEEE Photon. Technol. Lett.20(19), 1633–1635 (2008).
[CrossRef]

Hegger, R.

R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett.81(3), 558–561 (1998).
[CrossRef]

Heil, T.

A. Uchida, T. Heil, P. Yun Liu, Davis, and T. Aida, “High-frequency broadband signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron.39(11), 1462–1467 (2003).
[CrossRef]

Hirano, K.

K. Hirano, T. Yamazaki, S. Morikatsu, H. Okumura, H. Aida, A. Uchida, S. Yoshimori, K. Yoshimura, T. Harayama, and P. Davis, “Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers,” Opt. Express18(6), 5512–5524 (2010).
[CrossRef] [PubMed]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
[CrossRef]

Inoue, M.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
[CrossRef]

Kanter, I.

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett.103(2), 024102 (2009).
[CrossRef] [PubMed]

Kantz, H.

R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett.81(3), 558–561 (1998).
[CrossRef]

Kobayashi, K.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron.16(3), 347–355 (1980).
[CrossRef]

Kurashige, T.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
[CrossRef]

Lang, R.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron.16(3), 347–355 (1980).
[CrossRef]

Larger, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature437(7066), 343–346 (2005).
[CrossRef] [PubMed]

Li, N.

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron.48(8), 1069–1076 (2012).
[CrossRef]

Li, P.

Y. Wu, Y. C. Wang, P. Li, A. B. Wang, and M. J. Zhang, “Can fixed time delay signature be concealed in chaotic semiconductor laser with optical feedback?” IEEE J. Quantum Electron.48(11), 1371–1379 (2012).
[CrossRef]

M. J. Zhang, T. G. Liu, P. Li, A. B. Wang, J. Z. Zhang, and Y. C. Wang, “Generation of broadband chaotic laser using dual-wavelength optically injected Fabry–Pérot laser diode with optical feedback,” IEEE Photon. Technol. Lett.23(24), 1872–1874 (2011).
[CrossRef]

Li, S.-S.

S.-S. Li, Q. Liu, and S.-C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE J. Photonics4(5), 1930–1935 (2012).
[CrossRef]

Lin, F. Y.

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron.10(5), 991–997 (2004).
[CrossRef]

F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron.40(6), 815–820 (2004).
[CrossRef]

Lin, X.-D.

Liu, J. M.

F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron.40(6), 815–820 (2004).
[CrossRef]

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron.10(5), 991–997 (2004).
[CrossRef]

Liu, Q.

S.-S. Li, Q. Liu, and S.-C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE J. Photonics4(5), 1930–1935 (2012).
[CrossRef]

Liu, T. G.

M. J. Zhang, T. G. Liu, P. Li, A. B. Wang, J. Z. Zhang, and Y. C. Wang, “Generation of broadband chaotic laser using dual-wavelength optically injected Fabry–Pérot laser diode with optical feedback,” IEEE Photon. Technol. Lett.23(24), 1872–1874 (2011).
[CrossRef]

Locquet, A.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron.45(7), 879–891 (2009).
[CrossRef]

D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett.32(20), 2960–2962 (2007).
[CrossRef] [PubMed]

Luo, B.

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron.48(8), 1069–1076 (2012).
[CrossRef]

Mirasso, C. R.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature437(7066), 343–346 (2005).
[CrossRef] [PubMed]

Morikatsu, S.

Naito, S.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
[CrossRef]

Nguimdo, R. M.

Ohtsubo, J.

Ohyagi, K.

Okumura, H.

Oliver, N.

Oowada, I.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
[CrossRef]

Ortin, S.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron.45(7), 879–891 (2009).
[CrossRef]

Pan, W.

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron.48(8), 1069–1076 (2012).
[CrossRef]

Pesquera, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature437(7066), 343–346 (2005).
[CrossRef] [PubMed]

Reidler, I.

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett.103(2), 024102 (2009).
[CrossRef] [PubMed]

Rontani, D.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron.45(7), 879–891 (2009).
[CrossRef]

D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett.32(20), 2960–2962 (2007).
[CrossRef] [PubMed]

Rosenbluh, M.

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett.103(2), 024102 (2009).
[CrossRef] [PubMed]

Sciamanna, M.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron.45(7), 879–891 (2009).
[CrossRef]

D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett.32(20), 2960–2962 (2007).
[CrossRef] [PubMed]

Shiki, M.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
[CrossRef]

Shore, K. A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature437(7066), 343–346 (2005).
[CrossRef] [PubMed]

Someya, H.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
[CrossRef]

Soriano, M. C.

Sukow, D. W.

Syvridis, D.

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett.100(19), 194101 (2008).
[CrossRef] [PubMed]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature437(7066), 343–346 (2005).
[CrossRef] [PubMed]

Takiguchi, Y.

Tang, X.

Uchida, A.

K. Hirano, T. Yamazaki, S. Morikatsu, H. Okumura, H. Aida, A. Uchida, S. Yoshimori, K. Yoshimura, T. Harayama, and P. Davis, “Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers,” Opt. Express18(6), 5512–5524 (2010).
[CrossRef] [PubMed]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
[CrossRef]

A. Uchida, T. Heil, P. Yun Liu, Davis, and T. Aida, “High-frequency broadband signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron.39(11), 1462–1467 (2003).
[CrossRef]

Wang, A. B.

Y. Wu, Y. C. Wang, P. Li, A. B. Wang, and M. J. Zhang, “Can fixed time delay signature be concealed in chaotic semiconductor laser with optical feedback?” IEEE J. Quantum Electron.48(11), 1371–1379 (2012).
[CrossRef]

A. B. Wang, N. Wang, Y. B. Yang, B. J. Wang, M. J. Zhang, and Y. C. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” J. Lightwave Technol.30(21), 3420–3426 (2012).
[CrossRef]

A. B. Wang, M. J. Zhang, H. Xu, and Y. C. Wang, “Location of wire faults using chaotic signal,” IEEE Electron Device Lett.32(3), 372–374 (2011).
[CrossRef]

M. J. Zhang, T. G. Liu, P. Li, A. B. Wang, J. Z. Zhang, and Y. C. Wang, “Generation of broadband chaotic laser using dual-wavelength optically injected Fabry–Pérot laser diode with optical feedback,” IEEE Photon. Technol. Lett.23(24), 1872–1874 (2011).
[CrossRef]

A. B. Wang, Y. C. Wang, and J. F. Wang, “Route to broadband chaos in a chaotic laser diode subject to optical injection,” Opt. Lett.34(8), 1144–1146 (2009).
[CrossRef] [PubMed]

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett.20(19), 1636–1638 (2008).
[CrossRef]

A. B. Wang, Y. C. Wang, and H. C. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor Laser with optical feedback,” IEEE Photon. Technol. Lett.20(19), 1633–1635 (2008).
[CrossRef]

Wang, B. J.

A. B. Wang, N. Wang, Y. B. Yang, B. J. Wang, M. J. Zhang, and Y. C. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” J. Lightwave Technol.30(21), 3420–3426 (2012).
[CrossRef]

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett.20(19), 1636–1638 (2008).
[CrossRef]

Wang, J. F.

Wang, N.

Wang, Y. C.

A. B. Wang, N. Wang, Y. B. Yang, B. J. Wang, M. J. Zhang, and Y. C. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” J. Lightwave Technol.30(21), 3420–3426 (2012).
[CrossRef]

Y. Wu, Y. C. Wang, P. Li, A. B. Wang, and M. J. Zhang, “Can fixed time delay signature be concealed in chaotic semiconductor laser with optical feedback?” IEEE J. Quantum Electron.48(11), 1371–1379 (2012).
[CrossRef]

A. B. Wang, M. J. Zhang, H. Xu, and Y. C. Wang, “Location of wire faults using chaotic signal,” IEEE Electron Device Lett.32(3), 372–374 (2011).
[CrossRef]

M. J. Zhang, T. G. Liu, P. Li, A. B. Wang, J. Z. Zhang, and Y. C. Wang, “Generation of broadband chaotic laser using dual-wavelength optically injected Fabry–Pérot laser diode with optical feedback,” IEEE Photon. Technol. Lett.23(24), 1872–1874 (2011).
[CrossRef]

A. B. Wang, Y. C. Wang, and J. F. Wang, “Route to broadband chaos in a chaotic laser diode subject to optical injection,” Opt. Lett.34(8), 1144–1146 (2009).
[CrossRef] [PubMed]

A. B. Wang, Y. C. Wang, and H. C. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor Laser with optical feedback,” IEEE Photon. Technol. Lett.20(19), 1633–1635 (2008).
[CrossRef]

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett.20(19), 1636–1638 (2008).
[CrossRef]

Wu, J.-G.

Wu, Y.

Y. Wu, Y. C. Wang, P. Li, A. B. Wang, and M. J. Zhang, “Can fixed time delay signature be concealed in chaotic semiconductor laser with optical feedback?” IEEE J. Quantum Electron.48(11), 1371–1379 (2012).
[CrossRef]

Wu, Z.-M.

Xia, G.-Q.

Xiang, S. Y.

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron.48(8), 1069–1076 (2012).
[CrossRef]

Xu, H.

A. B. Wang, M. J. Zhang, H. Xu, and Y. C. Wang, “Location of wire faults using chaotic signal,” IEEE Electron Device Lett.32(3), 372–374 (2011).
[CrossRef]

Yamazaki, T.

Yan, L. S.

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron.48(8), 1069–1076 (2012).
[CrossRef]

Yang, Y. B.

Yoshimori, S.

K. Hirano, T. Yamazaki, S. Morikatsu, H. Okumura, H. Aida, A. Uchida, S. Yoshimori, K. Yoshimura, T. Harayama, and P. Davis, “Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers,” Opt. Express18(6), 5512–5524 (2010).
[CrossRef] [PubMed]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
[CrossRef]

Yoshimura, K.

K. Hirano, T. Yamazaki, S. Morikatsu, H. Okumura, H. Aida, A. Uchida, S. Yoshimori, K. Yoshimura, T. Harayama, and P. Davis, “Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers,” Opt. Express18(6), 5512–5524 (2010).
[CrossRef] [PubMed]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
[CrossRef]

Yun Liu, P.

A. Uchida, T. Heil, P. Yun Liu, Davis, and T. Aida, “High-frequency broadband signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron.39(11), 1462–1467 (2003).
[CrossRef]

Zhang, J. Z.

M. J. Zhang, T. G. Liu, P. Li, A. B. Wang, J. Z. Zhang, and Y. C. Wang, “Generation of broadband chaotic laser using dual-wavelength optically injected Fabry–Pérot laser diode with optical feedback,” IEEE Photon. Technol. Lett.23(24), 1872–1874 (2011).
[CrossRef]

Zhang, M. J.

A. B. Wang, N. Wang, Y. B. Yang, B. J. Wang, M. J. Zhang, and Y. C. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” J. Lightwave Technol.30(21), 3420–3426 (2012).
[CrossRef]

Y. Wu, Y. C. Wang, P. Li, A. B. Wang, and M. J. Zhang, “Can fixed time delay signature be concealed in chaotic semiconductor laser with optical feedback?” IEEE J. Quantum Electron.48(11), 1371–1379 (2012).
[CrossRef]

A. B. Wang, M. J. Zhang, H. Xu, and Y. C. Wang, “Location of wire faults using chaotic signal,” IEEE Electron Device Lett.32(3), 372–374 (2011).
[CrossRef]

M. J. Zhang, T. G. Liu, P. Li, A. B. Wang, J. Z. Zhang, and Y. C. Wang, “Generation of broadband chaotic laser using dual-wavelength optically injected Fabry–Pérot laser diode with optical feedback,” IEEE Photon. Technol. Lett.23(24), 1872–1874 (2011).
[CrossRef]

Zhu, H. N.

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron.48(8), 1069–1076 (2012).
[CrossRef]

Zou, X. H.

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron.48(8), 1069–1076 (2012).
[CrossRef]

IEEE Electron Device Lett.

A. B. Wang, M. J. Zhang, H. Xu, and Y. C. Wang, “Location of wire faults using chaotic signal,” IEEE Electron Device Lett.32(3), 372–374 (2011).
[CrossRef]

IEEE J. Photonics

S.-S. Li, Q. Liu, and S.-C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE J. Photonics4(5), 1930–1935 (2012).
[CrossRef]

IEEE J. Quantum Electron.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron.16(3), 347–355 (1980).
[CrossRef]

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron.48(8), 1069–1076 (2012).
[CrossRef]

F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron.40(6), 815–820 (2004).
[CrossRef]

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron.45(7), 879–891 (2009).
[CrossRef]

Y. Wu, Y. C. Wang, P. Li, A. B. Wang, and M. J. Zhang, “Can fixed time delay signature be concealed in chaotic semiconductor laser with optical feedback?” IEEE J. Quantum Electron.48(11), 1371–1379 (2012).
[CrossRef]

A. Uchida, T. Heil, P. Yun Liu, Davis, and T. Aida, “High-frequency broadband signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron.39(11), 1462–1467 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron.10(5), 991–997 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

M. J. Zhang, T. G. Liu, P. Li, A. B. Wang, J. Z. Zhang, and Y. C. Wang, “Generation of broadband chaotic laser using dual-wavelength optically injected Fabry–Pérot laser diode with optical feedback,” IEEE Photon. Technol. Lett.23(24), 1872–1874 (2011).
[CrossRef]

A. B. Wang, Y. C. Wang, and H. C. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor Laser with optical feedback,” IEEE Photon. Technol. Lett.20(19), 1633–1635 (2008).
[CrossRef]

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett.20(19), 1636–1638 (2008).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
[CrossRef]

Nature

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature437(7066), 343–346 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett.81(3), 558–561 (1998).
[CrossRef]

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett.100(19), 194101 (2008).
[CrossRef] [PubMed]

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett.103(2), 024102 (2009).
[CrossRef] [PubMed]

Other

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dary, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” NIST Special Publication 800–22 Revision 1a (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup. A chaotic semiconductor laser (DFB) with optical feedback (OFSL) is injected into a Mach-Zehnder interferometer which consists of two fiber couplers (FC) and a fiber delay line (DL). The DSI signal is detected by a balanced detector followed by a real-time oscilloscope (OSC). PC: polarization controller; VA: variable attenuator; M: mirror; OI: optical isolator; PD: photodetector.

Fig. 2
Fig. 2

From left to right, simulated time series, Fourier spectra, and autocorrelation functions (ACFs) of intensity (1st row), cos(φ) (2nd row), and DSI (3rd row) of chaotic OFSL. Simulation parameters: J = 1.8Jth, τf = 5ns, κf = 0.08, τd = 8.75ns. Laser relaxation frequency fRO = 3.5GHz and τRO = 1/fRO.

Fig. 3
Fig. 3

Experimental power spectra of chaotic OFSL and its DSI signal. The bandwidth increases from 7.81 to 9.65 GHz and spectral flatness improves from ± 10 to ± 3dB. Bias current: 1.4 times threshold; feedback strength: −13.6dB; feedback delay: 73.88ns; OPD: 2.74ns. Resolution bandwidth: 1 MHz; Video bandwidth: 3 kHz.

Fig. 4
Fig. 4

Effects of feedback strength on the bandwidth and spectral flatness of chaotic OFSL and its DSI signal: (a), (b) experimental results with the same parameters in Fig. 3; (c), (d) numerical results with the same parameters in Fig. 2.

Fig. 5
Fig. 5

Experimentally-obtained ratio of energy in frequency band Δf as function of feedback strength. Squares: 0.01–1 GHz; triangles: 1–2 GHz; circles: 2–3 GHz; inverted triangles: 3–4GHz; diamonds: 4–5 GHz; stars: 5–6 GHz (open: OFSL; filled: DSI).

Fig. 6
Fig. 6

Experimental autocorrelation functions of the chaotic OFSL (blue) and DSI signal (red) shown in Fig. 3. The main peaks at zero point and the side peak at feedback delay are magnified in the insets. The length of time series for calculating is 3μs which is about 40 times feedback delay.

Fig. 7
Fig. 7

Experimental (a, c) and numerical (b, d) effects of feedback strength on the size of the ACF peak and valley. Open and filled squares represent chaotic laser and DSI signal, respectively. Experimental parameters are same as Fig. 3 and numerical parameters are same as Fig. 2. Correlation length equals to 40 times feedback delay time.

Fig. 8
Fig. 8

(a), (b) Experimental time series and (c), (d) probability distribution of the chaotic OFSL and DSI signal corresponding to Fig. 3 and Fig. 6. The dash lines denote the mean value, and the red lines are the Gaussian fitted curves of probability distribution. (e) Experimentally obtained skewness of chaotic time series of OFSL (blue open squares) and DSI signal (red filled squares) as function of feedback strength.

Tables (1)

Tables Icon

Table 1 Example of results of statistical test suite NIST SP 800-22 for two sets of 1000 samples of 1Mbit generated using the 5th LSB, separately from the chaotic OFSL and DSI signal. Significant level is 0.01. For successful pass, the P-value of the uniformity should be larger than 0.0001, and the proportion should be larger than 0.9805608.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

DSI=A(t)A(t τ d )cos[ω τ d +φ(t)φ(t τ d )],
A ˙ = 1 2 [ g(N N 0 ) 1+ε A 2 τ p 1 ]A+ τ in 1 κ f A(t τ f )cos[ω τ f +φ(t)φ(t τ f )],
φ ˙ = 1 2 [ g(N N 0 ) 1+ε A 2 τ p 1 ] τ in 1 κ f A(t τ f ) A(t) sin[ω τ f +φ(t)φ(t τ f )],
N ˙ =J τ N 1 N g(N N 0 ) 1+ε A 2 A 2 ,

Metrics