Abstract

Efficient photoacoustic emission from Au nanoparticles on a porous SiO2 layer was investigated experimentally and theoretically. The Au nanoparticle arrays/porous SiO2/SiO2/Ag mirror sandwiches, namely, local plasmon resonators, were prepared by dynamic oblique deposition (DOD). Photoacoustic measurements were performed on the local plasmon resonators, whose optical absorption was varied from 0.03 (3%) to 0.95 by varying the thickness of the dielectric SiO2 layer. The sample with high absorption (0.95) emitted a sound that was eight times stronger than that emitted by graphite (0.94) and three times stronger than that emitted by the sample without the porous SiO2 layer (0.93). The contribution of the porous SiO2 layer to the efficient photoacoustic emission was analyzed by means of a numerical method based on a one-dimensional heat transfer model. The result suggested that the low thermal conductivity of the underlying porous layer reduces the amount of heat escaping from the substrate and contributes to the efficient photoacoustic emission from Au nanoparticle arrays. Because both the thermal conductivity and the spatial distribution of the heat generation can be controlled by DOD, the local plasmon resonators produced by DOD are suitable for the spatio-temporal modulation of the local temperature.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. P. Zharov, “Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit,” Nat. Photon.5(2), 110–116 (2011).
    [CrossRef]
  2. Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett.11(2), 348–354 (2011).
    [CrossRef] [PubMed]
  3. H. Tian, D. Xie, Y. Yang, T. L. Ren, Y. X. Lin, Y. Chen, Y. F. Wang, C. J. Zhou, P. G. Peng, L. G. Wang, and L. T. Liu, “Flexible, ultrathin, and transparent sound-emitting devices using silver nanowires film,” Appl. Phys. Lett.99253507 (2011).
    [CrossRef]
  4. Y. Hou, J.-S. Kim, M. O’Donnel, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett.89, 093901 (2006).
    [CrossRef]
  5. V. P. Zharov, T. V. Malinsky, and R. C. Kurten, “Photoacoustic tweezers with a pulsed laser: theory and experiments,” J. Phys. D: Appl. Phys.382662–2674 (2005).
    [CrossRef]
  6. D. Braun and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett.89(18) 188103 (2002).
    [CrossRef] [PubMed]
  7. L. H. Thamdrup, N. B. Larsen, and A. Kristensen, “Light-induced local heating for thermophoretic manipulation of DNA in polymer micro- and nanochannels,” Nano Lett.10(3) 826–832 (2010).
    [CrossRef] [PubMed]
  8. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101, 143902(4) (2008).
    [CrossRef] [PubMed]
  9. J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, “Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays,” Phys. Rev. B79, 073412(7) (2009).
    [CrossRef]
  10. M. Suzuki, Y. Imai, H. Tokunaga, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, “Tailoring coupling of light to local plasmons by using Ag nanorods/structured dielectric/mirror sandwiches,” J. Nanophotonics3, 031502 (2009).
    [CrossRef]
  11. M. Suzuki, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, “Au nanorod arrays tailored for surface-enhanced Raman spectroscopy,” Anal. Sci.23(7), 829–833 (2007).
    [CrossRef] [PubMed]
  12. A. Leitner, Z. Zhao, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Optical properties of a metal island film close to a smooth metal surface,” Appl. Opt.32(1), 102–110 (1993).
    [CrossRef] [PubMed]
  13. K. Namura, M. Suzuki, K. Nakajima, and K. Kimura, “Heat-generating property of a local plasmon resonator under illumination,” Opt. Lett.36, 3533–3535 (2011).
    [CrossRef] [PubMed]
  14. H. Shinoda, T. Nakajima, K. Ueno, and N. Koshida, “Thermally induced ultrasonic emission from porous silicon,” Nature400, 853–855 (1999).
    [CrossRef]
  15. A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys.48(1), 64–69 (1976).
    [CrossRef]
  16. C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J.84, 4023–4032 (2003).
    [CrossRef] [PubMed]
  17. Y. A. Avetisyan, A. N. Yakunin, and V. V. Tuchin, “Thermal energy transfer by plasmon-resonant composite nanoparticles at pulse laser irradiation,” Appl. Opt.51(10), C88–C94 (2012).
    [CrossRef]
  18. National Astronomical Observatory of Japan, Chronological Science Tables (Tokyo: Maruzen, 1993).
  19. M. Suzuki and Y. Taga, “Numerical study of the effective surface area of obliquely deposited thin films,” J. Appl. Phys.90(11), 5599–5605 (2001).
    [CrossRef]

2012

2011

K. Namura, M. Suzuki, K. Nakajima, and K. Kimura, “Heat-generating property of a local plasmon resonator under illumination,” Opt. Lett.36, 3533–3535 (2011).
[CrossRef] [PubMed]

V. P. Zharov, “Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit,” Nat. Photon.5(2), 110–116 (2011).
[CrossRef]

Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett.11(2), 348–354 (2011).
[CrossRef] [PubMed]

H. Tian, D. Xie, Y. Yang, T. L. Ren, Y. X. Lin, Y. Chen, Y. F. Wang, C. J. Zhou, P. G. Peng, L. G. Wang, and L. T. Liu, “Flexible, ultrathin, and transparent sound-emitting devices using silver nanowires film,” Appl. Phys. Lett.99253507 (2011).
[CrossRef]

2010

L. H. Thamdrup, N. B. Larsen, and A. Kristensen, “Light-induced local heating for thermophoretic manipulation of DNA in polymer micro- and nanochannels,” Nano Lett.10(3) 826–832 (2010).
[CrossRef] [PubMed]

2009

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, “Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays,” Phys. Rev. B79, 073412(7) (2009).
[CrossRef]

M. Suzuki, Y. Imai, H. Tokunaga, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, “Tailoring coupling of light to local plasmons by using Ag nanorods/structured dielectric/mirror sandwiches,” J. Nanophotonics3, 031502 (2009).
[CrossRef]

2008

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101, 143902(4) (2008).
[CrossRef] [PubMed]

2007

M. Suzuki, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, “Au nanorod arrays tailored for surface-enhanced Raman spectroscopy,” Anal. Sci.23(7), 829–833 (2007).
[CrossRef] [PubMed]

2006

Y. Hou, J.-S. Kim, M. O’Donnel, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett.89, 093901 (2006).
[CrossRef]

2005

V. P. Zharov, T. V. Malinsky, and R. C. Kurten, “Photoacoustic tweezers with a pulsed laser: theory and experiments,” J. Phys. D: Appl. Phys.382662–2674 (2005).
[CrossRef]

2003

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J.84, 4023–4032 (2003).
[CrossRef] [PubMed]

2002

D. Braun and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett.89(18) 188103 (2002).
[CrossRef] [PubMed]

2001

M. Suzuki and Y. Taga, “Numerical study of the effective surface area of obliquely deposited thin films,” J. Appl. Phys.90(11), 5599–5605 (2001).
[CrossRef]

1999

H. Shinoda, T. Nakajima, K. Ueno, and N. Koshida, “Thermally induced ultrasonic emission from porous silicon,” Nature400, 853–855 (1999).
[CrossRef]

1993

1976

A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys.48(1), 64–69 (1976).
[CrossRef]

Anderson, R. R.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J.84, 4023–4032 (2003).
[CrossRef] [PubMed]

Auguié, B.

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, “Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays,” Phys. Rev. B79, 073412(7) (2009).
[CrossRef]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101, 143902(4) (2008).
[CrossRef] [PubMed]

Aussenegg, F. R.

Avetisyan, Y. A.

Barnes, W. L.

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, “Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays,” Phys. Rev. B79, 073412(7) (2009).
[CrossRef]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101, 143902(4) (2008).
[CrossRef] [PubMed]

Braun, D.

D. Braun and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett.89(18) 188103 (2002).
[CrossRef] [PubMed]

Brunner, H.

Burrows, C. P.

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, “Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays,” Phys. Rev. B79, 073412(7) (2009).
[CrossRef]

Chen, Y.

H. Tian, D. Xie, Y. Yang, T. L. Ren, Y. X. Lin, Y. Chen, Y. F. Wang, C. J. Zhou, P. G. Peng, L. G. Wang, and L. T. Liu, “Flexible, ultrathin, and transparent sound-emitting devices using silver nanowires film,” Appl. Phys. Lett.99253507 (2011).
[CrossRef]

Chen, Y. S.

Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett.11(2), 348–354 (2011).
[CrossRef] [PubMed]

Emelianov, S.

Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett.11(2), 348–354 (2011).
[CrossRef] [PubMed]

Frey, W.

Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett.11(2), 348–354 (2011).
[CrossRef] [PubMed]

Fukuoka, T.

M. Suzuki, Y. Imai, H. Tokunaga, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, “Tailoring coupling of light to local plasmons by using Ag nanorods/structured dielectric/mirror sandwiches,” J. Nanophotonics3, 031502 (2009).
[CrossRef]

M. Suzuki, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, “Au nanorod arrays tailored for surface-enhanced Raman spectroscopy,” Anal. Sci.23(7), 829–833 (2007).
[CrossRef] [PubMed]

Gersho, A.

A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys.48(1), 64–69 (1976).
[CrossRef]

Guo, L. J.

Y. Hou, J.-S. Kim, M. O’Donnel, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett.89, 093901 (2006).
[CrossRef]

Hendry, E.

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, “Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays,” Phys. Rev. B79, 073412(7) (2009).
[CrossRef]

Homan, K.

Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett.11(2), 348–354 (2011).
[CrossRef] [PubMed]

Hou, Y.

Y. Hou, J.-S. Kim, M. O’Donnel, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett.89, 093901 (2006).
[CrossRef]

Imai, Y.

M. Suzuki, Y. Imai, H. Tokunaga, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, “Tailoring coupling of light to local plasmons by using Ag nanorods/structured dielectric/mirror sandwiches,” J. Nanophotonics3, 031502 (2009).
[CrossRef]

Joe, E. K.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J.84, 4023–4032 (2003).
[CrossRef] [PubMed]

Kim, J.-S.

Y. Hou, J.-S. Kim, M. O’Donnel, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett.89, 093901 (2006).
[CrossRef]

Kim, S.

Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett.11(2), 348–354 (2011).
[CrossRef] [PubMed]

Kimura, K.

K. Namura, M. Suzuki, K. Nakajima, and K. Kimura, “Heat-generating property of a local plasmon resonator under illumination,” Opt. Lett.36, 3533–3535 (2011).
[CrossRef] [PubMed]

M. Suzuki, Y. Imai, H. Tokunaga, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, “Tailoring coupling of light to local plasmons by using Ag nanorods/structured dielectric/mirror sandwiches,” J. Nanophotonics3, 031502 (2009).
[CrossRef]

M. Suzuki, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, “Au nanorod arrays tailored for surface-enhanced Raman spectroscopy,” Anal. Sci.23(7), 829–833 (2007).
[CrossRef] [PubMed]

Koshida, N.

H. Shinoda, T. Nakajima, K. Ueno, and N. Koshida, “Thermally induced ultrasonic emission from porous silicon,” Nature400, 853–855 (1999).
[CrossRef]

Kristensen, A.

L. H. Thamdrup, N. B. Larsen, and A. Kristensen, “Light-induced local heating for thermophoretic manipulation of DNA in polymer micro- and nanochannels,” Nano Lett.10(3) 826–832 (2010).
[CrossRef] [PubMed]

Kruizinga, P.

Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett.11(2), 348–354 (2011).
[CrossRef] [PubMed]

Kurten, R. C.

V. P. Zharov, T. V. Malinsky, and R. C. Kurten, “Photoacoustic tweezers with a pulsed laser: theory and experiments,” J. Phys. D: Appl. Phys.382662–2674 (2005).
[CrossRef]

Larsen, N. B.

L. H. Thamdrup, N. B. Larsen, and A. Kristensen, “Light-induced local heating for thermophoretic manipulation of DNA in polymer micro- and nanochannels,” Nano Lett.10(3) 826–832 (2010).
[CrossRef] [PubMed]

Leitner, A.

Libchaber, A.

D. Braun and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett.89(18) 188103 (2002).
[CrossRef] [PubMed]

Lin, C. P.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J.84, 4023–4032 (2003).
[CrossRef] [PubMed]

Lin, Y. X.

H. Tian, D. Xie, Y. Yang, T. L. Ren, Y. X. Lin, Y. Chen, Y. F. Wang, C. J. Zhou, P. G. Peng, L. G. Wang, and L. T. Liu, “Flexible, ultrathin, and transparent sound-emitting devices using silver nanowires film,” Appl. Phys. Lett.99253507 (2011).
[CrossRef]

Liu, L. T.

H. Tian, D. Xie, Y. Yang, T. L. Ren, Y. X. Lin, Y. Chen, Y. F. Wang, C. J. Zhou, P. G. Peng, L. G. Wang, and L. T. Liu, “Flexible, ultrathin, and transparent sound-emitting devices using silver nanowires film,” Appl. Phys. Lett.99253507 (2011).
[CrossRef]

Malinsky, T. V.

V. P. Zharov, T. V. Malinsky, and R. C. Kurten, “Photoacoustic tweezers with a pulsed laser: theory and experiments,” J. Phys. D: Appl. Phys.382662–2674 (2005).
[CrossRef]

Mori, Y.

M. Suzuki, Y. Imai, H. Tokunaga, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, “Tailoring coupling of light to local plasmons by using Ag nanorods/structured dielectric/mirror sandwiches,” J. Nanophotonics3, 031502 (2009).
[CrossRef]

M. Suzuki, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, “Au nanorod arrays tailored for surface-enhanced Raman spectroscopy,” Anal. Sci.23(7), 829–833 (2007).
[CrossRef] [PubMed]

Nakajima, K.

K. Namura, M. Suzuki, K. Nakajima, and K. Kimura, “Heat-generating property of a local plasmon resonator under illumination,” Opt. Lett.36, 3533–3535 (2011).
[CrossRef] [PubMed]

M. Suzuki, Y. Imai, H. Tokunaga, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, “Tailoring coupling of light to local plasmons by using Ag nanorods/structured dielectric/mirror sandwiches,” J. Nanophotonics3, 031502 (2009).
[CrossRef]

M. Suzuki, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, “Au nanorod arrays tailored for surface-enhanced Raman spectroscopy,” Anal. Sci.23(7), 829–833 (2007).
[CrossRef] [PubMed]

Nakajima, T.

H. Shinoda, T. Nakajima, K. Ueno, and N. Koshida, “Thermally induced ultrasonic emission from porous silicon,” Nature400, 853–855 (1999).
[CrossRef]

Namura, K.

O’Donnel, M.

Y. Hou, J.-S. Kim, M. O’Donnel, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett.89, 093901 (2006).
[CrossRef]

Parsons, J.

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, “Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays,” Phys. Rev. B79, 073412(7) (2009).
[CrossRef]

Peng, P. G.

H. Tian, D. Xie, Y. Yang, T. L. Ren, Y. X. Lin, Y. Chen, Y. F. Wang, C. J. Zhou, P. G. Peng, L. G. Wang, and L. T. Liu, “Flexible, ultrathin, and transparent sound-emitting devices using silver nanowires film,” Appl. Phys. Lett.99253507 (2011).
[CrossRef]

Pitsillides, C. M.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J.84, 4023–4032 (2003).
[CrossRef] [PubMed]

Ren, T. L.

H. Tian, D. Xie, Y. Yang, T. L. Ren, Y. X. Lin, Y. Chen, Y. F. Wang, C. J. Zhou, P. G. Peng, L. G. Wang, and L. T. Liu, “Flexible, ultrathin, and transparent sound-emitting devices using silver nanowires film,” Appl. Phys. Lett.99253507 (2011).
[CrossRef]

Rosencwaig, A.

A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys.48(1), 64–69 (1976).
[CrossRef]

Sambles, J. R.

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, “Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays,” Phys. Rev. B79, 073412(7) (2009).
[CrossRef]

Shinoda, H.

H. Shinoda, T. Nakajima, K. Ueno, and N. Koshida, “Thermally induced ultrasonic emission from porous silicon,” Nature400, 853–855 (1999).
[CrossRef]

Suzuki, M.

K. Namura, M. Suzuki, K. Nakajima, and K. Kimura, “Heat-generating property of a local plasmon resonator under illumination,” Opt. Lett.36, 3533–3535 (2011).
[CrossRef] [PubMed]

M. Suzuki, Y. Imai, H. Tokunaga, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, “Tailoring coupling of light to local plasmons by using Ag nanorods/structured dielectric/mirror sandwiches,” J. Nanophotonics3, 031502 (2009).
[CrossRef]

M. Suzuki, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, “Au nanorod arrays tailored for surface-enhanced Raman spectroscopy,” Anal. Sci.23(7), 829–833 (2007).
[CrossRef] [PubMed]

M. Suzuki and Y. Taga, “Numerical study of the effective surface area of obliquely deposited thin films,” J. Appl. Phys.90(11), 5599–5605 (2001).
[CrossRef]

Taga, Y.

M. Suzuki and Y. Taga, “Numerical study of the effective surface area of obliquely deposited thin films,” J. Appl. Phys.90(11), 5599–5605 (2001).
[CrossRef]

Thamdrup, L. H.

L. H. Thamdrup, N. B. Larsen, and A. Kristensen, “Light-induced local heating for thermophoretic manipulation of DNA in polymer micro- and nanochannels,” Nano Lett.10(3) 826–832 (2010).
[CrossRef] [PubMed]

Tian, H.

H. Tian, D. Xie, Y. Yang, T. L. Ren, Y. X. Lin, Y. Chen, Y. F. Wang, C. J. Zhou, P. G. Peng, L. G. Wang, and L. T. Liu, “Flexible, ultrathin, and transparent sound-emitting devices using silver nanowires film,” Appl. Phys. Lett.99253507 (2011).
[CrossRef]

Tokunaga, H.

M. Suzuki, Y. Imai, H. Tokunaga, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, “Tailoring coupling of light to local plasmons by using Ag nanorods/structured dielectric/mirror sandwiches,” J. Nanophotonics3, 031502 (2009).
[CrossRef]

Tuchin, V. V.

Ueno, K.

H. Shinoda, T. Nakajima, K. Ueno, and N. Koshida, “Thermally induced ultrasonic emission from porous silicon,” Nature400, 853–855 (1999).
[CrossRef]

Wang, L. G.

H. Tian, D. Xie, Y. Yang, T. L. Ren, Y. X. Lin, Y. Chen, Y. F. Wang, C. J. Zhou, P. G. Peng, L. G. Wang, and L. T. Liu, “Flexible, ultrathin, and transparent sound-emitting devices using silver nanowires film,” Appl. Phys. Lett.99253507 (2011).
[CrossRef]

Wang, Y. F.

H. Tian, D. Xie, Y. Yang, T. L. Ren, Y. X. Lin, Y. Chen, Y. F. Wang, C. J. Zhou, P. G. Peng, L. G. Wang, and L. T. Liu, “Flexible, ultrathin, and transparent sound-emitting devices using silver nanowires film,” Appl. Phys. Lett.99253507 (2011).
[CrossRef]

Wei, X.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J.84, 4023–4032 (2003).
[CrossRef] [PubMed]

Wokaun, A.

Xie, D.

H. Tian, D. Xie, Y. Yang, T. L. Ren, Y. X. Lin, Y. Chen, Y. F. Wang, C. J. Zhou, P. G. Peng, L. G. Wang, and L. T. Liu, “Flexible, ultrathin, and transparent sound-emitting devices using silver nanowires film,” Appl. Phys. Lett.99253507 (2011).
[CrossRef]

Yakunin, A. N.

Yang, Y.

H. Tian, D. Xie, Y. Yang, T. L. Ren, Y. X. Lin, Y. Chen, Y. F. Wang, C. J. Zhou, P. G. Peng, L. G. Wang, and L. T. Liu, “Flexible, ultrathin, and transparent sound-emitting devices using silver nanowires film,” Appl. Phys. Lett.99253507 (2011).
[CrossRef]

Zhao, Z.

Zharov, V. P.

V. P. Zharov, “Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit,” Nat. Photon.5(2), 110–116 (2011).
[CrossRef]

V. P. Zharov, T. V. Malinsky, and R. C. Kurten, “Photoacoustic tweezers with a pulsed laser: theory and experiments,” J. Phys. D: Appl. Phys.382662–2674 (2005).
[CrossRef]

Zhou, C. J.

H. Tian, D. Xie, Y. Yang, T. L. Ren, Y. X. Lin, Y. Chen, Y. F. Wang, C. J. Zhou, P. G. Peng, L. G. Wang, and L. T. Liu, “Flexible, ultrathin, and transparent sound-emitting devices using silver nanowires film,” Appl. Phys. Lett.99253507 (2011).
[CrossRef]

Anal. Sci.

M. Suzuki, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, “Au nanorod arrays tailored for surface-enhanced Raman spectroscopy,” Anal. Sci.23(7), 829–833 (2007).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

H. Tian, D. Xie, Y. Yang, T. L. Ren, Y. X. Lin, Y. Chen, Y. F. Wang, C. J. Zhou, P. G. Peng, L. G. Wang, and L. T. Liu, “Flexible, ultrathin, and transparent sound-emitting devices using silver nanowires film,” Appl. Phys. Lett.99253507 (2011).
[CrossRef]

Y. Hou, J.-S. Kim, M. O’Donnel, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett.89, 093901 (2006).
[CrossRef]

Biophys. J.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J.84, 4023–4032 (2003).
[CrossRef] [PubMed]

J. Appl. Phys.

A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys.48(1), 64–69 (1976).
[CrossRef]

M. Suzuki and Y. Taga, “Numerical study of the effective surface area of obliquely deposited thin films,” J. Appl. Phys.90(11), 5599–5605 (2001).
[CrossRef]

J. Nanophotonics

M. Suzuki, Y. Imai, H. Tokunaga, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, “Tailoring coupling of light to local plasmons by using Ag nanorods/structured dielectric/mirror sandwiches,” J. Nanophotonics3, 031502 (2009).
[CrossRef]

J. Phys. D: Appl. Phys.

V. P. Zharov, T. V. Malinsky, and R. C. Kurten, “Photoacoustic tweezers with a pulsed laser: theory and experiments,” J. Phys. D: Appl. Phys.382662–2674 (2005).
[CrossRef]

Nano Lett.

Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett.11(2), 348–354 (2011).
[CrossRef] [PubMed]

L. H. Thamdrup, N. B. Larsen, and A. Kristensen, “Light-induced local heating for thermophoretic manipulation of DNA in polymer micro- and nanochannels,” Nano Lett.10(3) 826–832 (2010).
[CrossRef] [PubMed]

Nat. Photon.

V. P. Zharov, “Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit,” Nat. Photon.5(2), 110–116 (2011).
[CrossRef]

Nature

H. Shinoda, T. Nakajima, K. Ueno, and N. Koshida, “Thermally induced ultrasonic emission from porous silicon,” Nature400, 853–855 (1999).
[CrossRef]

Opt. Lett.

Phys. Rev. B

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, “Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays,” Phys. Rev. B79, 073412(7) (2009).
[CrossRef]

Phys. Rev. Lett.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101, 143902(4) (2008).
[CrossRef] [PubMed]

D. Braun and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett.89(18) 188103 (2002).
[CrossRef] [PubMed]

Other

National Astronomical Observatory of Japan, Chronological Science Tables (Tokyo: Maruzen, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic drawing of side view of local plasmon resonator with Au nanoparticle array/SCL/PCL/Ag mirror structure. (b) Volume element of the SCL with cylindrical columns. The filling factor, S, is equal to the area ratio.

Fig. 2
Fig. 2

Experimental setup for photoacoustic measurements.

Fig. 3
Fig. 3

SEM images of (a) the cross section and (b) the surface morphology of the local plasmon resonator with an Au nanoparticle array/SCL/PCL/Ag mirror structure. (c) and (d) SEM images of the sample with an Au nanoparticle array/PCL/Ag mirror structure.

Fig. 4
Fig. 4

Optical absorption spectra of the local plasmon resonators with an SCL (lpcl = 120 nm and 280 nm thickness) and without an SCL (lpcl = 360 nm and 500 nm thickness)

Fig. 5
Fig. 5

Photoacoustic spectra of the local plasmon resonators with an SCL (A = 0.95 and 0.03) and without an SCL (A = 0.93), in addition to those of graphite (A = 0.94) and Ag (A = 0.01).

Fig. 6
Fig. 6

Typical photoacoustic spectra of local plasmon resonators, (a) with an SCL and (b) without an SCL, for various optical absorption values.

Fig. 7
Fig. 7

Photoacoustic amplitude, P, over optical absorption, A, as a function of the thickness of the dielectric layer, lpcl + lscl, at the laser modulation frequency of 60 kHz. The solid line is the fitting result of the theoretical solution for the samples without an SCL. The dashed lines are the results of the numerical analysis for the samples with an SCL, for the filling factors, S = 0.20, 0.25, and 0.30.

Fig. 8
Fig. 8

Schematic diagram of heat transfer model and the coordinate configuration.

Tables (2)

Tables Icon

Table 1 The list of samples, where α represents the deposition angle.

Tables Icon

Table 2 Properties of the local plasmon resonators with and without an SCL.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

q ( x , t ) = A Q 0 ( 1 + cos ω t ) δ ( x ) ,
u i ( x , t ) t = a i 2 u i ( x , t ) x 2 .
u ( 0 , t ) = U d c + U a c cos ( ω t + ϕ ) ,
P = F | U a c | | U d c | ,
U d c = T 0 + A Q 0 l g ( κ pcl l si + κ si l pcl ) κ pcl κ si l g + κ g ( κ pcl l si + κ si l pcl ) ,
U a c = A Q 0 κ pcl σ pcl ( 1 b ) exp ( σ pcl l pcl ) + ( 1 + b ) exp ( σ pcl l pcl ) ( 1 + c ) ( 1 + b ) exp ( σ pcl l pcl ) ( 1 c ) ( 1 b ) exp ( σ pcl l pcl ) ,
σ i = ( 1 + j ) ( ω 2 a i ) 1 / 2 , b = κ si σ si κ pcl σ pcl , c = κ g σ g κ pcl σ pcl .

Metrics