Z. J. Li, Z. S. Wu, Q. C. Shang, L. Bai, and C. H. Cao, “Calculation of radiation force and torque exerted on a uniaxial anisotropic sphere by an incident Gaussian beam with arbitrary propagation and polarization directions,” Opt. Express20(15), 16421–16435 (2012).

[CrossRef]

Z.-S. Wu, Q.-C. Shang, and Z.-J. Li, “Calculation of electromagnetic scattering by a large chiral sphere,” Appl. Opt.51(27), 6661–6668 (2012).

[CrossRef]
[PubMed]

L. A. Ambrosio and H. E. Hernández-Figueroa, “Radiation pressure cross sections and optical forces over negative refractive index spherical particles by ordinary Bessel beams,” Appl. Opt.50(22), 4489–4498 (2011).

[CrossRef]
[PubMed]

Z. J. Li, Z. S. Wu, and Q. C. Shang, “Calculation of radiation forces exerted on a uniaxial anisotropic sphere by an off-axis incident Gaussian beam,” Opt. Express19(17), 16044–16057 (2011).

[CrossRef]
[PubMed]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transf.112(1), 1–27 (2011).

[CrossRef]

D. Guzatov and V. V. Klimov, “Chiral particles in a circularly polarised light field: new effects and applications,” Quantum Electron.41(6), 526–533 (2011).

[CrossRef]

T. A. Nieminen, V. L. Y. Loke, G. Knöner, and A. Branczyk, “Toolbox for calculation of optical forces and torques,” Piers Online3(3), 338–342 (2007).

[CrossRef]

A. G. Hoekstra, M. Frijlink, L. B. F. M. Waters, and P. M. A. Sloot, “Radiation forces in the discrete-dipole approximation,” J. Opt. Soc. Am. A18(8), 1944–1953 (2001).

[CrossRef]
[PubMed]

T. Nieminen, H. Rubinsztein-Dunlop, N. Heckenberg, and A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun.142(1-3), 468–471 (2001).

[CrossRef]

J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A11(9), 2503–2515 (1994).

[CrossRef]

G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A11(9), 2516–2525 (1994).

[CrossRef]

K. F. Ren, G. Gréha, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun.108(4-6), 343–354 (1994).

[CrossRef]

W. H. Wright, G. J. Sonek, and M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett.63(6), 715–717 (1993).

[CrossRef]

T. C. B. Schut, G. Hesselink, B. G. de Grooth, and J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry12(6), 479–485 (1991).

[CrossRef]
[PubMed]

Z. S. Wu and Y. P. Wang, “Electromagnetic scattering for multilayered sphere: Recursive algorithms,” Radio Sci.26(6), 1393–1401 (1991).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys.66(10), 4594–4602 (1989).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Scattering of a Gaussian Beam by a Sphere Using a Bromwich Formulation: Case of an arbitrary location,” Particle & Particle Systems Characterization5(1), 1–8 (1988).

[CrossRef]

G. Gouesbet, G. Grehan, and B. Maheu, “Computations of the gn coefficients in the generalized Lorenz-Mie theory using three different methods,” Appl. Opt.27(23), 4874–4883 (1988).

[CrossRef]
[PubMed]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A5(9), 1427–1443 (1988).

[CrossRef]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235(4795), 1517–1520 (1987).

[CrossRef]
[PubMed]

J. S. Kim and S. S. Lee, “Radiation pressure on a dielectric sphere in a gaussian laser beam,” Opt. Acta (Lond.)29(6), 801–806 (1982).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A19(3), 1177–1179 (1979).

[CrossRef]

G. Roosen, “A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams,” Opt. Commun.21(1), 189–194 (1977).

[CrossRef]

F. Bohren, “Light scattering by an optically active sphere,” Chem. Phys. Lett.29(3), 458–462 (1974).

[CrossRef]

A. Ashkin and J. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett.19(8), 283–285 (1971).

[CrossRef]

A. L. Aden and M. Kerker, “Scattering of electromagnetic wave from concentric sphere,” J. Appl. Phys.22(10), 1242–1246 (1951).

[CrossRef]

A. L. Aden and M. Kerker, “Scattering of electromagnetic wave from concentric sphere,” J. Appl. Phys.22(10), 1242–1246 (1951).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys.66(10), 4594–4602 (1989).

[CrossRef]

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun.124(5-6), 529–541 (1996).

[CrossRef]

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992).

[CrossRef]
[PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235(4795), 1517–1520 (1987).

[CrossRef]
[PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986).

[CrossRef]
[PubMed]

A. Ashkin and J. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett.19(8), 283–285 (1971).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys.66(10), 4594–4602 (1989).

[CrossRef]

W. H. Wright, G. J. Sonek, and M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett.63(6), 715–717 (1993).

[CrossRef]

T. Nieminen, H. Rubinsztein-Dunlop, N. Heckenberg, and A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun.142(1-3), 468–471 (2001).

[CrossRef]

F. Bohren, “Light scattering by an optically active sphere,” Chem. Phys. Lett.29(3), 458–462 (1974).

[CrossRef]

T. A. Nieminen, V. L. Y. Loke, G. Knöner, and A. Branczyk, “Toolbox for calculation of optical forces and torques,” Piers Online3(3), 338–342 (2007).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A19(3), 1177–1179 (1979).

[CrossRef]

T. C. B. Schut, G. Hesselink, B. G. de Grooth, and J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry12(6), 479–485 (1991).

[CrossRef]
[PubMed]

A. Ashkin and J. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett.19(8), 283–285 (1971).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transf.112(1), 1–27 (2011).

[CrossRef]

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral Localized Approximation in Generalized Lorenz-Mie Theory,” Appl. Opt.37(19), 4218–4225 (1998).

[CrossRef]
[PubMed]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz-Mie theory,” Appl. Opt.35(15), 2702–2710 (1996).

[CrossRef]
[PubMed]

J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A11(9), 2503–2515 (1994).

[CrossRef]

K. F. Ren, G. Gréha, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun.108(4-6), 343–354 (1994).

[CrossRef]

G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A11(9), 2516–2525 (1994).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Scattering of a Gaussian Beam by a Sphere Using a Bromwich Formulation: Case of an arbitrary location,” Particle & Particle Systems Characterization5(1), 1–8 (1988).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A5(9), 1427–1443 (1988).

[CrossRef]

G. Gouesbet, G. Grehan, and B. Maheu, “Computations of the gn coefficients in the generalized Lorenz-Mie theory using three different methods,” Appl. Opt.27(23), 4874–4883 (1988).

[CrossRef]
[PubMed]

K. F. Ren, G. Gréha, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun.108(4-6), 343–354 (1994).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transf.112(1), 1–27 (2011).

[CrossRef]

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral Localized Approximation in Generalized Lorenz-Mie Theory,” Appl. Opt.37(19), 4218–4225 (1998).

[CrossRef]
[PubMed]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz-Mie theory,” Appl. Opt.35(15), 2702–2710 (1996).

[CrossRef]
[PubMed]

G. Gouesbet, B. Maheu, and G. Gréhan, “Scattering of a Gaussian Beam by a Sphere Using a Bromwich Formulation: Case of an arbitrary location,” Particle & Particle Systems Characterization5(1), 1–8 (1988).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A5(9), 1427–1443 (1988).

[CrossRef]

T. C. B. Schut, G. Hesselink, B. G. de Grooth, and J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry12(6), 479–485 (1991).

[CrossRef]
[PubMed]

D. Guzatov and V. V. Klimov, “Chiral particles in a circularly polarised light field: new effects and applications,” Quantum Electron.41(6), 526–533 (2011).

[CrossRef]

D. Sarkar and N. J. Halas, “General vector basis function solution of Maxwell's equations,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics56(1), 1102–1112 (1997).

[CrossRef]

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun.124(5-6), 529–541 (1996).

[CrossRef]

T. Nieminen, H. Rubinsztein-Dunlop, N. Heckenberg, and A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun.142(1-3), 468–471 (2001).

[CrossRef]

T. C. B. Schut, G. Hesselink, B. G. de Grooth, and J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry12(6), 479–485 (1991).

[CrossRef]
[PubMed]

A. L. Aden and M. Kerker, “Scattering of electromagnetic wave from concentric sphere,” J. Appl. Phys.22(10), 1242–1246 (1951).

[CrossRef]

D. Guzatov and V. V. Klimov, “Chiral particles in a circularly polarised light field: new effects and applications,” Quantum Electron.41(6), 526–533 (2011).

[CrossRef]

T. A. Nieminen, V. L. Y. Loke, G. Knöner, and A. Branczyk, “Toolbox for calculation of optical forces and torques,” Piers Online3(3), 338–342 (2007).

[CrossRef]

Z. J. Li, Z. S. Wu, Q. C. Shang, L. Bai, and C. H. Cao, “Calculation of radiation force and torque exerted on a uniaxial anisotropic sphere by an incident Gaussian beam with arbitrary propagation and polarization directions,” Opt. Express20(15), 16421–16435 (2012).

[CrossRef]

Z. J. Li, Z. S. Wu, and Q. C. Shang, “Calculation of radiation forces exerted on a uniaxial anisotropic sphere by an off-axis incident Gaussian beam,” Opt. Express19(17), 16044–16057 (2011).

[CrossRef]
[PubMed]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transf.112(1), 1–27 (2011).

[CrossRef]

J. A. Lock, “Calculation of the Radiation Trapping Force for Laser Tweezers by Use of Generalized Lorenz-Mie theory. I. Localized Model Description of an On-Axis Tightly Focused Laser Beam with Spherical Aberration,” Appl. Opt.43(12), 2532–2544 (2004).

[CrossRef]
[PubMed]

J. A. Lock, “Calculation of the Radiation Trapping Force for Laser Tweezers by Use of Generalized Lorenz-Mie theory. II. On-Axis Trapping Force,” Appl. Opt.43(12), 2545–2554 (2004).

[CrossRef]
[PubMed]

G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A11(9), 2516–2525 (1994).

[CrossRef]

J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A11(9), 2503–2515 (1994).

[CrossRef]

T. A. Nieminen, V. L. Y. Loke, G. Knöner, and A. Branczyk, “Toolbox for calculation of optical forces and torques,” Piers Online3(3), 338–342 (2007).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A5(9), 1427–1443 (1988).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Scattering of a Gaussian Beam by a Sphere Using a Bromwich Formulation: Case of an arbitrary location,” Particle & Particle Systems Characterization5(1), 1–8 (1988).

[CrossRef]

G. Gouesbet, G. Grehan, and B. Maheu, “Computations of the gn coefficients in the generalized Lorenz-Mie theory using three different methods,” Appl. Opt.27(23), 4874–4883 (1988).

[CrossRef]
[PubMed]

T. Nieminen, H. Rubinsztein-Dunlop, N. Heckenberg, and A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun.142(1-3), 468–471 (2001).

[CrossRef]

T. A. Nieminen, V. L. Y. Loke, G. Knöner, and A. Branczyk, “Toolbox for calculation of optical forces and torques,” Piers Online3(3), 338–342 (2007).

[CrossRef]

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral Localized Approximation in Generalized Lorenz-Mie Theory,” Appl. Opt.37(19), 4218–4225 (1998).

[CrossRef]
[PubMed]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz-Mie theory,” Appl. Opt.35(15), 2702–2710 (1996).

[CrossRef]
[PubMed]

K. F. Ren, G. Gréha, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun.108(4-6), 343–354 (1994).

[CrossRef]

G. Roosen, “A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams,” Opt. Commun.21(1), 189–194 (1977).

[CrossRef]

T. Nieminen, H. Rubinsztein-Dunlop, N. Heckenberg, and A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun.142(1-3), 468–471 (2001).

[CrossRef]

D. Sarkar and N. J. Halas, “General vector basis function solution of Maxwell's equations,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics56(1), 1102–1112 (1997).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys.66(10), 4594–4602 (1989).

[CrossRef]

T. C. B. Schut, G. Hesselink, B. G. de Grooth, and J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry12(6), 479–485 (1991).

[CrossRef]
[PubMed]

Z. J. Li, Z. S. Wu, Q. C. Shang, L. Bai, and C. H. Cao, “Calculation of radiation force and torque exerted on a uniaxial anisotropic sphere by an incident Gaussian beam with arbitrary propagation and polarization directions,” Opt. Express20(15), 16421–16435 (2012).

[CrossRef]

Z. J. Li, Z. S. Wu, and Q. C. Shang, “Calculation of radiation forces exerted on a uniaxial anisotropic sphere by an off-axis incident Gaussian beam,” Opt. Express19(17), 16044–16057 (2011).

[CrossRef]
[PubMed]

W. H. Wright, G. J. Sonek, and M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett.63(6), 715–717 (1993).

[CrossRef]

Z. S. Wu and Y. P. Wang, “Electromagnetic scattering for multilayered sphere: Recursive algorithms,” Radio Sci.26(6), 1393–1401 (1991).

[CrossRef]

W. H. Wright, G. J. Sonek, and M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett.63(6), 715–717 (1993).

[CrossRef]

Z. J. Li, Z. S. Wu, Q. C. Shang, L. Bai, and C. H. Cao, “Calculation of radiation force and torque exerted on a uniaxial anisotropic sphere by an incident Gaussian beam with arbitrary propagation and polarization directions,” Opt. Express20(15), 16421–16435 (2012).

[CrossRef]

Z. J. Li, Z. S. Wu, and Q. C. Shang, “Calculation of radiation forces exerted on a uniaxial anisotropic sphere by an off-axis incident Gaussian beam,” Opt. Express19(17), 16044–16057 (2011).

[CrossRef]
[PubMed]

Z. S. Wu and Y. P. Wang, “Electromagnetic scattering for multilayered sphere: Recursive algorithms,” Radio Sci.26(6), 1393–1401 (1991).

[CrossRef]

A. Doicu and T. Wriedt, “Computation of the beam-shape coefficients in the generalized Lorenz-Mie theory by using the translational addition theorem for spherical vector wave functions,” Appl. Opt.36(13), 2971–2978 (1997).

[CrossRef]
[PubMed]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz-Mie theory,” Appl. Opt.35(15), 2702–2710 (1996).

[CrossRef]
[PubMed]

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral Localized Approximation in Generalized Lorenz-Mie Theory,” Appl. Opt.37(19), 4218–4225 (1998).

[CrossRef]
[PubMed]

G. Gouesbet, G. Grehan, and B. Maheu, “Computations of the gn coefficients in the generalized Lorenz-Mie theory using three different methods,” Appl. Opt.27(23), 4874–4883 (1988).

[CrossRef]
[PubMed]

J. A. Lock, “Calculation of the Radiation Trapping Force for Laser Tweezers by Use of Generalized Lorenz-Mie theory. I. Localized Model Description of an On-Axis Tightly Focused Laser Beam with Spherical Aberration,” Appl. Opt.43(12), 2532–2544 (2004).

[CrossRef]
[PubMed]

J. A. Lock, “Calculation of the Radiation Trapping Force for Laser Tweezers by Use of Generalized Lorenz-Mie theory. II. On-Axis Trapping Force,” Appl. Opt.43(12), 2545–2554 (2004).

[CrossRef]
[PubMed]

L. A. Ambrosio and H. E. Hernández-Figueroa, “Radiation pressure cross sections and optical forces over negative refractive index spherical particles by ordinary Bessel beams,” Appl. Opt.50(22), 4489–4498 (2011).

[CrossRef]
[PubMed]

Z.-S. Wu, Q.-C. Shang, and Z.-J. Li, “Calculation of electromagnetic scattering by a large chiral sphere,” Appl. Opt.51(27), 6661–6668 (2012).

[CrossRef]
[PubMed]

A. Ashkin and J. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett.19(8), 283–285 (1971).

[CrossRef]

W. H. Wright, G. J. Sonek, and M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett.63(6), 715–717 (1993).

[CrossRef]

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992).

[CrossRef]
[PubMed]

F. Bohren, “Light scattering by an optically active sphere,” Chem. Phys. Lett.29(3), 458–462 (1974).

[CrossRef]

T. Nieminen, H. Rubinsztein-Dunlop, N. Heckenberg, and A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun.142(1-3), 468–471 (2001).

[CrossRef]

T. C. B. Schut, G. Hesselink, B. G. de Grooth, and J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry12(6), 479–485 (1991).

[CrossRef]
[PubMed]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys.66(10), 4594–4602 (1989).

[CrossRef]

A. L. Aden and M. Kerker, “Scattering of electromagnetic wave from concentric sphere,” J. Appl. Phys.22(10), 1242–1246 (1951).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A5(9), 1427–1443 (1988).

[CrossRef]

A. G. Hoekstra, M. Frijlink, L. B. F. M. Waters, and P. M. A. Sloot, “Radiation forces in the discrete-dipole approximation,” J. Opt. Soc. Am. A18(8), 1944–1953 (2001).

[CrossRef]
[PubMed]

J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A11(9), 2503–2515 (1994).

[CrossRef]

G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A11(9), 2516–2525 (1994).

[CrossRef]

R. Gussgard, T. Lindmo, and I. Brevik, “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am. B9(10), 1922–1930 (1992).

[CrossRef]

R. C. Gauthier and S. Wallace, “Optical levitation of spheres: analytical development and numerical computations of the force equations,” J. Opt. Soc. Am. B12(9), 1680–1686 (1995).

[CrossRef]

R. C. Gauthier, “Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects,” J. Opt. Soc. Am. B14(12), 3323–3333 (1997).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transf.112(1), 1–27 (2011).

[CrossRef]

J. S. Kim and S. S. Lee, “Radiation pressure on a dielectric sphere in a gaussian laser beam,” Opt. Acta (Lond.)29(6), 801–806 (1982).

[CrossRef]

K. F. Ren, G. Gréha, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun.108(4-6), 343–354 (1994).

[CrossRef]

G. Roosen, “A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams,” Opt. Commun.21(1), 189–194 (1977).

[CrossRef]

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun.124(5-6), 529–541 (1996).

[CrossRef]

Z. J. Li, Z. S. Wu, and Q. C. Shang, “Calculation of radiation forces exerted on a uniaxial anisotropic sphere by an off-axis incident Gaussian beam,” Opt. Express19(17), 16044–16057 (2011).

[CrossRef]
[PubMed]

Z. J. Li, Z. S. Wu, Q. C. Shang, L. Bai, and C. H. Cao, “Calculation of radiation force and torque exerted on a uniaxial anisotropic sphere by an incident Gaussian beam with arbitrary propagation and polarization directions,” Opt. Express20(15), 16421–16435 (2012).

[CrossRef]

R. Gauthier, “Computation of the optical trapping force using an FDTD based technique,” Opt. Express13(10), 3707–3718 (2005).

[CrossRef]
[PubMed]

G. Gouesbet, B. Maheu, and G. Gréhan, “Scattering of a Gaussian Beam by a Sphere Using a Bromwich Formulation: Case of an arbitrary location,” Particle & Particle Systems Characterization5(1), 1–8 (1988).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A19(3), 1177–1179 (1979).

[CrossRef]

D. Sarkar and N. J. Halas, “General vector basis function solution of Maxwell's equations,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics56(1), 1102–1112 (1997).

[CrossRef]

T. A. Nieminen, V. L. Y. Loke, G. Knöner, and A. Branczyk, “Toolbox for calculation of optical forces and torques,” Piers Online3(3), 338–342 (2007).

[CrossRef]

D. Guzatov and V. V. Klimov, “Chiral particles in a circularly polarised light field: new effects and applications,” Quantum Electron.41(6), 526–533 (2011).

[CrossRef]

Z. S. Wu and Y. P. Wang, “Electromagnetic scattering for multilayered sphere: Recursive algorithms,” Radio Sci.26(6), 1393–1401 (1991).

[CrossRef]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235(4795), 1517–1520 (1987).

[CrossRef]
[PubMed]

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1998).