Abstract

An Analytical Band Monte Carlo model was used to investigate the temperature dependence of impact ionization in InAs. The model produced an excellent agreement with experimental data for both avalanche gain and excess noise factors at all temperatures modeled. The gain exhibits a positive temperature dependence whilst the excess noise shows a very weak negative dependence. These dependencies were investigated by tracking the location of electrons initiating the ionization events, the distribution of ionization energy and the effect of threshold energy. We concluded that at low electric fields, the positive temperature dependence of avalanche gain can be explained by the negative temperature dependence of the ionization threshold energy. At low temperature most electrons initiating ionization events occupy L valleys due to the increased ionization threshold. As the scattering rates in L valleys are higher than those in Γ valley, a broader distribution of ionization energy was produced leading to a higher fluctuation in the ionization chain and hence the marginally higher excess noise at low temperature.

© 2013 OSA

Full Article  |  PDF Article

Errata

Ian C. Sandall, Jo Shien Ng, Shiyu Xie, Pin Jern Ker, and Chee Hing Tan, "Temperature dependence of impact ionization in InAs: erratum," Opt. Express 22, 25923-25923 (2014)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-21-25923

References

  • View by:
  • |
  • |
  • |

  1. Y. Shimizu, J. Ishii, Y. Kaneko, F. Sakuma, and A. Ono, “State of the arts of the infrared radiation thermometry standards in the middle temperature range at NMIJ,” SICE Annual Conference 1803–1807 (2004).
  2. J. D. Beck, C.-F. Wan, M. A. Kinch, and J. E. Robinson, “MWIR HgCdTe avalanche photodiodes,” Proc. SPIE, Materials for Infrared Detectors, 4454188–197 (2001).
    [CrossRef]
  3. A. Marshall, C. H. Tan, M. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93(11), 111107 (2008).
    [CrossRef]
  4. A. Marshall, J. P. R. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron. Dev.57(10), 2631–2638 (2010).
    [CrossRef]
  5. S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101(15), 151124 (2012).
    [CrossRef]
  6. P. J. Ker, A. Marshall, A. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
    [CrossRef]
  7. A. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
    [CrossRef]
  8. J. Bude and K. Hess, “Thresholds of impact ionization in semiconductors,” J. Appl. Phys.72(8), 3554–3561 (1992).
    [CrossRef]
  9. G. Satyanadh, P. R. Joshi, N. Abedin, and U. Singh, “Monte carlo calculation of electron drift characteristics and avalanche noise in InAs,” J. Appl. Phys.91(3), 1331–1337 (2002).
    [CrossRef]
  10. W. K. Ng, C. H. Tan, J. P. R. David, P. A. Houston, M. Yee, and J. S. Ng, “Temperature dependent low-field electron multiplication in In0.53Ga0.47As,” Appl. Phys. Lett.83(14), 2820–2822 (2003).
    [CrossRef]
  11. D. Harrison, R. A. Abram, and S. Brand, “Characteristics of impact ionization rates in direct and indirect gap semiconductors,” J. Appl. Phys.85(12), 8186–8188 (1999).
    [CrossRef]
  12. C. H. Tan, G. J. Rees, P. A. Houston, J. S. Ng, W. K. Ng, and J. P. R. David, “Temperature dependence of electron impact ionization in In0.53Ga0.47As,” Appl. Phys. Lett.84(13), 2322–2332 (2004).
    [CrossRef]
  13. C. Jacoboni and L. Reggiani, “Monte Carlo method in transport,” Rev. Mod. Phys.55, 646–703 (1983).
  14. M. V. Fischetti, “Monte carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. I. Homogeneous transport,” IEEE Trans. Electron. Dev.38(3), 634–649 (1991).
    [CrossRef]
  15. S. Krishnamurthy, M. A. Berding, A. Sher, and A. B. Chen, “Ballistic transport in semiconductor alloys,” J. Appl. Phys.63(9), 4540–4547 (1988).
    [CrossRef]
  16. Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys.67(11), 7034–7039 (1990).
    [CrossRef]
  17. P. J. Ker, J. P. R. David, and C. H. Tan, “Temperature dependence of gain and excess noise in InAs electron avalanche photodiodes,” Opt. Express20(28), 29568–29576 (2012).
    [CrossRef] [PubMed]
  18. Y. S. Kim, M. Marsman, G. Kresse, F. Tran, and P. Blaha, “Towards efficient band structure and effective mass calculations for III-V direct band-gap semiconductors,” Phys. Rev. B82(20), 205212 (2010).
    [CrossRef]

2012 (2)

S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101(15), 151124 (2012).
[CrossRef]

P. J. Ker, J. P. R. David, and C. H. Tan, “Temperature dependence of gain and excess noise in InAs electron avalanche photodiodes,” Opt. Express20(28), 29568–29576 (2012).
[CrossRef] [PubMed]

2011 (2)

P. J. Ker, A. Marshall, A. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
[CrossRef]

A. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
[CrossRef]

2010 (2)

A. Marshall, J. P. R. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron. Dev.57(10), 2631–2638 (2010).
[CrossRef]

Y. S. Kim, M. Marsman, G. Kresse, F. Tran, and P. Blaha, “Towards efficient band structure and effective mass calculations for III-V direct band-gap semiconductors,” Phys. Rev. B82(20), 205212 (2010).
[CrossRef]

2008 (1)

A. Marshall, C. H. Tan, M. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93(11), 111107 (2008).
[CrossRef]

2004 (1)

C. H. Tan, G. J. Rees, P. A. Houston, J. S. Ng, W. K. Ng, and J. P. R. David, “Temperature dependence of electron impact ionization in In0.53Ga0.47As,” Appl. Phys. Lett.84(13), 2322–2332 (2004).
[CrossRef]

2003 (1)

W. K. Ng, C. H. Tan, J. P. R. David, P. A. Houston, M. Yee, and J. S. Ng, “Temperature dependent low-field electron multiplication in In0.53Ga0.47As,” Appl. Phys. Lett.83(14), 2820–2822 (2003).
[CrossRef]

2002 (1)

G. Satyanadh, P. R. Joshi, N. Abedin, and U. Singh, “Monte carlo calculation of electron drift characteristics and avalanche noise in InAs,” J. Appl. Phys.91(3), 1331–1337 (2002).
[CrossRef]

1999 (1)

D. Harrison, R. A. Abram, and S. Brand, “Characteristics of impact ionization rates in direct and indirect gap semiconductors,” J. Appl. Phys.85(12), 8186–8188 (1999).
[CrossRef]

1992 (1)

J. Bude and K. Hess, “Thresholds of impact ionization in semiconductors,” J. Appl. Phys.72(8), 3554–3561 (1992).
[CrossRef]

1991 (1)

M. V. Fischetti, “Monte carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. I. Homogeneous transport,” IEEE Trans. Electron. Dev.38(3), 634–649 (1991).
[CrossRef]

1990 (1)

Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys.67(11), 7034–7039 (1990).
[CrossRef]

1988 (1)

S. Krishnamurthy, M. A. Berding, A. Sher, and A. B. Chen, “Ballistic transport in semiconductor alloys,” J. Appl. Phys.63(9), 4540–4547 (1988).
[CrossRef]

1983 (1)

C. Jacoboni and L. Reggiani, “Monte Carlo method in transport,” Rev. Mod. Phys.55, 646–703 (1983).

Abedin, N.

G. Satyanadh, P. R. Joshi, N. Abedin, and U. Singh, “Monte carlo calculation of electron drift characteristics and avalanche noise in InAs,” J. Appl. Phys.91(3), 1331–1337 (2002).
[CrossRef]

Abram, R. A.

D. Harrison, R. A. Abram, and S. Brand, “Characteristics of impact ionization rates in direct and indirect gap semiconductors,” J. Appl. Phys.85(12), 8186–8188 (1999).
[CrossRef]

Bank, S. R.

S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101(15), 151124 (2012).
[CrossRef]

Beck, J. D.

J. D. Beck, C.-F. Wan, M. A. Kinch, and J. E. Robinson, “MWIR HgCdTe avalanche photodiodes,” Proc. SPIE, Materials for Infrared Detectors, 4454188–197 (2001).
[CrossRef]

Berding, M. A.

S. Krishnamurthy, M. A. Berding, A. Sher, and A. B. Chen, “Ballistic transport in semiconductor alloys,” J. Appl. Phys.63(9), 4540–4547 (1988).
[CrossRef]

Blaha, P.

Y. S. Kim, M. Marsman, G. Kresse, F. Tran, and P. Blaha, “Towards efficient band structure and effective mass calculations for III-V direct band-gap semiconductors,” Phys. Rev. B82(20), 205212 (2010).
[CrossRef]

Brand, S.

D. Harrison, R. A. Abram, and S. Brand, “Characteristics of impact ionization rates in direct and indirect gap semiconductors,” J. Appl. Phys.85(12), 8186–8188 (1999).
[CrossRef]

Bude, J.

J. Bude and K. Hess, “Thresholds of impact ionization in semiconductors,” J. Appl. Phys.72(8), 3554–3561 (1992).
[CrossRef]

Campbell, J. C.

S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101(15), 151124 (2012).
[CrossRef]

Chen, A. B.

S. Krishnamurthy, M. A. Berding, A. Sher, and A. B. Chen, “Ballistic transport in semiconductor alloys,” J. Appl. Phys.63(9), 4540–4547 (1988).
[CrossRef]

Cohen, R. M.

Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys.67(11), 7034–7039 (1990).
[CrossRef]

David, J. P. R.

P. J. Ker, J. P. R. David, and C. H. Tan, “Temperature dependence of gain and excess noise in InAs electron avalanche photodiodes,” Opt. Express20(28), 29568–29576 (2012).
[CrossRef] [PubMed]

A. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
[CrossRef]

P. J. Ker, A. Marshall, A. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
[CrossRef]

A. Marshall, J. P. R. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron. Dev.57(10), 2631–2638 (2010).
[CrossRef]

A. Marshall, C. H. Tan, M. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93(11), 111107 (2008).
[CrossRef]

C. H. Tan, G. J. Rees, P. A. Houston, J. S. Ng, W. K. Ng, and J. P. R. David, “Temperature dependence of electron impact ionization in In0.53Ga0.47As,” Appl. Phys. Lett.84(13), 2322–2332 (2004).
[CrossRef]

W. K. Ng, C. H. Tan, J. P. R. David, P. A. Houston, M. Yee, and J. S. Ng, “Temperature dependent low-field electron multiplication in In0.53Ga0.47As,” Appl. Phys. Lett.83(14), 2820–2822 (2003).
[CrossRef]

Fang, Z. M.

Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys.67(11), 7034–7039 (1990).
[CrossRef]

Fischetti, M. V.

M. V. Fischetti, “Monte carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. I. Homogeneous transport,” IEEE Trans. Electron. Dev.38(3), 634–649 (1991).
[CrossRef]

Harrison, D.

D. Harrison, R. A. Abram, and S. Brand, “Characteristics of impact ionization rates in direct and indirect gap semiconductors,” J. Appl. Phys.85(12), 8186–8188 (1999).
[CrossRef]

Hess, K.

J. Bude and K. Hess, “Thresholds of impact ionization in semiconductors,” J. Appl. Phys.72(8), 3554–3561 (1992).
[CrossRef]

Houston, P. A.

C. H. Tan, G. J. Rees, P. A. Houston, J. S. Ng, W. K. Ng, and J. P. R. David, “Temperature dependence of electron impact ionization in In0.53Ga0.47As,” Appl. Phys. Lett.84(13), 2322–2332 (2004).
[CrossRef]

W. K. Ng, C. H. Tan, J. P. R. David, P. A. Houston, M. Yee, and J. S. Ng, “Temperature dependent low-field electron multiplication in In0.53Ga0.47As,” Appl. Phys. Lett.83(14), 2820–2822 (2003).
[CrossRef]

Jacoboni, C.

C. Jacoboni and L. Reggiani, “Monte Carlo method in transport,” Rev. Mod. Phys.55, 646–703 (1983).

Jaw, D. H.

Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys.67(11), 7034–7039 (1990).
[CrossRef]

Joshi, P. R.

G. Satyanadh, P. R. Joshi, N. Abedin, and U. Singh, “Monte carlo calculation of electron drift characteristics and avalanche noise in InAs,” J. Appl. Phys.91(3), 1331–1337 (2002).
[CrossRef]

Ker, P. J.

P. J. Ker, J. P. R. David, and C. H. Tan, “Temperature dependence of gain and excess noise in InAs electron avalanche photodiodes,” Opt. Express20(28), 29568–29576 (2012).
[CrossRef] [PubMed]

P. J. Ker, A. Marshall, A. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
[CrossRef]

A. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
[CrossRef]

Kim, Y. S.

Y. S. Kim, M. Marsman, G. Kresse, F. Tran, and P. Blaha, “Towards efficient band structure and effective mass calculations for III-V direct band-gap semiconductors,” Phys. Rev. B82(20), 205212 (2010).
[CrossRef]

Kinch, M. A.

J. D. Beck, C.-F. Wan, M. A. Kinch, and J. E. Robinson, “MWIR HgCdTe avalanche photodiodes,” Proc. SPIE, Materials for Infrared Detectors, 4454188–197 (2001).
[CrossRef]

Kresse, G.

Y. S. Kim, M. Marsman, G. Kresse, F. Tran, and P. Blaha, “Towards efficient band structure and effective mass calculations for III-V direct band-gap semiconductors,” Phys. Rev. B82(20), 205212 (2010).
[CrossRef]

Krishnamurthy, S.

S. Krishnamurthy, M. A. Berding, A. Sher, and A. B. Chen, “Ballistic transport in semiconductor alloys,” J. Appl. Phys.63(9), 4540–4547 (1988).
[CrossRef]

Krysa, A.

P. J. Ker, A. Marshall, A. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
[CrossRef]

Lu, Z.

S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101(15), 151124 (2012).
[CrossRef]

Ma, K. Y.

Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys.67(11), 7034–7039 (1990).
[CrossRef]

Maddox, S. J.

S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101(15), 151124 (2012).
[CrossRef]

Marshall, A.

A. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
[CrossRef]

P. J. Ker, A. Marshall, A. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
[CrossRef]

A. Marshall, J. P. R. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron. Dev.57(10), 2631–2638 (2010).
[CrossRef]

A. Marshall, C. H. Tan, M. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93(11), 111107 (2008).
[CrossRef]

Marsman, M.

Y. S. Kim, M. Marsman, G. Kresse, F. Tran, and P. Blaha, “Towards efficient band structure and effective mass calculations for III-V direct band-gap semiconductors,” Phys. Rev. B82(20), 205212 (2010).
[CrossRef]

Nair, H. P.

S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101(15), 151124 (2012).
[CrossRef]

Ng, J. S.

C. H. Tan, G. J. Rees, P. A. Houston, J. S. Ng, W. K. Ng, and J. P. R. David, “Temperature dependence of electron impact ionization in In0.53Ga0.47As,” Appl. Phys. Lett.84(13), 2322–2332 (2004).
[CrossRef]

W. K. Ng, C. H. Tan, J. P. R. David, P. A. Houston, M. Yee, and J. S. Ng, “Temperature dependent low-field electron multiplication in In0.53Ga0.47As,” Appl. Phys. Lett.83(14), 2820–2822 (2003).
[CrossRef]

Ng, W. K.

C. H. Tan, G. J. Rees, P. A. Houston, J. S. Ng, W. K. Ng, and J. P. R. David, “Temperature dependence of electron impact ionization in In0.53Ga0.47As,” Appl. Phys. Lett.84(13), 2322–2332 (2004).
[CrossRef]

W. K. Ng, C. H. Tan, J. P. R. David, P. A. Houston, M. Yee, and J. S. Ng, “Temperature dependent low-field electron multiplication in In0.53Ga0.47As,” Appl. Phys. Lett.83(14), 2820–2822 (2003).
[CrossRef]

Rees, G. J.

C. H. Tan, G. J. Rees, P. A. Houston, J. S. Ng, W. K. Ng, and J. P. R. David, “Temperature dependence of electron impact ionization in In0.53Ga0.47As,” Appl. Phys. Lett.84(13), 2322–2332 (2004).
[CrossRef]

Reggiani, L.

C. Jacoboni and L. Reggiani, “Monte Carlo method in transport,” Rev. Mod. Phys.55, 646–703 (1983).

Robinson, J. E.

J. D. Beck, C.-F. Wan, M. A. Kinch, and J. E. Robinson, “MWIR HgCdTe avalanche photodiodes,” Proc. SPIE, Materials for Infrared Detectors, 4454188–197 (2001).
[CrossRef]

Satyanadh, G.

G. Satyanadh, P. R. Joshi, N. Abedin, and U. Singh, “Monte carlo calculation of electron drift characteristics and avalanche noise in InAs,” J. Appl. Phys.91(3), 1331–1337 (2002).
[CrossRef]

Sher, A.

S. Krishnamurthy, M. A. Berding, A. Sher, and A. B. Chen, “Ballistic transport in semiconductor alloys,” J. Appl. Phys.63(9), 4540–4547 (1988).
[CrossRef]

Singh, U.

G. Satyanadh, P. R. Joshi, N. Abedin, and U. Singh, “Monte carlo calculation of electron drift characteristics and avalanche noise in InAs,” J. Appl. Phys.91(3), 1331–1337 (2002).
[CrossRef]

Steer, M.

A. Marshall, C. H. Tan, M. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93(11), 111107 (2008).
[CrossRef]

Stringfellow, G. B.

Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys.67(11), 7034–7039 (1990).
[CrossRef]

Sun, W.

S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101(15), 151124 (2012).
[CrossRef]

Tan, C. H.

P. J. Ker, J. P. R. David, and C. H. Tan, “Temperature dependence of gain and excess noise in InAs electron avalanche photodiodes,” Opt. Express20(28), 29568–29576 (2012).
[CrossRef] [PubMed]

A. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
[CrossRef]

P. J. Ker, A. Marshall, A. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
[CrossRef]

A. Marshall, J. P. R. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron. Dev.57(10), 2631–2638 (2010).
[CrossRef]

A. Marshall, C. H. Tan, M. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93(11), 111107 (2008).
[CrossRef]

C. H. Tan, G. J. Rees, P. A. Houston, J. S. Ng, W. K. Ng, and J. P. R. David, “Temperature dependence of electron impact ionization in In0.53Ga0.47As,” Appl. Phys. Lett.84(13), 2322–2332 (2004).
[CrossRef]

W. K. Ng, C. H. Tan, J. P. R. David, P. A. Houston, M. Yee, and J. S. Ng, “Temperature dependent low-field electron multiplication in In0.53Ga0.47As,” Appl. Phys. Lett.83(14), 2820–2822 (2003).
[CrossRef]

Tran, F.

Y. S. Kim, M. Marsman, G. Kresse, F. Tran, and P. Blaha, “Towards efficient band structure and effective mass calculations for III-V direct band-gap semiconductors,” Phys. Rev. B82(20), 205212 (2010).
[CrossRef]

Vines, P.

A. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
[CrossRef]

Wan, C.-F.

J. D. Beck, C.-F. Wan, M. A. Kinch, and J. E. Robinson, “MWIR HgCdTe avalanche photodiodes,” Proc. SPIE, Materials for Infrared Detectors, 4454188–197 (2001).
[CrossRef]

Yee, M.

W. K. Ng, C. H. Tan, J. P. R. David, P. A. Houston, M. Yee, and J. S. Ng, “Temperature dependent low-field electron multiplication in In0.53Ga0.47As,” Appl. Phys. Lett.83(14), 2820–2822 (2003).
[CrossRef]

Appl. Phys. Lett. (4)

A. Marshall, C. H. Tan, M. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93(11), 111107 (2008).
[CrossRef]

S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101(15), 151124 (2012).
[CrossRef]

W. K. Ng, C. H. Tan, J. P. R. David, P. A. Houston, M. Yee, and J. S. Ng, “Temperature dependent low-field electron multiplication in In0.53Ga0.47As,” Appl. Phys. Lett.83(14), 2820–2822 (2003).
[CrossRef]

C. H. Tan, G. J. Rees, P. A. Houston, J. S. Ng, W. K. Ng, and J. P. R. David, “Temperature dependence of electron impact ionization in In0.53Ga0.47As,” Appl. Phys. Lett.84(13), 2322–2332 (2004).
[CrossRef]

IEEE J. Quantum Electron. (2)

P. J. Ker, A. Marshall, A. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
[CrossRef]

A. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
[CrossRef]

IEEE Trans. Electron. Dev. (2)

A. Marshall, J. P. R. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron. Dev.57(10), 2631–2638 (2010).
[CrossRef]

M. V. Fischetti, “Monte carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. I. Homogeneous transport,” IEEE Trans. Electron. Dev.38(3), 634–649 (1991).
[CrossRef]

J. Appl. Phys. (5)

S. Krishnamurthy, M. A. Berding, A. Sher, and A. B. Chen, “Ballistic transport in semiconductor alloys,” J. Appl. Phys.63(9), 4540–4547 (1988).
[CrossRef]

Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys.67(11), 7034–7039 (1990).
[CrossRef]

D. Harrison, R. A. Abram, and S. Brand, “Characteristics of impact ionization rates in direct and indirect gap semiconductors,” J. Appl. Phys.85(12), 8186–8188 (1999).
[CrossRef]

J. Bude and K. Hess, “Thresholds of impact ionization in semiconductors,” J. Appl. Phys.72(8), 3554–3561 (1992).
[CrossRef]

G. Satyanadh, P. R. Joshi, N. Abedin, and U. Singh, “Monte carlo calculation of electron drift characteristics and avalanche noise in InAs,” J. Appl. Phys.91(3), 1331–1337 (2002).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

Y. S. Kim, M. Marsman, G. Kresse, F. Tran, and P. Blaha, “Towards efficient band structure and effective mass calculations for III-V direct band-gap semiconductors,” Phys. Rev. B82(20), 205212 (2010).
[CrossRef]

Rev. Mod. Phys. (1)

C. Jacoboni and L. Reggiani, “Monte Carlo method in transport,” Rev. Mod. Phys.55, 646–703 (1983).

Other (2)

Y. Shimizu, J. Ishii, Y. Kaneko, F. Sakuma, and A. Ono, “State of the arts of the infrared radiation thermometry standards in the middle temperature range at NMIJ,” SICE Annual Conference 1803–1807 (2004).

J. D. Beck, C.-F. Wan, M. A. Kinch, and J. E. Robinson, “MWIR HgCdTe avalanche photodiodes,” Proc. SPIE, Materials for Infrared Detectors, 4454188–197 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Avalanche gain versus reverse bias of a 3.5 μm thick InAs p-i-n diode at different temperatures from the ABMC (lines) and the reference data (symbols).

Fig. 2
Fig. 2

Excess noise factors as a function of avalanche gain at different temperatures with experimental data shown in symbols and simulated values given by the lines.

Fig. 3
Fig. 3

(a) Percentages of carriers populating the different valleys as a function of electric field, and (b) magnified plot for the X-valley, at 300 (closed symbols) and 77 K(open symbols) .

Fig. 4
Fig. 4

Number of ionization events as a function of ionization energy at 300 (closed symbols) and 77 K (open symbols), at an electric field of 20 kV/cm.

Fig. 5
Fig. 5

InAs electron ionization coefficient versus reciprocal electric field at 300 and 77 K. Results obtained using large electron effective mass are shown in dashed line.

Tables (1)

Tables Icon

Table 1 InAs parameters used in 3-valley Analytical Band Monte Carlo model.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E g (T)=0.4152.76× 10 4 T 2 ( T+83 ) in eV,
R ii (E)=3.2× 10 10 ( E i E th E th ) 1.85 s 1 ,

Metrics