Abstract

Using a colorless weak-resonant-cavity (WRC) FPLD injected by a centralized light source, we have experimentally demonstrated a superior performance of 20-Gbps uplink transmission in a WDM-PON. Even though the typical modulation bandwidth of a WRC-FPLD is only ~1.25 GHz, using spectrally-efficient 32-QAM OFDM or SC-FDE modulation, 20-Gbps uplink signals can achieve the FEC limit after 25-km dispersion-uncompensated single-mode fiber transmission. Because of the advantage of lower PAPR, the SC-FDE signals outperform the OFDM signals with the fixed 32-QAM format in the proposed system; moreover, SC-FDE scheme can be another promising candidate for uplinks in WDM-PONs, for its simplification to ONUs. The signal at the mode of 1560.7 nm shows similar quality with the signal at the modes of 1545.3 nm and 1574.7 nm, the WRC-FPLD, accordingly, has wide injection wavelength range from at least 1545.3 nm to 1574.7 nm. With the mode spacing of 0.55 nm, consequently, we have demonstrated the applicability of the colorless WRC-FPLD on supporting up to 36 channels in the WDM-PON.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. Effenberger, “The XG-PON system: cost effective 10 Gb/s access,” J. Lightwave Technol.29(4), 403–409 (2011).
    [CrossRef]
  2. N. Cvijetic, M. Cvijetic, M. F. Huang, E. Ip, Y. K. Huang, and T. Wang, “Terabit Optical access networks based on WDM-OFDMA-PON,” J. Lightwave Technol.30(4), 493–503 (2012).
    [CrossRef]
  3. K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett.24(3), 209–211 (2012).
    [CrossRef]
  4. L. Xu, Q. Li, N. Ophir, K. Padmaraju, L. W. Luo, L. Chen, M. Lipson, and K. Bergman, “Colorless optical network unit based on silicon photonic components for WDM PON,” IEEE Photon. Technol. Lett.24(16), 1372–1374 (2012).
    [CrossRef]
  5. K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett.20(18), 1533–1535 (2008).
    [CrossRef]
  6. P. Chanclou, F. Payoux, T. Soret, N. Genay, R. Brenot, F. Blache, M. Goix, J. Landreau, O. Legouezigou, and F. Mallécot, “Demonstration of RSOA-based remote modulation at 2.5 and 5 Gbit/s for WDM PON,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2007), paper OWD1.
    [CrossRef]
  7. N. Kashima, “Injection-locked Fabry–Pérot laser diode transmitters with semiconductor optical amplifier for WDM-PON,” J. Lightwave Technol.27(12), 2132–2139 (2009).
    [CrossRef]
  8. H. L. Zhang, G. W. Pickrell, Z. Morbi, Y. Wang, M. Ho, K. A. Anselm, and W.-Y. Hwang, “32-channel, injection-locked WDM-PON SFP transceivers for symmetric 1.25 Gbps operation,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper NTuB4.
  9. S. H. Yoo, H. K. Lee, D. S. Lim, J. H. Jin, L. Byun, and C. H. Lee, “2.5-Gb/s broadcast signal transmission in a WDM-PON by using a mutually injected Fabry-Pérot laser diodes,” in Conference Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2011), paper CFH7.
  10. F. Xiong, W. D. Zhong, and H. Kim, “A broadcast-capable WDM-PON based on polarization-sensitive weak-resonant-cavity Fabry–Perot laser diodes,” J. Lightwave Technol.30(3), 355–361 (2012).
    [CrossRef]
  11. G.-R. Lin, H.-L. Wang, G. C. Lin, Y. H. Huang, Y. H. Lin, and T. K. Cheng, “Comparison on injection-locked FabryPerot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system,” J. Lightwave Technol.27(14), 2779–2785 (2009).
    [CrossRef]
  12. G. R. Lin, Y. S. Liao, Y. C. Chi, H. C. Kuo, G. C. Lin, H. L. Wang, and Y. J. Chen, “Long-cavity Fabry–Perot laser amplifier transmitter with enhanced injection-locking bandwidth for WDM-PON application,” J. Lightwave Technol.28(20), 2925–2932 (2010).
    [CrossRef]
  13. G.-R. Lin, Y. H. Lin, C. J. Lin, Y. C. Chi, and G. C. Lin, “Reusing a data-erased ASE carrier in a weak-resonant-cavity laser diode for noise-suppressed error-free transmission,” IEEE J. Quantum Electron.47(5), 676–685 (2011).
    [CrossRef]
  14. Y. C. Chi, Y. C. Li, H. Y. Wang, P. C. Peng, H. H. Lu, and G. R. Lin, “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express20(18), 20071–20077 (2012).
    [CrossRef] [PubMed]
  15. Y. S. Liao, Y. C. Chi, H. C. Kuo, and G. R. Lin, “Pulsating master and injected slave weak-resonant-cavity laser diodes based quasi-color-free 2.5Gb/s RZ DWDM-PON,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper JWA67.
  16. G.-R. Lin, T. K. Cheng, Y.-C. Chi, G. C. Lin, H. L. Wang, and Y. H. Lin, “200-GHz and 50-GHz AWG channelized linewidth dependent transmission of weak-resonant-cavity FPLD injection-locked by spectrally sliced ASE,” Opt. Express17(20), 17739–17746 (2009).
    [CrossRef] [PubMed]
  17. D. Wulich, “Definition of efficient PAPR in OFDM,” IEEE Commun. Lett.9(9), 832–834 (2005).
    [CrossRef]
  18. H. G. Myung and D. J. Goodman, in Single carrier FDMA: a new air interface for long term evolution, X. Shen and Y. Pan ed. (Wiley, New York, 2008).
  19. S. Sivaprakasam and R. Singh, “Gain change and threshold reduction of diode laser by injection-locking,” Opt. Commun.151(4-6), 253–256 (1998).
    [CrossRef]
  20. Y. C. Chang, Y. H. Lin, J. H. Chen, and G.-R. Lin, “All-optical NRZ-to-PRZ format transformer with an injection-locked Fabry-Perot laser diode at unlasing condition,” Opt. Express12(19), 4449–4456 (2004).
    [CrossRef] [PubMed]
  21. G.-R. Lin, Y. H. Lin, and Y. C. Chang, “Theory and experiments of a mode-beating noise-suppressed and mutually injection-locked Fabry-Perot laser diode and erbium-doped fiber amplifier link,” IEEE J. Quantum Electron.40(8), 1014–1022 (2004).
    [CrossRef]
  22. S. Daumont, B. Rihawi, and Y. Lout, “Root-raised cosine filter influences on PAPR distribution of single-carrier signals,” in Proceedings of IEEE Conference on International Symposium Computer Science Society (Institute of Electrical and Electronics Engineers, New York, 2008), pp. 841–845.
    [CrossRef]
  23. G. R. Lin, Y. C. Chi, Y. S. Liao, H. C. Kuo, Z. W. Liao, H. L. Wang, and G. C. Lin, “A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission,” Opt. Express20(13), 13622–13635 (2012).
    [CrossRef] [PubMed]

2012 (6)

2011 (2)

G.-R. Lin, Y. H. Lin, C. J. Lin, Y. C. Chi, and G. C. Lin, “Reusing a data-erased ASE carrier in a weak-resonant-cavity laser diode for noise-suppressed error-free transmission,” IEEE J. Quantum Electron.47(5), 676–685 (2011).
[CrossRef]

F. J. Effenberger, “The XG-PON system: cost effective 10 Gb/s access,” J. Lightwave Technol.29(4), 403–409 (2011).
[CrossRef]

2010 (1)

2009 (3)

2008 (1)

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett.20(18), 1533–1535 (2008).
[CrossRef]

2005 (1)

D. Wulich, “Definition of efficient PAPR in OFDM,” IEEE Commun. Lett.9(9), 832–834 (2005).
[CrossRef]

2004 (2)

Y. C. Chang, Y. H. Lin, J. H. Chen, and G.-R. Lin, “All-optical NRZ-to-PRZ format transformer with an injection-locked Fabry-Perot laser diode at unlasing condition,” Opt. Express12(19), 4449–4456 (2004).
[CrossRef] [PubMed]

G.-R. Lin, Y. H. Lin, and Y. C. Chang, “Theory and experiments of a mode-beating noise-suppressed and mutually injection-locked Fabry-Perot laser diode and erbium-doped fiber amplifier link,” IEEE J. Quantum Electron.40(8), 1014–1022 (2004).
[CrossRef]

1998 (1)

S. Sivaprakasam and R. Singh, “Gain change and threshold reduction of diode laser by injection-locking,” Opt. Commun.151(4-6), 253–256 (1998).
[CrossRef]

Agata, A.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett.24(3), 209–211 (2012).
[CrossRef]

Bergman, K.

L. Xu, Q. Li, N. Ophir, K. Padmaraju, L. W. Luo, L. Chen, M. Lipson, and K. Bergman, “Colorless optical network unit based on silicon photonic components for WDM PON,” IEEE Photon. Technol. Lett.24(16), 1372–1374 (2012).
[CrossRef]

Chang, Y. C.

Y. C. Chang, Y. H. Lin, J. H. Chen, and G.-R. Lin, “All-optical NRZ-to-PRZ format transformer with an injection-locked Fabry-Perot laser diode at unlasing condition,” Opt. Express12(19), 4449–4456 (2004).
[CrossRef] [PubMed]

G.-R. Lin, Y. H. Lin, and Y. C. Chang, “Theory and experiments of a mode-beating noise-suppressed and mutually injection-locked Fabry-Perot laser diode and erbium-doped fiber amplifier link,” IEEE J. Quantum Electron.40(8), 1014–1022 (2004).
[CrossRef]

Chen, J. H.

Chen, L.

L. Xu, Q. Li, N. Ophir, K. Padmaraju, L. W. Luo, L. Chen, M. Lipson, and K. Bergman, “Colorless optical network unit based on silicon photonic components for WDM PON,” IEEE Photon. Technol. Lett.24(16), 1372–1374 (2012).
[CrossRef]

Chen, Y. J.

Cheng, T. K.

Chi, Y. C.

Chi, Y.-C.

Cho, K. Y.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett.24(3), 209–211 (2012).
[CrossRef]

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett.20(18), 1533–1535 (2008).
[CrossRef]

Chung, Y. C.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett.24(3), 209–211 (2012).
[CrossRef]

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett.20(18), 1533–1535 (2008).
[CrossRef]

Cvijetic, M.

Cvijetic, N.

Effenberger, F. J.

Hong, U. H.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett.24(3), 209–211 (2012).
[CrossRef]

Huang, M. F.

Huang, Y. H.

Huang, Y. K.

Ip, E.

Kashima, N.

Kim, H.

Kuo, H. C.

Li, Q.

L. Xu, Q. Li, N. Ophir, K. Padmaraju, L. W. Luo, L. Chen, M. Lipson, and K. Bergman, “Colorless optical network unit based on silicon photonic components for WDM PON,” IEEE Photon. Technol. Lett.24(16), 1372–1374 (2012).
[CrossRef]

Li, Y. C.

Liao, Y. S.

Liao, Z. W.

Lin, C. J.

G.-R. Lin, Y. H. Lin, C. J. Lin, Y. C. Chi, and G. C. Lin, “Reusing a data-erased ASE carrier in a weak-resonant-cavity laser diode for noise-suppressed error-free transmission,” IEEE J. Quantum Electron.47(5), 676–685 (2011).
[CrossRef]

Lin, G. C.

Lin, G. R.

Lin, G.-R.

Lin, Y. H.

Lipson, M.

L. Xu, Q. Li, N. Ophir, K. Padmaraju, L. W. Luo, L. Chen, M. Lipson, and K. Bergman, “Colorless optical network unit based on silicon photonic components for WDM PON,” IEEE Photon. Technol. Lett.24(16), 1372–1374 (2012).
[CrossRef]

Lu, H. H.

Luo, L. W.

L. Xu, Q. Li, N. Ophir, K. Padmaraju, L. W. Luo, L. Chen, M. Lipson, and K. Bergman, “Colorless optical network unit based on silicon photonic components for WDM PON,” IEEE Photon. Technol. Lett.24(16), 1372–1374 (2012).
[CrossRef]

Ophir, N.

L. Xu, Q. Li, N. Ophir, K. Padmaraju, L. W. Luo, L. Chen, M. Lipson, and K. Bergman, “Colorless optical network unit based on silicon photonic components for WDM PON,” IEEE Photon. Technol. Lett.24(16), 1372–1374 (2012).
[CrossRef]

Padmaraju, K.

L. Xu, Q. Li, N. Ophir, K. Padmaraju, L. W. Luo, L. Chen, M. Lipson, and K. Bergman, “Colorless optical network unit based on silicon photonic components for WDM PON,” IEEE Photon. Technol. Lett.24(16), 1372–1374 (2012).
[CrossRef]

Peng, P. C.

Sano, T.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett.24(3), 209–211 (2012).
[CrossRef]

Singh, R.

S. Sivaprakasam and R. Singh, “Gain change and threshold reduction of diode laser by injection-locking,” Opt. Commun.151(4-6), 253–256 (1998).
[CrossRef]

Sivaprakasam, S.

S. Sivaprakasam and R. Singh, “Gain change and threshold reduction of diode laser by injection-locking,” Opt. Commun.151(4-6), 253–256 (1998).
[CrossRef]

Suzuki, M.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett.24(3), 209–211 (2012).
[CrossRef]

Takushima, Y.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett.24(3), 209–211 (2012).
[CrossRef]

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett.20(18), 1533–1535 (2008).
[CrossRef]

Wang, H. L.

Wang, H. Y.

Wang, H.-L.

Wang, T.

Wulich, D.

D. Wulich, “Definition of efficient PAPR in OFDM,” IEEE Commun. Lett.9(9), 832–834 (2005).
[CrossRef]

Xiong, F.

Xu, L.

L. Xu, Q. Li, N. Ophir, K. Padmaraju, L. W. Luo, L. Chen, M. Lipson, and K. Bergman, “Colorless optical network unit based on silicon photonic components for WDM PON,” IEEE Photon. Technol. Lett.24(16), 1372–1374 (2012).
[CrossRef]

Zhong, W. D.

IEEE Commun. Lett. (1)

D. Wulich, “Definition of efficient PAPR in OFDM,” IEEE Commun. Lett.9(9), 832–834 (2005).
[CrossRef]

IEEE J. Quantum Electron. (2)

G.-R. Lin, Y. H. Lin, C. J. Lin, Y. C. Chi, and G. C. Lin, “Reusing a data-erased ASE carrier in a weak-resonant-cavity laser diode for noise-suppressed error-free transmission,” IEEE J. Quantum Electron.47(5), 676–685 (2011).
[CrossRef]

G.-R. Lin, Y. H. Lin, and Y. C. Chang, “Theory and experiments of a mode-beating noise-suppressed and mutually injection-locked Fabry-Perot laser diode and erbium-doped fiber amplifier link,” IEEE J. Quantum Electron.40(8), 1014–1022 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett.24(3), 209–211 (2012).
[CrossRef]

L. Xu, Q. Li, N. Ophir, K. Padmaraju, L. W. Luo, L. Chen, M. Lipson, and K. Bergman, “Colorless optical network unit based on silicon photonic components for WDM PON,” IEEE Photon. Technol. Lett.24(16), 1372–1374 (2012).
[CrossRef]

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett.20(18), 1533–1535 (2008).
[CrossRef]

J. Lightwave Technol. (6)

Opt. Commun. (1)

S. Sivaprakasam and R. Singh, “Gain change and threshold reduction of diode laser by injection-locking,” Opt. Commun.151(4-6), 253–256 (1998).
[CrossRef]

Opt. Express (4)

Other (6)

S. Daumont, B. Rihawi, and Y. Lout, “Root-raised cosine filter influences on PAPR distribution of single-carrier signals,” in Proceedings of IEEE Conference on International Symposium Computer Science Society (Institute of Electrical and Electronics Engineers, New York, 2008), pp. 841–845.
[CrossRef]

Y. S. Liao, Y. C. Chi, H. C. Kuo, and G. R. Lin, “Pulsating master and injected slave weak-resonant-cavity laser diodes based quasi-color-free 2.5Gb/s RZ DWDM-PON,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper JWA67.

H. G. Myung and D. J. Goodman, in Single carrier FDMA: a new air interface for long term evolution, X. Shen and Y. Pan ed. (Wiley, New York, 2008).

H. L. Zhang, G. W. Pickrell, Z. Morbi, Y. Wang, M. Ho, K. A. Anselm, and W.-Y. Hwang, “32-channel, injection-locked WDM-PON SFP transceivers for symmetric 1.25 Gbps operation,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper NTuB4.

S. H. Yoo, H. K. Lee, D. S. Lim, J. H. Jin, L. Byun, and C. H. Lee, “2.5-Gb/s broadcast signal transmission in a WDM-PON by using a mutually injected Fabry-Pérot laser diodes,” in Conference Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2011), paper CFH7.

P. Chanclou, F. Payoux, T. Soret, N. Genay, R. Brenot, F. Blache, M. Goix, J. Landreau, O. Legouezigou, and F. Mallécot, “Demonstration of RSOA-based remote modulation at 2.5 and 5 Gbit/s for WDM PON,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2007), paper OWD1.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) The ridge-waveguide structure and (b) configuration parameters of the employed WRC-FPLD.

Fig. 2
Fig. 2

(a) L-I curve and (b) frequency response of WRC-FPLD for free run and optical injection. (c) Optical spectrum of free-running WRC-FPLD. (d) Optical spectra of the WRC-FPLD injected by a CW with the wavelength of 1545.3 nm, (e) 1560.7 nm, and (f) 1574.7 nm.

Fig. 3
Fig. 3

Block diagrams of OFDM and SC-FDE schemes.

Fig. 4
Fig. 4

Comparison of CCDF of PAPR for OFDM and SC-FDE signals.

Fig. 5
Fig. 5

Experimental setup of OFDM and SC-FDE transmissions.

Fig. 6
Fig. 6

(a) SNR of OFDM signal of electrical back-to back, optical back-to-back and 25-km SSMF transmission before power-loading at injection wavelength of 1560.7 nm. SNR of OFDM signal of optical back-to-back and 25-km SSMF transmission after power-loading at injection wavelengths of (b) 1560.7, (c) 1545.3, and (d) 1574.7 nm.

Fig. 7
Fig. 7

Constellations of SC-FDE signals at optical back-to-back with injection wavelength of (a) 1560.7, (c) 1543.3 and (e) 1574.7 nm, and those after 25-km SSMF transmission with injection wavelength of (b) 1560.7, (d) 1543.3 and (f) 1574.7 nm.

Fig. 8
Fig. 8

Receiver sensitivities of OFDM and SC-FDE after 25-km SSMF transmission with injection wavelength of (a) 1560.7, (b) 1545.3, and (c) 1574.7 nm.

Tables (1)

Tables Icon

Table 1 State-of-the-art injection-locked schemes based on FPLDs or WRC-FPLDs in WDM-PONs

Metrics