Abstract

A tunable metal/magneto-optic plasmonic lens for terahertz isolator is demonstrated. Based on the magneto-optical effect of the semiconductor material and non-symmetrical structure, this plasmonic lens has not only the focusing feature but also nonreciprocal transmission property. Moreover, a transmission enhancement through this device greatly larger than that of the ordinary metallic slit arrays is contributed by the extraordinary optical transmission effect of the magneto surface plasmon polaritons. The results show that the proposed isolator has an isolation bandwidth of larger than 0.4THz and the maximum isolation of higher than 110dB, and its operating frequency also can be broadly tuned by changing the external magnetic field or temperature. This low-loss, high isolation, broadband tunable nonreciprocal terahertz transmission mechanism has a great potential for terahertz application systems.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Kono, K. Kakihara, K. Saitoh, and M. Koshiba, “Nonreciprocal microresonators for the miniaturization of optical waveguide isolators,” Opt. Express15(12), 7737–7751 (2007).
    [CrossRef] [PubMed]
  2. Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett.30(15), 1989–1991 (2005).
    [CrossRef] [PubMed]
  3. W. Śmigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field,” Opt. Lett.35(4), 568–570 (2010).
    [CrossRef] [PubMed]
  4. F. D. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett.100(1), 013904 (2008).
    [CrossRef] [PubMed]
  5. Z. F. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett.100(2), 023902 (2008).
    [CrossRef] [PubMed]
  6. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature461(7265), 772–775 (2009).
    [CrossRef] [PubMed]
  7. F. Fan, S. J. Chang, C. Niu, Y. Hou, and X. H. Wang, “Magnetically tunable silicon ferrite photonic crystals for terahertz circulator,” Opt. Commun.285(18), 3763–3769 (2012).
    [CrossRef]
  8. F. Fan, S. J. Chang, W. H. Gu, X. H. Wang, and A. Q. Chen, “Magnetically tunable terahertz isolator based on structured semiconductor magneto plasmonics,” IEEE Photon. Technol. Lett.24(22), 2080–2083 (2012).
    [CrossRef]
  9. B. Hu, Q. J. Wang, and Y. Zhang, “Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons,” Opt. Lett.37(11), 1895–1897 (2012).
    [CrossRef] [PubMed]
  10. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
    [CrossRef] [PubMed]
  11. H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express13(18), 6815–6820 (2005).
    [CrossRef] [PubMed]
  12. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  13. A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett.106(10), 107404 (2011).
    [CrossRef] [PubMed]
  14. I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett.12(5), 2470–2474 (2012).
    [CrossRef] [PubMed]
  15. B. Hu, Q. J. Wang, S. W. Kok, and Y. Zhang, “Active focal length control of terahertz slitted plane lenses by magnetoplasmons,” Plasmonics7(2), 191–199 (2012).
    [CrossRef]
  16. Y. S. Lee, Principles of Terahertz Science and Technology (Springer, 2009), pp. 168–170.
  17. X. Y. Dai, Y. J. Xiang, S. C. Wen, and H. Y. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys.109(5), 053104 (2011).
    [CrossRef]
  18. J. Gómez Rivas, C. Janke, P. H. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express13(3), 847–859 (2005).
    [CrossRef] [PubMed]

2012 (5)

F. Fan, S. J. Chang, C. Niu, Y. Hou, and X. H. Wang, “Magnetically tunable silicon ferrite photonic crystals for terahertz circulator,” Opt. Commun.285(18), 3763–3769 (2012).
[CrossRef]

F. Fan, S. J. Chang, W. H. Gu, X. H. Wang, and A. Q. Chen, “Magnetically tunable terahertz isolator based on structured semiconductor magneto plasmonics,” IEEE Photon. Technol. Lett.24(22), 2080–2083 (2012).
[CrossRef]

B. Hu, Q. J. Wang, and Y. Zhang, “Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons,” Opt. Lett.37(11), 1895–1897 (2012).
[CrossRef] [PubMed]

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett.12(5), 2470–2474 (2012).
[CrossRef] [PubMed]

B. Hu, Q. J. Wang, S. W. Kok, and Y. Zhang, “Active focal length control of terahertz slitted plane lenses by magnetoplasmons,” Plasmonics7(2), 191–199 (2012).
[CrossRef]

2011 (2)

X. Y. Dai, Y. J. Xiang, S. C. Wen, and H. Y. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys.109(5), 053104 (2011).
[CrossRef]

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett.106(10), 107404 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (1)

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature461(7265), 772–775 (2009).
[CrossRef] [PubMed]

2008 (2)

F. D. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett.100(1), 013904 (2008).
[CrossRef] [PubMed]

Z. F. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett.100(2), 023902 (2008).
[CrossRef] [PubMed]

2007 (2)

N. Kono, K. Kakihara, K. Saitoh, and M. Koshiba, “Nonreciprocal microresonators for the miniaturization of optical waveguide isolators,” Opt. Express15(12), 7737–7751 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

2005 (4)

Astakhov, G. V.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett.106(10), 107404 (2011).
[CrossRef] [PubMed]

Bolivar, P. H.

Brüne, C.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett.106(10), 107404 (2011).
[CrossRef] [PubMed]

Buhmann, H.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett.106(10), 107404 (2011).
[CrossRef] [PubMed]

Chang, S. J.

F. Fan, S. J. Chang, C. Niu, Y. Hou, and X. H. Wang, “Magnetically tunable silicon ferrite photonic crystals for terahertz circulator,” Opt. Commun.285(18), 3763–3769 (2012).
[CrossRef]

F. Fan, S. J. Chang, W. H. Gu, X. H. Wang, and A. Q. Chen, “Magnetically tunable terahertz isolator based on structured semiconductor magneto plasmonics,” IEEE Photon. Technol. Lett.24(22), 2080–2083 (2012).
[CrossRef]

Chen, A. Q.

F. Fan, S. J. Chang, W. H. Gu, X. H. Wang, and A. Q. Chen, “Magnetically tunable terahertz isolator based on structured semiconductor magneto plasmonics,” IEEE Photon. Technol. Lett.24(22), 2080–2083 (2012).
[CrossRef]

Chen, J.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett.12(5), 2470–2474 (2012).
[CrossRef] [PubMed]

Chong, Y. D.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature461(7265), 772–775 (2009).
[CrossRef] [PubMed]

Crassee, I.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett.12(5), 2470–2474 (2012).
[CrossRef] [PubMed]

Dagens, B.

Dai, X. Y.

X. Y. Dai, Y. J. Xiang, S. C. Wen, and H. Y. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys.109(5), 053104 (2011).
[CrossRef]

Dong, X. C.

Du, C. L.

Durant, S.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Fan, F.

F. Fan, S. J. Chang, C. Niu, Y. Hou, and X. H. Wang, “Magnetically tunable silicon ferrite photonic crystals for terahertz circulator,” Opt. Commun.285(18), 3763–3769 (2012).
[CrossRef]

F. Fan, S. J. Chang, W. H. Gu, X. H. Wang, and A. Q. Chen, “Magnetically tunable terahertz isolator based on structured semiconductor magneto plasmonics,” IEEE Photon. Technol. Lett.24(22), 2080–2083 (2012).
[CrossRef]

Fan, S.

Z. F. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett.100(2), 023902 (2008).
[CrossRef] [PubMed]

Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett.30(15), 1989–1991 (2005).
[CrossRef] [PubMed]

Fang, N.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Gao, H. T.

Gaponenko, I.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett.12(5), 2470–2474 (2012).
[CrossRef] [PubMed]

Gómez Rivas, J.

Gralak, B.

Gu, W. H.

F. Fan, S. J. Chang, W. H. Gu, X. H. Wang, and A. Q. Chen, “Magnetically tunable terahertz isolator based on structured semiconductor magneto plasmonics,” IEEE Photon. Technol. Lett.24(22), 2080–2083 (2012).
[CrossRef]

Haldane, F. D.

F. D. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett.100(1), 013904 (2008).
[CrossRef] [PubMed]

He, H. Y.

X. Y. Dai, Y. J. Xiang, S. C. Wen, and H. Y. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys.109(5), 053104 (2011).
[CrossRef]

Hou, Y.

F. Fan, S. J. Chang, C. Niu, Y. Hou, and X. H. Wang, “Magnetically tunable silicon ferrite photonic crystals for terahertz circulator,” Opt. Commun.285(18), 3763–3769 (2012).
[CrossRef]

Hu, B.

B. Hu, Q. J. Wang, and Y. Zhang, “Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons,” Opt. Lett.37(11), 1895–1897 (2012).
[CrossRef] [PubMed]

B. Hu, Q. J. Wang, S. W. Kok, and Y. Zhang, “Active focal length control of terahertz slitted plane lenses by magnetoplasmons,” Plasmonics7(2), 191–199 (2012).
[CrossRef]

Janke, C.

Joannopoulos, J. D.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature461(7265), 772–775 (2009).
[CrossRef] [PubMed]

Kakihara, K.

Kok, S. W.

B. Hu, Q. J. Wang, S. W. Kok, and Y. Zhang, “Active focal length control of terahertz slitted plane lenses by magnetoplasmons,” Plasmonics7(2), 191–199 (2012).
[CrossRef]

Kono, N.

Koshiba, M.

Kurz, H.

Kuzmenko, A. B.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett.12(5), 2470–2474 (2012).
[CrossRef] [PubMed]

Lee, H.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Liu, Z.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Luo, X. G.

Magdenko, L.

Molenkamp, L. W.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett.106(10), 107404 (2011).
[CrossRef] [PubMed]

Niu, C.

F. Fan, S. J. Chang, C. Niu, Y. Hou, and X. H. Wang, “Magnetically tunable silicon ferrite photonic crystals for terahertz circulator,” Opt. Commun.285(18), 3763–3769 (2012).
[CrossRef]

Orlita, M.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett.12(5), 2470–2474 (2012).
[CrossRef] [PubMed]

Ostler, M.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett.12(5), 2470–2474 (2012).
[CrossRef] [PubMed]

Pikus, Y.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Pimenov, A.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett.106(10), 107404 (2011).
[CrossRef] [PubMed]

Potemski, M.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett.12(5), 2470–2474 (2012).
[CrossRef] [PubMed]

Raghu, S.

F. D. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett.100(1), 013904 (2008).
[CrossRef] [PubMed]

Romero-Vivas, J.

Saitoh, K.

Seyller, T.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett.12(5), 2470–2474 (2012).
[CrossRef] [PubMed]

Shi, H. F.

Shuvaev, A. M.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett.106(10), 107404 (2011).
[CrossRef] [PubMed]

Smigaj, W.

Soljacic, M.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature461(7265), 772–775 (2009).
[CrossRef] [PubMed]

Sun, C.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Vanwolleghem, M.

Veronis, G.

Z. F. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett.100(2), 023902 (2008).
[CrossRef] [PubMed]

Walter, A. L.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett.12(5), 2470–2474 (2012).
[CrossRef] [PubMed]

Wang, C. T.

Wang, Q. J.

B. Hu, Q. J. Wang, S. W. Kok, and Y. Zhang, “Active focal length control of terahertz slitted plane lenses by magnetoplasmons,” Plasmonics7(2), 191–199 (2012).
[CrossRef]

B. Hu, Q. J. Wang, and Y. Zhang, “Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons,” Opt. Lett.37(11), 1895–1897 (2012).
[CrossRef] [PubMed]

Wang, X. H.

F. Fan, S. J. Chang, W. H. Gu, X. H. Wang, and A. Q. Chen, “Magnetically tunable terahertz isolator based on structured semiconductor magneto plasmonics,” IEEE Photon. Technol. Lett.24(22), 2080–2083 (2012).
[CrossRef]

F. Fan, S. J. Chang, C. Niu, Y. Hou, and X. H. Wang, “Magnetically tunable silicon ferrite photonic crystals for terahertz circulator,” Opt. Commun.285(18), 3763–3769 (2012).
[CrossRef]

Wang, Z.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature461(7265), 772–775 (2009).
[CrossRef] [PubMed]

Z. F. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett.100(2), 023902 (2008).
[CrossRef] [PubMed]

Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett.30(15), 1989–1991 (2005).
[CrossRef] [PubMed]

Wen, S. C.

X. Y. Dai, Y. J. Xiang, S. C. Wen, and H. Y. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys.109(5), 053104 (2011).
[CrossRef]

Xiang, Y. J.

X. Y. Dai, Y. J. Xiang, S. C. Wen, and H. Y. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys.109(5), 053104 (2011).
[CrossRef]

Xiong, Y.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Yu, Z. F.

Z. F. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett.100(2), 023902 (2008).
[CrossRef] [PubMed]

Zhang, X.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Zhang, Y.

B. Hu, Q. J. Wang, and Y. Zhang, “Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons,” Opt. Lett.37(11), 1895–1897 (2012).
[CrossRef] [PubMed]

B. Hu, Q. J. Wang, S. W. Kok, and Y. Zhang, “Active focal length control of terahertz slitted plane lenses by magnetoplasmons,” Plasmonics7(2), 191–199 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

F. Fan, S. J. Chang, W. H. Gu, X. H. Wang, and A. Q. Chen, “Magnetically tunable terahertz isolator based on structured semiconductor magneto plasmonics,” IEEE Photon. Technol. Lett.24(22), 2080–2083 (2012).
[CrossRef]

J. Appl. Phys. (1)

X. Y. Dai, Y. J. Xiang, S. C. Wen, and H. Y. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys.109(5), 053104 (2011).
[CrossRef]

Nano Lett. (2)

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett.12(5), 2470–2474 (2012).
[CrossRef] [PubMed]

Nature (1)

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature461(7265), 772–775 (2009).
[CrossRef] [PubMed]

Opt. Commun. (1)

F. Fan, S. J. Chang, C. Niu, Y. Hou, and X. H. Wang, “Magnetically tunable silicon ferrite photonic crystals for terahertz circulator,” Opt. Commun.285(18), 3763–3769 (2012).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. Lett. (3)

F. D. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett.100(1), 013904 (2008).
[CrossRef] [PubMed]

Z. F. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett.100(2), 023902 (2008).
[CrossRef] [PubMed]

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett.106(10), 107404 (2011).
[CrossRef] [PubMed]

Plasmonics (1)

B. Hu, Q. J. Wang, S. W. Kok, and Y. Zhang, “Active focal length control of terahertz slitted plane lenses by magnetoplasmons,” Plasmonics7(2), 191–199 (2012).
[CrossRef]

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Other (1)

Y. S. Lee, Principles of Terahertz Science and Technology (Springer, 2009), pp. 168–170.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Dielectric functions of the InSb with different EMF and temperature. (a) εxx and (b) εxy with the dependence of the EMF at a temperature of 185K; (c) εxx and (d) εxy with the dependence of the temperature under an EMF of 0.5T (Tesla).

Fig. 2
Fig. 2

Schematic structure of the proposed MMOPL. (a) Three-dimensional view; (b) top view along the z direction; (c) Model of MIMOM waveguide.

Fig. 3
Fig. 3

Dispersion relations of the TM polarized wave in the MIMOM waveguide at 185K under the different EMF. (a)B = 0T, (b)B = 0.1T and (c)B = 0.5T

Fig. 4
Fig. 4

Power transmission spectra of the MMOPL with the different EMF at 185K. (a) forward wave; (b)backward wave.

Fig. 5
Fig. 5

Isolation spectra of the MMOPL under the different MF at T = 185K

Fig. 6
Fig. 6

(a) Isolation as a function of EMF at 185K; (b) isolation a function of temperature under 0.5T with the different frequencies.

Fig. 7
Fig. 7

(a) Forward power flow distributions through the MMOPL, (b) backward power flow distributions through the MMOPL, the magnetic field distributions of (c) forward and (d) backward propagations in the MIMOM at 1.25THz under 0.5T and 185K. (e) Power flow distributions through the MMOPL at 0.8THz under 0.5T and 185K or an ordinary metal slit PL.

Fig. 8
Fig. 8

The spatial distributions of the forward waves along the x direction at focusing position with different EMF and temperature conditions. (a) For 1.25THz; (b) for 0.8THz.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε=[ ε xx i ε xy 0 i ε xy ε xx 0 0 0 ε xx ]
ε xx = ε 1 ω p 2 (ω+γi) ω[ (ω+γi) 2 ω c 2 ] , ε xy = ε 2 ω p 2 ω c ω[ (ω+γi) 2 ω c 2 ] , ε zz = ε 1 ω p 2 ω(ω+γi) ,
N( cm -3 )=5.76× 10 14 T 1.5 exp[0.26/(2×8.625× 10 5 ×T)].
I( W<x<0 ): H z =A e k 1 x +B e k 1 x , E y = i k 1 ω ε 0 ε d (A e k 1 x B e k 1 x ), II( 0<x<W ): H z =C e k 2 x +D e k 2 x , E y = (iβ ε xy ε xx k 2 ) iω ε 0 ( ε xx 2 + ε xy 2 ) C e k 2 x + (iβ ε xy + ε xx k 2 ) iω ε 0 ( ε xx 2 + ε xy 2 ) D e k 2 x , III(x<W): H z =E e k 3 (xW) , E y = i k 3 ω ε 0 ε m E e k 3 (xW) , IV( x>W ): H z =F e k 3 (x+W) , E y = i k 3 ω ε 0 ε m F e k 3 (x+W) ,

Metrics