Abstract

We report the first demonstration of a photonic-chip laser frequency sensor using Brillouin mutually-modulated cross-gain modulation (MMXGM). A large sensitivity (∼9.5 mrad/kHz) of the modulation phase shift to probe carrier frequency is demonstrated at a modulation frequency of 50 kHz using Brillouin MMXGM in a ∼7 cm long chalcogenide rib waveguide.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. P. Lay, S. Dubovitsky, R. D. Peters, J. P. Burger, S. W. Ahn, W. H. Steier, H. R. Fetterman, and Y. Chang, “MSTAR: a submicrometer absolute metrology system,” Opt. Lett.28, 890–892 (2003).
    [CrossRef] [PubMed]
  2. Z. Xie and H. F. Taylor, “Fabry-Perot optical binary switch for aircraft applications,” Opt. Lett.31, 2695–2697 (2006).
    [CrossRef] [PubMed]
  3. X. F. Mo, B. Zhu, Z. F. Han, Y. Z. Gui, and G. C. Guo, “Faraday-Michelson system for quantum cryptography,” Opt. Lett.30, 2632–2634 (2005).
    [CrossRef] [PubMed]
  4. S. Sakadzic and L. V. Wang, “High-resolution ultrasound-modulated optical tomography in biological tissues,” Opt. Lett.29, 2770–2772 (2004).
    [CrossRef] [PubMed]
  5. Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett.32, 915–917 (2007).
    [CrossRef] [PubMed]
  6. Z. Shi and R. W. Boyd, “Slow-light interferometry: practical limitations to spectroscopic performance,” J. Opt. Soc. Am. B,25, C136–C143 (2008).
    [CrossRef]
  7. L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics2, 474–481 (2008).
    [CrossRef]
  8. M. González-Herráez, K. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” AppL. Phys. Lett.87, 081113 (2005).
    [CrossRef]
  9. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett.94, 153902 (2005).
    [CrossRef] [PubMed]
  10. R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, “Optimal pump profile designs for broadband SBS slow-light systems,” Opt. Express16, 2764–2777 (2008).
    [CrossRef] [PubMed]
  11. R. Pant, A. Byrnes, C. G. Poulton, E. Li, D. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett.37, 969–971 (2012).
    [CrossRef] [PubMed]
  12. T. Arditi, E. Granot, and S. Sternklar, “Nonlinear phase shifts of modulated light waves with slow and superluminal group delay in stimulated Brillouin scatting,” J. Opt.12, 104016 (2010).
  13. S. Sternklar, E. Sarid, A. Arbel, and E. Granot, “Brillouin cross-gain modulation and 10 m/s group velocity,” Opt. Lett.34, 2832–2834 (2009).
    [CrossRef] [PubMed]
  14. S. Sternklar, E. Sarid, M. Wart, and E. Granot, “Mutually-modulated cross-gain modulation and slow light,” J. Opt.12, 104016 (2010).
    [CrossRef]
  15. S. Sternklar, M. Vart, A. Lifshitz, S. Bloch, and E. Granot, “Kilohertz laser frequency sensing with Brillouin mutually modulated cross-gain modulation,” Opt. Lett.36, 4161–4163 (2011).
    [CrossRef] [PubMed]
  16. R. Pant, C. G. Poulton, D. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express19, 8285–8290 (2011).
    [CrossRef] [PubMed]
  17. B. J. Eggleton, T. D. Vo, R. Pant, J. Schroeder, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev., 6, Issue 1, 97–114 (2012).
    [CrossRef]
  18. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics, 5, 141–148 (2011).
  19. K. Qian, L. Zhan, L. Zhang, Z. Q. Zhu, J. S. Peng, Z. C. Gu, X. Hu, S. Y. Luo, and Y. X. Xia, “Group velocity manipulation in active fibers using mutually modulated cross-gain modulation: from ultraslow to superluminal propagation,” Opt. Lett.36, 2185–2188 (2011).
    [CrossRef] [PubMed]

2012

R. Pant, A. Byrnes, C. G. Poulton, E. Li, D. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett.37, 969–971 (2012).
[CrossRef] [PubMed]

B. J. Eggleton, T. D. Vo, R. Pant, J. Schroeder, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev., 6, Issue 1, 97–114 (2012).
[CrossRef]

2011

2010

T. Arditi, E. Granot, and S. Sternklar, “Nonlinear phase shifts of modulated light waves with slow and superluminal group delay in stimulated Brillouin scatting,” J. Opt.12, 104016 (2010).

S. Sternklar, E. Sarid, M. Wart, and E. Granot, “Mutually-modulated cross-gain modulation and slow light,” J. Opt.12, 104016 (2010).
[CrossRef]

2009

2008

R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, “Optimal pump profile designs for broadband SBS slow-light systems,” Opt. Express16, 2764–2777 (2008).
[CrossRef] [PubMed]

Z. Shi and R. W. Boyd, “Slow-light interferometry: practical limitations to spectroscopic performance,” J. Opt. Soc. Am. B,25, C136–C143 (2008).
[CrossRef]

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics2, 474–481 (2008).
[CrossRef]

2007

2006

2005

X. F. Mo, B. Zhu, Z. F. Han, Y. Z. Gui, and G. C. Guo, “Faraday-Michelson system for quantum cryptography,” Opt. Lett.30, 2632–2634 (2005).
[CrossRef] [PubMed]

M. González-Herráez, K. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” AppL. Phys. Lett.87, 081113 (2005).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett.94, 153902 (2005).
[CrossRef] [PubMed]

2004

2003

Ahn, S. W.

Arbel, A.

Arditi, T.

T. Arditi, E. Granot, and S. Sternklar, “Nonlinear phase shifts of modulated light waves with slow and superluminal group delay in stimulated Brillouin scatting,” J. Opt.12, 104016 (2010).

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett.94, 153902 (2005).
[CrossRef] [PubMed]

Bloch, S.

Boyd, R. W.

Z. Shi and R. W. Boyd, “Slow-light interferometry: practical limitations to spectroscopic performance,” J. Opt. Soc. Am. B,25, C136–C143 (2008).
[CrossRef]

Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett.32, 915–917 (2007).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett.94, 153902 (2005).
[CrossRef] [PubMed]

Burger, J. P.

Byrnes, A.

Chang, Y.

Choi, D.

Dubovitsky, S.

Dudley, C. C.

Eggleton, B. J.

R. Pant, A. Byrnes, C. G. Poulton, E. Li, D. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett.37, 969–971 (2012).
[CrossRef] [PubMed]

B. J. Eggleton, T. D. Vo, R. Pant, J. Schroeder, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev., 6, Issue 1, 97–114 (2012).
[CrossRef]

R. Pant, C. G. Poulton, D. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express19, 8285–8290 (2011).
[CrossRef] [PubMed]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics, 5, 141–148 (2011).

Fetterman, H. R.

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett.94, 153902 (2005).
[CrossRef] [PubMed]

Gauthier, D. J.

González-Herráez, M.

M. González-Herráez, K. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” AppL. Phys. Lett.87, 081113 (2005).
[CrossRef]

Granot, E.

S. Sternklar, M. Vart, A. Lifshitz, S. Bloch, and E. Granot, “Kilohertz laser frequency sensing with Brillouin mutually modulated cross-gain modulation,” Opt. Lett.36, 4161–4163 (2011).
[CrossRef] [PubMed]

S. Sternklar, E. Sarid, M. Wart, and E. Granot, “Mutually-modulated cross-gain modulation and slow light,” J. Opt.12, 104016 (2010).
[CrossRef]

T. Arditi, E. Granot, and S. Sternklar, “Nonlinear phase shifts of modulated light waves with slow and superluminal group delay in stimulated Brillouin scatting,” J. Opt.12, 104016 (2010).

S. Sternklar, E. Sarid, A. Arbel, and E. Granot, “Brillouin cross-gain modulation and 10 m/s group velocity,” Opt. Lett.34, 2832–2834 (2009).
[CrossRef] [PubMed]

Gu, Z. C.

Gui, Y. Z.

Guo, G. C.

Han, Z. F.

Hile, S.

Hu, X.

Lay, O. P.

Li, E.

Lifshitz, A.

Luo, S. Y.

Luther-Davies, B.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schroeder, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev., 6, Issue 1, 97–114 (2012).
[CrossRef]

R. Pant, A. Byrnes, C. G. Poulton, E. Li, D. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett.37, 969–971 (2012).
[CrossRef] [PubMed]

R. Pant, C. G. Poulton, D. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express19, 8285–8290 (2011).
[CrossRef] [PubMed]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics, 5, 141–148 (2011).

Madden, S.

Madden, S. J.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schroeder, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev., 6, Issue 1, 97–114 (2012).
[CrossRef]

R. Pant, C. G. Poulton, D. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express19, 8285–8290 (2011).
[CrossRef] [PubMed]

Mcfarlane, H.

Mo, X. F.

Neifeld, M. A.

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett.94, 153902 (2005).
[CrossRef] [PubMed]

Pant, R.

Pelusi, M. D.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schroeder, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev., 6, Issue 1, 97–114 (2012).
[CrossRef]

Peng, J. S.

Peters, R. D.

Poulton, C. G.

Qian, K.

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics, 5, 141–148 (2011).

Sakadzic, S.

Sarid, E.

S. Sternklar, E. Sarid, M. Wart, and E. Granot, “Mutually-modulated cross-gain modulation and slow light,” J. Opt.12, 104016 (2010).
[CrossRef]

S. Sternklar, E. Sarid, A. Arbel, and E. Granot, “Brillouin cross-gain modulation and 10 m/s group velocity,” Opt. Lett.34, 2832–2834 (2009).
[CrossRef] [PubMed]

Schroeder, J.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schroeder, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev., 6, Issue 1, 97–114 (2012).
[CrossRef]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett.94, 153902 (2005).
[CrossRef] [PubMed]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett.94, 153902 (2005).
[CrossRef] [PubMed]

Shi, Z.

Z. Shi and R. W. Boyd, “Slow-light interferometry: practical limitations to spectroscopic performance,” J. Opt. Soc. Am. B,25, C136–C143 (2008).
[CrossRef]

Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett.32, 915–917 (2007).
[CrossRef] [PubMed]

Song, K.

M. González-Herráez, K. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” AppL. Phys. Lett.87, 081113 (2005).
[CrossRef]

Steier, W. H.

Stenner, M. D.

Sternklar, S.

S. Sternklar, M. Vart, A. Lifshitz, S. Bloch, and E. Granot, “Kilohertz laser frequency sensing with Brillouin mutually modulated cross-gain modulation,” Opt. Lett.36, 4161–4163 (2011).
[CrossRef] [PubMed]

S. Sternklar, E. Sarid, M. Wart, and E. Granot, “Mutually-modulated cross-gain modulation and slow light,” J. Opt.12, 104016 (2010).
[CrossRef]

T. Arditi, E. Granot, and S. Sternklar, “Nonlinear phase shifts of modulated light waves with slow and superluminal group delay in stimulated Brillouin scatting,” J. Opt.12, 104016 (2010).

S. Sternklar, E. Sarid, A. Arbel, and E. Granot, “Brillouin cross-gain modulation and 10 m/s group velocity,” Opt. Lett.34, 2832–2834 (2009).
[CrossRef] [PubMed]

Taylor, H. F.

Thevenaz, L.

Thévenaz, L.

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics2, 474–481 (2008).
[CrossRef]

M. González-Herráez, K. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” AppL. Phys. Lett.87, 081113 (2005).
[CrossRef]

Vart, M.

Vo, T. D.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schroeder, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev., 6, Issue 1, 97–114 (2012).
[CrossRef]

Wang, L. V.

Wart, M.

S. Sternklar, E. Sarid, M. Wart, and E. Granot, “Mutually-modulated cross-gain modulation and slow light,” J. Opt.12, 104016 (2010).
[CrossRef]

Xia, Y. X.

Xie, Z.

Yong Choi, D.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schroeder, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev., 6, Issue 1, 97–114 (2012).
[CrossRef]

Zhan, L.

Zhang, L.

Zhu, B.

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett.94, 153902 (2005).
[CrossRef] [PubMed]

Zhu, Z. Q.

AppL. Phys. Lett.

M. González-Herráez, K. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” AppL. Phys. Lett.87, 081113 (2005).
[CrossRef]

J. Opt.

T. Arditi, E. Granot, and S. Sternklar, “Nonlinear phase shifts of modulated light waves with slow and superluminal group delay in stimulated Brillouin scatting,” J. Opt.12, 104016 (2010).

J. Opt.

S. Sternklar, E. Sarid, M. Wart, and E. Granot, “Mutually-modulated cross-gain modulation and slow light,” J. Opt.12, 104016 (2010).
[CrossRef]

J. Opt. Soc. Am. B,

Z. Shi and R. W. Boyd, “Slow-light interferometry: practical limitations to spectroscopic performance,” J. Opt. Soc. Am. B,25, C136–C143 (2008).
[CrossRef]

Laser Photonics Rev.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schroeder, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev., 6, Issue 1, 97–114 (2012).
[CrossRef]

Nat. Photonics

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics, 5, 141–148 (2011).

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics2, 474–481 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

R. Pant, A. Byrnes, C. G. Poulton, E. Li, D. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett.37, 969–971 (2012).
[CrossRef] [PubMed]

S. Sternklar, E. Sarid, A. Arbel, and E. Granot, “Brillouin cross-gain modulation and 10 m/s group velocity,” Opt. Lett.34, 2832–2834 (2009).
[CrossRef] [PubMed]

K. Qian, L. Zhan, L. Zhang, Z. Q. Zhu, J. S. Peng, Z. C. Gu, X. Hu, S. Y. Luo, and Y. X. Xia, “Group velocity manipulation in active fibers using mutually modulated cross-gain modulation: from ultraslow to superluminal propagation,” Opt. Lett.36, 2185–2188 (2011).
[CrossRef] [PubMed]

S. Sternklar, M. Vart, A. Lifshitz, S. Bloch, and E. Granot, “Kilohertz laser frequency sensing with Brillouin mutually modulated cross-gain modulation,” Opt. Lett.36, 4161–4163 (2011).
[CrossRef] [PubMed]

O. P. Lay, S. Dubovitsky, R. D. Peters, J. P. Burger, S. W. Ahn, W. H. Steier, H. R. Fetterman, and Y. Chang, “MSTAR: a submicrometer absolute metrology system,” Opt. Lett.28, 890–892 (2003).
[CrossRef] [PubMed]

Z. Xie and H. F. Taylor, “Fabry-Perot optical binary switch for aircraft applications,” Opt. Lett.31, 2695–2697 (2006).
[CrossRef] [PubMed]

X. F. Mo, B. Zhu, Z. F. Han, Y. Z. Gui, and G. C. Guo, “Faraday-Michelson system for quantum cryptography,” Opt. Lett.30, 2632–2634 (2005).
[CrossRef] [PubMed]

S. Sakadzic and L. V. Wang, “High-resolution ultrasound-modulated optical tomography in biological tissues,” Opt. Lett.29, 2770–2772 (2004).
[CrossRef] [PubMed]

Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett.32, 915–917 (2007).
[CrossRef] [PubMed]

Phys. Rev. Lett.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett.94, 153902 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

MMXGM in the SBS medium. Both pump and signal are intensity modulated and the modulation phase shift at the front (left) facet is φ2.

Fig. 2
Fig. 2

Calculated amplitude of the first order harmonic wave i1 (black solid line) and the amplitude of the second order harmonic wave i2 (black dotted line) at different sensitivity with Ĝ0 = 2 and φ2 = π. The blue dash curve shows the sensitivity S.

Fig. 3
Fig. 3

Calculated maximum sensitivity (black solid line) and position of the sensing window (blue dotted line) with different Ĝ0.

Fig. 4
Fig. 4

The configuration of the experiment. FG1 and FG2 are function generators; FPC1-4 is the fiber polarization controller; SG is the signal generator to create Stokes wave; C1, C2 and C3 are circulators; EOML1, EOML2 and EOMH are intensity modulators; EDFA is the Erbrium doped fiber amplifier; OSA is the optical spectrum analyzer; D is optical detector; BPF is electronic band pass filter and OS is the oscilloscope. Blue wires indicate the electronic wire.

Fig. 5
Fig. 5

The output first harmonic wave measured at different frequency detunings and the normalized phase shift of the first harmonic wave together with the simulation. The black dash curve in (A) shows the evolution of the modulation phase when the frequency of signal is detuning. The normalized phase shift is shown in (B). The red solid curve is the calculation with Ĝ0=3.245 and φ2=1.0009π and the sensing window is around 450 kHz.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I 1 ( L , t ) = I 1 0 [ 1 + α cos ( K L + Ω t ) ] ,
I 2 ( 0 , t ) = I 2 0 [ 1 + β cos ( φ 2 Ω t ) ] ,
I 2 ( z = L , t ) = I 2 0 [ 1 + β cos ( K L Ω t φ 2 ) ] exp [ G + α G sinc ( K L ) cos ( Ω t ) ] ,
G = G 0 [ 1 + ( 2 δ ω s Γ B ) 2 ] 1 ,
I 2 ( L , t ) = i D C + i 1 cos ( θ 1 Ω t ) + i 2 cos ( θ 2 2 Ω t ) +
I 2 ( L , t ) I 2 0 exp ( G ) [ 1 + β cos ( K L Ω t φ 2 ) + α G sinc ( K L ) cos ( Ω t ) ] .
θ 1 = K L + tan 1 ( G ^ K L + sin ( φ 2 ) cos ( K L φ 2 ) G ^ ) ,
S : = d θ 1 d ( δ ω s ) = d θ 1 d G ^ d G ^ d ( δ ω s ) = K L cos φ 2 + sin φ 2 ( cos φ 2 + G ^ ) 2 + ( G ^ K L + sin φ 2 ) 2 d G ^ d ( δ ω s ) ;
S max 1 K L δ φ 2 d G ^ d ( δ ω s )

Metrics