Abstract

A novel remoted instantaneous frequency measurement system using all optical mixing is demonstrated. This system copies an input intensity modulated optical carrier using four wave mixing, delays this copy and then mixes it with the original signal, to produce an output idler tone. The intensity of this output can be used to determine the RF frequency of the input signal. This system is inherently broadband and can be easily scaled beyond 40 GHz while maintaining a DC output which greatly simplifies receiving electronics. The remoted configuration isolates the sensitive and expensive receiver hardware from the signal sources and importantly allows the system to be added to existing microwave photonic implementations without modification of the transmission module.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Tsui, Digital techniques for wideband receivers (SciTech Publishing, 2004).
  2. L. Nguyen and D. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18(10), 1188–1190 (2006).
    [CrossRef]
  3. T. Mengual, B. Vidal, and J. Marti, “Photonic RF frequency measurement combining SSB-SC modulation and birefringence,” Opt. Commun. 283(13), 2676–2680 (2010).
    [CrossRef]
  4. S. Pan and J. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photon. Technol. Lett. 22(19), 1437–1439 (2010).
    [CrossRef]
  5. L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, “Instantaneous frequency measurement system using optical mixing in highly nonlinear fiber,” Opt. Express 17(25), 22983–22991 (2009).
    [CrossRef] [PubMed]
  6. L. Bui and A. Mitchell, “Remoted instantaneous frequency measurement system using optical mixing in highly nonlinear fiber”, Australian Conference on Optical Fibre Technology, 5–9 Dec. (2010).
  7. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  8. L. Bui, N. Sarkhosh, and A. Mitchell, “Photonic instantaneous frequency measurement: parallel simultaneous implementations in as single highly nonlinear fiber,” IEEE Photon. J. 3(5), 915–925 (2011).
    [CrossRef]
  9. T. Durhuus, B. Mikkelsen, C. Joergensen, S. Danielsen, and K. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
    [CrossRef]
  10. T. Durhuus, R. Pedersen, B. Mikkelsen, K. Stubkjaer, M. Oberg, and S. Nilsson, “Optical wavelength conversion over 18 nm at 2.5 Gb/s by DBR-laser,” IEEE Photon. Technol. Lett. 5(1), 86–88 (1993).
    [CrossRef]
  11. L. Bui and A. Mitchell, “Parallel All-Optical Instantaneous frequency measurement system using channel labeling,” IEEE Photon. Technol. Lett. 24(13), 1118–1120 (2012).
    [CrossRef]
  12. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “ Integrated microwave photonics,” Laser and Photonics Reviews, 1–33 (2013).

2013 (1)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “ Integrated microwave photonics,” Laser and Photonics Reviews, 1–33 (2013).

2012 (1)

L. Bui and A. Mitchell, “Parallel All-Optical Instantaneous frequency measurement system using channel labeling,” IEEE Photon. Technol. Lett. 24(13), 1118–1120 (2012).
[CrossRef]

2011 (1)

L. Bui, N. Sarkhosh, and A. Mitchell, “Photonic instantaneous frequency measurement: parallel simultaneous implementations in as single highly nonlinear fiber,” IEEE Photon. J. 3(5), 915–925 (2011).
[CrossRef]

2010 (2)

T. Mengual, B. Vidal, and J. Marti, “Photonic RF frequency measurement combining SSB-SC modulation and birefringence,” Opt. Commun. 283(13), 2676–2680 (2010).
[CrossRef]

S. Pan and J. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photon. Technol. Lett. 22(19), 1437–1439 (2010).
[CrossRef]

2009 (1)

2006 (1)

L. Nguyen and D. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18(10), 1188–1190 (2006).
[CrossRef]

1996 (1)

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Danielsen, and K. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

1993 (1)

T. Durhuus, R. Pedersen, B. Mikkelsen, K. Stubkjaer, M. Oberg, and S. Nilsson, “Optical wavelength conversion over 18 nm at 2.5 Gb/s by DBR-laser,” IEEE Photon. Technol. Lett. 5(1), 86–88 (1993).
[CrossRef]

Bui, L.

L. Bui and A. Mitchell, “Parallel All-Optical Instantaneous frequency measurement system using channel labeling,” IEEE Photon. Technol. Lett. 24(13), 1118–1120 (2012).
[CrossRef]

L. Bui, N. Sarkhosh, and A. Mitchell, “Photonic instantaneous frequency measurement: parallel simultaneous implementations in as single highly nonlinear fiber,” IEEE Photon. J. 3(5), 915–925 (2011).
[CrossRef]

L. Bui and A. Mitchell, “Remoted instantaneous frequency measurement system using optical mixing in highly nonlinear fiber”, Australian Conference on Optical Fibre Technology, 5–9 Dec. (2010).

Bui, L. A.

Capmany, J.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “ Integrated microwave photonics,” Laser and Photonics Reviews, 1–33 (2013).

Danielsen, S.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Danielsen, and K. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

Durhuus, T.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Danielsen, and K. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

T. Durhuus, R. Pedersen, B. Mikkelsen, K. Stubkjaer, M. Oberg, and S. Nilsson, “Optical wavelength conversion over 18 nm at 2.5 Gb/s by DBR-laser,” IEEE Photon. Technol. Lett. 5(1), 86–88 (1993).
[CrossRef]

Eggleton, B. J.

Emami, H.

Heideman, R.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “ Integrated microwave photonics,” Laser and Photonics Reviews, 1–33 (2013).

Hunter, D.

L. Nguyen and D. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18(10), 1188–1190 (2006).
[CrossRef]

Joergensen, C.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Danielsen, and K. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

Leinse, A.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “ Integrated microwave photonics,” Laser and Photonics Reviews, 1–33 (2013).

Marpaung, D.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “ Integrated microwave photonics,” Laser and Photonics Reviews, 1–33 (2013).

Marti, J.

T. Mengual, B. Vidal, and J. Marti, “Photonic RF frequency measurement combining SSB-SC modulation and birefringence,” Opt. Commun. 283(13), 2676–2680 (2010).
[CrossRef]

Mengual, T.

T. Mengual, B. Vidal, and J. Marti, “Photonic RF frequency measurement combining SSB-SC modulation and birefringence,” Opt. Commun. 283(13), 2676–2680 (2010).
[CrossRef]

Mikkelsen, B.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Danielsen, and K. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

T. Durhuus, R. Pedersen, B. Mikkelsen, K. Stubkjaer, M. Oberg, and S. Nilsson, “Optical wavelength conversion over 18 nm at 2.5 Gb/s by DBR-laser,” IEEE Photon. Technol. Lett. 5(1), 86–88 (1993).
[CrossRef]

Mitchell, A.

L. Bui and A. Mitchell, “Parallel All-Optical Instantaneous frequency measurement system using channel labeling,” IEEE Photon. Technol. Lett. 24(13), 1118–1120 (2012).
[CrossRef]

L. Bui, N. Sarkhosh, and A. Mitchell, “Photonic instantaneous frequency measurement: parallel simultaneous implementations in as single highly nonlinear fiber,” IEEE Photon. J. 3(5), 915–925 (2011).
[CrossRef]

L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, “Instantaneous frequency measurement system using optical mixing in highly nonlinear fiber,” Opt. Express 17(25), 22983–22991 (2009).
[CrossRef] [PubMed]

L. Bui and A. Mitchell, “Remoted instantaneous frequency measurement system using optical mixing in highly nonlinear fiber”, Australian Conference on Optical Fibre Technology, 5–9 Dec. (2010).

Nguyen, L.

L. Nguyen and D. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18(10), 1188–1190 (2006).
[CrossRef]

Nilsson, S.

T. Durhuus, R. Pedersen, B. Mikkelsen, K. Stubkjaer, M. Oberg, and S. Nilsson, “Optical wavelength conversion over 18 nm at 2.5 Gb/s by DBR-laser,” IEEE Photon. Technol. Lett. 5(1), 86–88 (1993).
[CrossRef]

Oberg, M.

T. Durhuus, R. Pedersen, B. Mikkelsen, K. Stubkjaer, M. Oberg, and S. Nilsson, “Optical wavelength conversion over 18 nm at 2.5 Gb/s by DBR-laser,” IEEE Photon. Technol. Lett. 5(1), 86–88 (1993).
[CrossRef]

Pan, S.

S. Pan and J. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photon. Technol. Lett. 22(19), 1437–1439 (2010).
[CrossRef]

Pedersen, R.

T. Durhuus, R. Pedersen, B. Mikkelsen, K. Stubkjaer, M. Oberg, and S. Nilsson, “Optical wavelength conversion over 18 nm at 2.5 Gb/s by DBR-laser,” IEEE Photon. Technol. Lett. 5(1), 86–88 (1993).
[CrossRef]

Pelusi, M. D.

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “ Integrated microwave photonics,” Laser and Photonics Reviews, 1–33 (2013).

Sales, S.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “ Integrated microwave photonics,” Laser and Photonics Reviews, 1–33 (2013).

Sarkhosh, N.

L. Bui, N. Sarkhosh, and A. Mitchell, “Photonic instantaneous frequency measurement: parallel simultaneous implementations in as single highly nonlinear fiber,” IEEE Photon. J. 3(5), 915–925 (2011).
[CrossRef]

L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, “Instantaneous frequency measurement system using optical mixing in highly nonlinear fiber,” Opt. Express 17(25), 22983–22991 (2009).
[CrossRef] [PubMed]

Stubkjaer, K.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Danielsen, and K. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

T. Durhuus, R. Pedersen, B. Mikkelsen, K. Stubkjaer, M. Oberg, and S. Nilsson, “Optical wavelength conversion over 18 nm at 2.5 Gb/s by DBR-laser,” IEEE Photon. Technol. Lett. 5(1), 86–88 (1993).
[CrossRef]

Vidal, B.

T. Mengual, B. Vidal, and J. Marti, “Photonic RF frequency measurement combining SSB-SC modulation and birefringence,” Opt. Commun. 283(13), 2676–2680 (2010).
[CrossRef]

Vo, T. D.

Yao, J.

S. Pan and J. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photon. Technol. Lett. 22(19), 1437–1439 (2010).
[CrossRef]

IEEE Photon. J. (1)

L. Bui, N. Sarkhosh, and A. Mitchell, “Photonic instantaneous frequency measurement: parallel simultaneous implementations in as single highly nonlinear fiber,” IEEE Photon. J. 3(5), 915–925 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

T. Durhuus, R. Pedersen, B. Mikkelsen, K. Stubkjaer, M. Oberg, and S. Nilsson, “Optical wavelength conversion over 18 nm at 2.5 Gb/s by DBR-laser,” IEEE Photon. Technol. Lett. 5(1), 86–88 (1993).
[CrossRef]

L. Bui and A. Mitchell, “Parallel All-Optical Instantaneous frequency measurement system using channel labeling,” IEEE Photon. Technol. Lett. 24(13), 1118–1120 (2012).
[CrossRef]

L. Nguyen and D. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18(10), 1188–1190 (2006).
[CrossRef]

S. Pan and J. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photon. Technol. Lett. 22(19), 1437–1439 (2010).
[CrossRef]

J. Lightwave Technol. (1)

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Danielsen, and K. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

Opt. Commun. (1)

T. Mengual, B. Vidal, and J. Marti, “Photonic RF frequency measurement combining SSB-SC modulation and birefringence,” Opt. Commun. 283(13), 2676–2680 (2010).
[CrossRef]

Opt. Express (1)

Other (4)

J. Tsui, Digital techniques for wideband receivers (SciTech Publishing, 2004).

L. Bui and A. Mitchell, “Remoted instantaneous frequency measurement system using optical mixing in highly nonlinear fiber”, Australian Conference on Optical Fibre Technology, 5–9 Dec. (2010).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “ Integrated microwave photonics,” Laser and Photonics Reviews, 1–33 (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Original IFM system; (b) LD1 & LD2 generate optical carriers at frequencies ω1 & ω2; which are: (c) modulated by RF signal using Mach–Zehnder (MZ); (d) differentially delayed by time Δt using cascaded fiber Bragg grating (CFBG), amplified by an erbium doped fiber amplifier (EDFA) and; (e) mixed in a highly nonlinear fiber (HNLF) to create idler at 2ω1 - ω2; (e). The idler is then isolated using a filter and its power detected using a low frequency photodiode (PD). The output oscillates with RF frequency enabling frequency measurement.

Fig. 2
Fig. 2

Remoted all optical IFM system: (a) at transmitter, LD1 produces optical carrier at frequency ω3 which is modulated with RF signal (from Anritsu MG3694A) using MZ (Micreo/RMIT 40 GHz); (b) the transmitted signal enters the receiver and is copied by combining with optical pump at ω4, amplifying in EDFA1 (Pritel PMFA-20-IO) and mixing in HNLF1 (1 km OFS Standard HNLF, zero disp. at 1540 nm, disp. slope: 0.019 ps/(nm2km)) and then Filter1 (Finisar WaveShaper 4000S) isolates original signal at ω3 and copy at idler ω5 which proceed to the IFM (c) where they are re-amplified using EDFA2 (EDFA2, Pritel PMFA-20-IO), differentially delayed using CFBG (custom, Redfern Optical Components) and mixed using HNLF2 (500 m, OFS, PM HNLF, zero disp.: 1544 nm, disp. slope: 0.027 ps/(nm2km)). The idler at ω1 is isolated using Filter2 (AWG, ANDevices DWDM-F-100G) and power is detected using low frequency detector PD (New Focus 2011) and a DC voltmeter (HP 34401A). Inset (e) Copy section response is monitored using high speed PD (u2t XPDV2120R) and electronic spectrum analyser (HP 8564E).

Fig. 3
Fig. 3

Optical spectra through system of Fig. 2: (a) input HNLF1; (b) output HNLF1; (c) output programmable Filter1, 100 GHz passband only on Ch3, inset: zoomed in on Ch3 (d) output Filter1, 100 GHz passband only on Ch5; (e) output Filter1, 100 GHz passpands on both Ch3 and Ch5 and reflection from CFBG; (f) output HNLF2; (g) output of Filter 2 / input PD.

Fig. 4
Fig. 4

RF frequency response of various channel configurations for system of Fig. 2: red trace (circles): no pump (Ch4) and 10 dBm on signal Ch3 at input to HNLF1; green trace (squares): output on Ch3 and; blue trace (triangles) Ch5 with equal power on pump and signal at input to HNLF1; solid line: predicted response (see Section 4.1).

Fig. 5
Fig. 5

Remoted instantaneous frequency measurement demonstration: (a) Measured and predicted output vs RF signal frequency; (b) Interpreted RF frequency obtained by solving Eq. (6) with measured data of Fig. 5 (a); Insets: estimated measurement error of Bands 1 and 6.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E( ω 3 )= A 3 e j ω 3 t + B 3 e j( ω 3 +Ω)t + B 3 e j( ω 3 Ω)t ,
E( ω 5 )= A 5 e j ω 5 t + B 5 e j( ω 5 +Ω)t + B 5 e j( ω 5 Ω)t .
E( ω 3 )=[ A 3 + B 3 e jΩt + B 3 e jΩt ] e j ω 3 t ;
E( ω 5 )=[ A 5 + B 5 e jΩ(t+Δt) + B 5 e jΩ(t+Δt) ] e j ω 5 (t+Δt) .
E( ω 1 ) A 3 2 A 5 { 1+2 m 3 [ e jΩt + e jΩt ]+ m 5 [ e jΩ(t+Δt) + e jΩ(t+Δt) ] } e j2 ω 3 tj ω 5 (t+Δt) ,
P( ω 1 ) A 3 4 A 5 2 { 1+8 m 3 2 +2 m 5 2 +12 m 3 m 5 cos( ΩΔt ) }.

Metrics