Abstract

We demonstrate for the first time a possibility of fabrication of Bragg gratings in polymer microstructured fibers with multiple reflection peaks by using He-Cd laser (λ = 325 nm) and a phase mask with higher diffraction orders. We experimentally studied the growth dynamics of the grating with the primary Bragg peak at λB = 1555 nm, for which we also observed good quality peaks located at λB/2 = 782 nm and 2λB/3 = 1040 nm. Temperature response of all the Bragg peaks was also investigated. Detailed numerical simulations of the interference pattern produced by the phase mask suggests that the higher order Bragg peaks originate from interference of UV beams diffracted in ± 1st, ± 2nd orders. We also demonstrated the grating with the reflection peak at λB/2 = 659 nm, which is the shortest Bragg wavelength ever reported for polymer microstructured fibers. This peak was observed for the grating with primary Bragg wavelength at λB = 1309 nm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill and G. Meltz, “Fiber Bragg grating technology - fundamentals and overview,” J. Lightwave Technol.15(8), 1263–1276 (1997).
    [CrossRef]
  2. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
    [CrossRef]
  3. D. Webb and K. Kalli, “Polymer fiber Bragg gratings,” in Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation, A. Cusano, A. Cutolo, and J. Albert, Eds. Sharjah (Bentham Science Publishers 2011), pp. 292−312.
  4. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett.11(3), 352–354 (1999).
    [CrossRef]
  5. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Effects of the zeroth-order diffraction of a phase mask on Bragg gratings,” J. Lightwave Technol.17(11), 2361–2365 (1999).
    [CrossRef]
  6. H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett.13(8), 824–826 (2001).
    [CrossRef]
  7. H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Novel growth behaviors of fiber Bragg gratings in polymer optical fiber under UV irradiation with low power,” IEEE Photon. Technol. Lett.16(1), 159–161 (2004).
    [CrossRef]
  8. H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun.220(4-6), 337–343 (2003).
    [CrossRef]
  9. Z. F. Zhang, Ch. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” IEEE Photon. Technol. Lett.22(21), 1562–1564 (2010).
    [CrossRef]
  10. W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011).
    [CrossRef]
  11. X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol.21(9), 094005 (2010).
    [CrossRef]
  12. K. Kalli, H. L. Dobb, D. J. Webb, K. Carroll, C. Themistos, M. Komodromos, G. D. Peng, Q. Fang, and I. W. Boyd, “Development of an electrically tunable Bragg grating filter in polymer optical fibre operating at 1.55 μm,” Meas. Sci. Technol.18(10), 3155–3164 (2007).
    [CrossRef]
  13. N. G. Harbach, “Fiber Bragg gratings in polymer optical fibers,” Thesis, EPFL, Lausanne (2008).
  14. H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett.30(24), 3296–3298 (2005).
    [CrossRef] [PubMed]
  15. K. E. Carroll, Ch. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. J. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express15(14), 8844–8850 (2007).
    [CrossRef] [PubMed]
  16. I. P. Johnson, D. J. Webb, K. Kalli, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Polymer PCF Bragg grating sensor based on poly(methyl methacrylate) and TOPAS cyclic olefin copolymer,” Proc. SPIE8073, 80732V, 80732V-8 (2011).
    [CrossRef]
  17. I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett.47(4), 271–272 (2011).
    [CrossRef]
  18. W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express19(20), 19731–19739 (2011).
    [CrossRef] [PubMed]
  19. A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850-nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett.23(10), 660–662 (2011).
    [CrossRef]
  20. W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photon. Technol. Lett.24(5), 401–403 (2012).
    [CrossRef]
  21. A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett.24(9), 763–765 (2012).
    [CrossRef]
  22. A. Stefani, M. Stecher, O. Bang, and G. Town, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photon. Technol. Lett.24(13), 1148–1150 (2012).
    [CrossRef]
  23. N. M. Dragomir, C. M. Rollinson, S. A. Wade, A. J. Stevenson, S. F. Collins, G. W. Baxter, P. M. Farrell, and A. Roberts, “Nondestructive imaging of a type I optical fiber Bragg grating,” Opt. Lett.28(10), 789–791 (2003).
    [CrossRef] [PubMed]
  24. C. M. Rollinson, S. A. Wade, N. M. Dragomir, G. W. Baxter, S. F. Collins, and A. Roberts, “Reflections near 1030 nm from 1540 nm fibre Bragg gratings: evidence of a complex refractive index structure,” Opt. Commun.256(4-6), 310–318 (2005).
    [CrossRef]
  25. B. P. Kouskousis, C. M. Rollinson, D. J. Kitcher, S. F. Collins, G. W. Baxter, S. A. Wade, N. M. Dragomir, and A. Roberts, “Quantitative investigation of the refractive-index modulation within the core of a fiber Bragg grating,” Opt. Express14(22), 10332–10338 (2006).
    [CrossRef] [PubMed]
  26. C. M. Rollinson, S. A. Wade, B. P. Kouskousis, D. J. Kitcher, G. W. Baxter, and S. F. Collins, “Variations of the growth of harmonic reflections in fiber Bragg gratings fabricated using phase masks,” J. Opt. Soc. Am. A29(7), 1259–1268 (2012).
    [CrossRef] [PubMed]
  27. W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun.101(1-2), 85–91 (1993).
    [CrossRef]
  28. S. P. Yam, Z. Brodzeli, B. P. Kouskousis, C. M. Rollinson, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fabrication of a π -phase-shifted fiber Bragg grating at twice the Bragg wavelength with the standard phase mask technique,” Opt. Lett.34(13), 2021–2023 (2009).
    [CrossRef] [PubMed]
  29. H. K. Bal, F. Sidiroglou, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fibre Bragg grating transverse strain sensing using reflections at twice the Bragg wavelength,” Meas. Sci. Technol.21(9), 094004 (2010).
    [CrossRef]
  30. B. Malo, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Single-excimer-pulse writing of fiber gratings by use of a zero-order nulled phase mask: grating spectral response and visualization of index perturbations,” Opt. Lett.18(15), 1277–1279 (1993).
    [CrossRef] [PubMed]
  31. S. A. Wade, W. G. Brown, H. K. Bal, F. Sidiroglou, G. W. Baxter, and S. F. Collins, “Effect of phase mask alignment on fiber Bragg grating spectra at harmonics of the Bragg wavelength,” J. Opt. Soc. Am. A29(8), 1597–1605 (2012).
    [CrossRef] [PubMed]
  32. T. Baghdasaryan, T. Geernaert, F. Berghmans, and H. Thienpont, “Geometrical study of a hexagonal lattice photonic crystal fiber for efficient femtosecond laser grating inscription,” Opt. Express19(8), 7705–7716 (2011).
    [CrossRef] [PubMed]
  33. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett.24(21), 1460–1462 (1999).
    [CrossRef] [PubMed]
  34. J. D. Mills, C. W. J. Hillman, B. H. Blott, and W. S. Brocklesby, “Imaging of free-space interference patterns used to manufacture fiber bragg gratings,” Appl. Opt.39(33), 6128–6135 (2000).
    [CrossRef] [PubMed]

2012 (5)

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photon. Technol. Lett.24(5), 401–403 (2012).
[CrossRef]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett.24(9), 763–765 (2012).
[CrossRef]

A. Stefani, M. Stecher, O. Bang, and G. Town, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photon. Technol. Lett.24(13), 1148–1150 (2012).
[CrossRef]

C. M. Rollinson, S. A. Wade, B. P. Kouskousis, D. J. Kitcher, G. W. Baxter, and S. F. Collins, “Variations of the growth of harmonic reflections in fiber Bragg gratings fabricated using phase masks,” J. Opt. Soc. Am. A29(7), 1259–1268 (2012).
[CrossRef] [PubMed]

S. A. Wade, W. G. Brown, H. K. Bal, F. Sidiroglou, G. W. Baxter, and S. F. Collins, “Effect of phase mask alignment on fiber Bragg grating spectra at harmonics of the Bragg wavelength,” J. Opt. Soc. Am. A29(8), 1597–1605 (2012).
[CrossRef] [PubMed]

2011 (6)

T. Baghdasaryan, T. Geernaert, F. Berghmans, and H. Thienpont, “Geometrical study of a hexagonal lattice photonic crystal fiber for efficient femtosecond laser grating inscription,” Opt. Express19(8), 7705–7716 (2011).
[CrossRef] [PubMed]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011).
[CrossRef]

I. P. Johnson, D. J. Webb, K. Kalli, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Polymer PCF Bragg grating sensor based on poly(methyl methacrylate) and TOPAS cyclic olefin copolymer,” Proc. SPIE8073, 80732V, 80732V-8 (2011).
[CrossRef]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett.47(4), 271–272 (2011).
[CrossRef]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850-nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett.23(10), 660–662 (2011).
[CrossRef]

2010 (3)

X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol.21(9), 094005 (2010).
[CrossRef]

Z. F. Zhang, Ch. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” IEEE Photon. Technol. Lett.22(21), 1562–1564 (2010).
[CrossRef]

H. K. Bal, F. Sidiroglou, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fibre Bragg grating transverse strain sensing using reflections at twice the Bragg wavelength,” Meas. Sci. Technol.21(9), 094004 (2010).
[CrossRef]

2009 (1)

2007 (2)

K. E. Carroll, Ch. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. J. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express15(14), 8844–8850 (2007).
[CrossRef] [PubMed]

K. Kalli, H. L. Dobb, D. J. Webb, K. Carroll, C. Themistos, M. Komodromos, G. D. Peng, Q. Fang, and I. W. Boyd, “Development of an electrically tunable Bragg grating filter in polymer optical fibre operating at 1.55 μm,” Meas. Sci. Technol.18(10), 3155–3164 (2007).
[CrossRef]

2006 (1)

2005 (2)

C. M. Rollinson, S. A. Wade, N. M. Dragomir, G. W. Baxter, S. F. Collins, and A. Roberts, “Reflections near 1030 nm from 1540 nm fibre Bragg gratings: evidence of a complex refractive index structure,” Opt. Commun.256(4-6), 310–318 (2005).
[CrossRef]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett.30(24), 3296–3298 (2005).
[CrossRef] [PubMed]

2004 (1)

H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Novel growth behaviors of fiber Bragg gratings in polymer optical fiber under UV irradiation with low power,” IEEE Photon. Technol. Lett.16(1), 159–161 (2004).
[CrossRef]

2003 (2)

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun.220(4-6), 337–343 (2003).
[CrossRef]

N. M. Dragomir, C. M. Rollinson, S. A. Wade, A. J. Stevenson, S. F. Collins, G. W. Baxter, P. M. Farrell, and A. Roberts, “Nondestructive imaging of a type I optical fiber Bragg grating,” Opt. Lett.28(10), 789–791 (2003).
[CrossRef] [PubMed]

2001 (1)

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett.13(8), 824–826 (2001).
[CrossRef]

2000 (1)

1999 (3)

1997 (2)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology - fundamentals and overview,” J. Lightwave Technol.15(8), 1263–1276 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

1993 (2)

B. Malo, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Single-excimer-pulse writing of fiber gratings by use of a zero-order nulled phase mask: grating spectral response and visualization of index perturbations,” Opt. Lett.18(15), 1277–1279 (1993).
[CrossRef] [PubMed]

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun.101(1-2), 85–91 (1993).
[CrossRef]

Albert, J.

Andresen, S.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett.24(9), 763–765 (2012).
[CrossRef]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011).
[CrossRef]

Argyros, A.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Bache, M.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011).
[CrossRef]

Baghdasaryan, T.

Bal, H. K.

S. A. Wade, W. G. Brown, H. K. Bal, F. Sidiroglou, G. W. Baxter, and S. F. Collins, “Effect of phase mask alignment on fiber Bragg grating spectra at harmonics of the Bragg wavelength,” J. Opt. Soc. Am. A29(8), 1597–1605 (2012).
[CrossRef] [PubMed]

H. K. Bal, F. Sidiroglou, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fibre Bragg grating transverse strain sensing using reflections at twice the Bragg wavelength,” Meas. Sci. Technol.21(9), 094004 (2010).
[CrossRef]

Bang, O.

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photon. Technol. Lett.24(5), 401–403 (2012).
[CrossRef]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett.24(9), 763–765 (2012).
[CrossRef]

A. Stefani, M. Stecher, O. Bang, and G. Town, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photon. Technol. Lett.24(13), 1148–1150 (2012).
[CrossRef]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850-nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett.23(10), 660–662 (2011).
[CrossRef]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett.47(4), 271–272 (2011).
[CrossRef]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

I. P. Johnson, D. J. Webb, K. Kalli, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Polymer PCF Bragg grating sensor based on poly(methyl methacrylate) and TOPAS cyclic olefin copolymer,” Proc. SPIE8073, 80732V, 80732V-8 (2011).
[CrossRef]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011).
[CrossRef]

Baxter, G. W.

C. M. Rollinson, S. A. Wade, B. P. Kouskousis, D. J. Kitcher, G. W. Baxter, and S. F. Collins, “Variations of the growth of harmonic reflections in fiber Bragg gratings fabricated using phase masks,” J. Opt. Soc. Am. A29(7), 1259–1268 (2012).
[CrossRef] [PubMed]

S. A. Wade, W. G. Brown, H. K. Bal, F. Sidiroglou, G. W. Baxter, and S. F. Collins, “Effect of phase mask alignment on fiber Bragg grating spectra at harmonics of the Bragg wavelength,” J. Opt. Soc. Am. A29(8), 1597–1605 (2012).
[CrossRef] [PubMed]

H. K. Bal, F. Sidiroglou, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fibre Bragg grating transverse strain sensing using reflections at twice the Bragg wavelength,” Meas. Sci. Technol.21(9), 094004 (2010).
[CrossRef]

S. P. Yam, Z. Brodzeli, B. P. Kouskousis, C. M. Rollinson, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fabrication of a π -phase-shifted fiber Bragg grating at twice the Bragg wavelength with the standard phase mask technique,” Opt. Lett.34(13), 2021–2023 (2009).
[CrossRef] [PubMed]

B. P. Kouskousis, C. M. Rollinson, D. J. Kitcher, S. F. Collins, G. W. Baxter, S. A. Wade, N. M. Dragomir, and A. Roberts, “Quantitative investigation of the refractive-index modulation within the core of a fiber Bragg grating,” Opt. Express14(22), 10332–10338 (2006).
[CrossRef] [PubMed]

C. M. Rollinson, S. A. Wade, N. M. Dragomir, G. W. Baxter, S. F. Collins, and A. Roberts, “Reflections near 1030 nm from 1540 nm fibre Bragg gratings: evidence of a complex refractive index structure,” Opt. Commun.256(4-6), 310–318 (2005).
[CrossRef]

N. M. Dragomir, C. M. Rollinson, S. A. Wade, A. J. Stevenson, S. F. Collins, G. W. Baxter, P. M. Farrell, and A. Roberts, “Nondestructive imaging of a type I optical fiber Bragg grating,” Opt. Lett.28(10), 789–791 (2003).
[CrossRef] [PubMed]

Bayon, J. F.

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun.101(1-2), 85–91 (1993).
[CrossRef]

Berghmans, F.

Bernage, P.

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun.101(1-2), 85–91 (1993).
[CrossRef]

Bilodeau, F.

Blott, B. H.

Boyd, I. W.

K. Kalli, H. L. Dobb, D. J. Webb, K. Carroll, C. Themistos, M. Komodromos, G. D. Peng, Q. Fang, and I. W. Boyd, “Development of an electrically tunable Bragg grating filter in polymer optical fibre operating at 1.55 μm,” Meas. Sci. Technol.18(10), 3155–3164 (2007).
[CrossRef]

Brocklesby, W. S.

Brodzeli, Z.

H. K. Bal, F. Sidiroglou, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fibre Bragg grating transverse strain sensing using reflections at twice the Bragg wavelength,” Meas. Sci. Technol.21(9), 094004 (2010).
[CrossRef]

S. P. Yam, Z. Brodzeli, B. P. Kouskousis, C. M. Rollinson, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fabrication of a π -phase-shifted fiber Bragg grating at twice the Bragg wavelength with the standard phase mask technique,” Opt. Lett.34(13), 2021–2023 (2009).
[CrossRef] [PubMed]

Brown, W. G.

Carroll, K.

K. Kalli, H. L. Dobb, D. J. Webb, K. Carroll, C. Themistos, M. Komodromos, G. D. Peng, Q. Fang, and I. W. Boyd, “Development of an electrically tunable Bragg grating filter in polymer optical fibre operating at 1.55 μm,” Meas. Sci. Technol.18(10), 3155–3164 (2007).
[CrossRef]

Carroll, K. E.

Chen, X.

X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol.21(9), 094005 (2010).
[CrossRef]

Chu, P. L.

H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Novel growth behaviors of fiber Bragg gratings in polymer optical fiber under UV irradiation with low power,” IEEE Photon. Technol. Lett.16(1), 159–161 (2004).
[CrossRef]

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun.220(4-6), 337–343 (2003).
[CrossRef]

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett.13(8), 824–826 (2001).
[CrossRef]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Effects of the zeroth-order diffraction of a phase mask on Bragg gratings,” J. Lightwave Technol.17(11), 2361–2365 (1999).
[CrossRef]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett.11(3), 352–354 (1999).
[CrossRef]

Collins, S. F.

C. M. Rollinson, S. A. Wade, B. P. Kouskousis, D. J. Kitcher, G. W. Baxter, and S. F. Collins, “Variations of the growth of harmonic reflections in fiber Bragg gratings fabricated using phase masks,” J. Opt. Soc. Am. A29(7), 1259–1268 (2012).
[CrossRef] [PubMed]

S. A. Wade, W. G. Brown, H. K. Bal, F. Sidiroglou, G. W. Baxter, and S. F. Collins, “Effect of phase mask alignment on fiber Bragg grating spectra at harmonics of the Bragg wavelength,” J. Opt. Soc. Am. A29(8), 1597–1605 (2012).
[CrossRef] [PubMed]

H. K. Bal, F. Sidiroglou, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fibre Bragg grating transverse strain sensing using reflections at twice the Bragg wavelength,” Meas. Sci. Technol.21(9), 094004 (2010).
[CrossRef]

S. P. Yam, Z. Brodzeli, B. P. Kouskousis, C. M. Rollinson, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fabrication of a π -phase-shifted fiber Bragg grating at twice the Bragg wavelength with the standard phase mask technique,” Opt. Lett.34(13), 2021–2023 (2009).
[CrossRef] [PubMed]

B. P. Kouskousis, C. M. Rollinson, D. J. Kitcher, S. F. Collins, G. W. Baxter, S. A. Wade, N. M. Dragomir, and A. Roberts, “Quantitative investigation of the refractive-index modulation within the core of a fiber Bragg grating,” Opt. Express14(22), 10332–10338 (2006).
[CrossRef] [PubMed]

C. M. Rollinson, S. A. Wade, N. M. Dragomir, G. W. Baxter, S. F. Collins, and A. Roberts, “Reflections near 1030 nm from 1540 nm fibre Bragg gratings: evidence of a complex refractive index structure,” Opt. Commun.256(4-6), 310–318 (2005).
[CrossRef]

N. M. Dragomir, C. M. Rollinson, S. A. Wade, A. J. Stevenson, S. F. Collins, G. W. Baxter, P. M. Farrell, and A. Roberts, “Nondestructive imaging of a type I optical fiber Bragg grating,” Opt. Lett.28(10), 789–791 (2003).
[CrossRef] [PubMed]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Dobb, H.

Dobb, H. L.

K. Kalli, H. L. Dobb, D. J. Webb, K. Carroll, C. Themistos, M. Komodromos, G. D. Peng, Q. Fang, and I. W. Boyd, “Development of an electrically tunable Bragg grating filter in polymer optical fibre operating at 1.55 μm,” Meas. Sci. Technol.18(10), 3155–3164 (2007).
[CrossRef]

Douay, M.

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun.101(1-2), 85–91 (1993).
[CrossRef]

Dragomir, N. M.

Eggleton, B. J.

Fang, Q.

K. Kalli, H. L. Dobb, D. J. Webb, K. Carroll, C. Themistos, M. Komodromos, G. D. Peng, Q. Fang, and I. W. Boyd, “Development of an electrically tunable Bragg grating filter in polymer optical fibre operating at 1.55 μm,” Meas. Sci. Technol.18(10), 3155–3164 (2007).
[CrossRef]

Farrell, P. M.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Geernaert, T.

Georges, T.

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun.101(1-2), 85–91 (1993).
[CrossRef]

Hansen, K. S.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011).
[CrossRef]

Herholdt-Rasmussen, N.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett.24(9), 763–765 (2012).
[CrossRef]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011).
[CrossRef]

Hill, K. O.

Hillman, C. W. J.

Jacobsen, T.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011).
[CrossRef]

Johnson, D. C.

Johnson, I. P.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett.47(4), 271–272 (2011).
[CrossRef]

I. P. Johnson, D. J. Webb, K. Kalli, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Polymer PCF Bragg grating sensor based on poly(methyl methacrylate) and TOPAS cyclic olefin copolymer,” Proc. SPIE8073, 80732V, 80732V-8 (2011).
[CrossRef]

Kalli, K.

I. P. Johnson, D. J. Webb, K. Kalli, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Polymer PCF Bragg grating sensor based on poly(methyl methacrylate) and TOPAS cyclic olefin copolymer,” Proc. SPIE8073, 80732V, 80732V-8 (2011).
[CrossRef]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett.47(4), 271–272 (2011).
[CrossRef]

X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol.21(9), 094005 (2010).
[CrossRef]

K. Kalli, H. L. Dobb, D. J. Webb, K. Carroll, C. Themistos, M. Komodromos, G. D. Peng, Q. Fang, and I. W. Boyd, “Development of an electrically tunable Bragg grating filter in polymer optical fibre operating at 1.55 μm,” Meas. Sci. Technol.18(10), 3155–3164 (2007).
[CrossRef]

K. E. Carroll, Ch. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. J. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express15(14), 8844–8850 (2007).
[CrossRef] [PubMed]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett.30(24), 3296–3298 (2005).
[CrossRef] [PubMed]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Khan, L.

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett.47(4), 271–272 (2011).
[CrossRef]

Kitcher, D. J.

Komodromos, M.

K. Kalli, H. L. Dobb, D. J. Webb, K. Carroll, C. Themistos, M. Komodromos, G. D. Peng, Q. Fang, and I. W. Boyd, “Development of an electrically tunable Bragg grating filter in polymer optical fibre operating at 1.55 μm,” Meas. Sci. Technol.18(10), 3155–3164 (2007).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Kouskousis, B. P.

Large, M. C. J.

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Liu, H. B.

H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Novel growth behaviors of fiber Bragg gratings in polymer optical fiber under UV irradiation with low power,” IEEE Photon. Technol. Lett.16(1), 159–161 (2004).
[CrossRef]

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun.220(4-6), 337–343 (2003).
[CrossRef]

Liu, H. Y.

H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Novel growth behaviors of fiber Bragg gratings in polymer optical fiber under UV irradiation with low power,” IEEE Photon. Technol. Lett.16(1), 159–161 (2004).
[CrossRef]

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun.220(4-6), 337–343 (2003).
[CrossRef]

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett.13(8), 824–826 (2001).
[CrossRef]

Malo, B.

Markos, C.

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850-nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett.23(10), 660–662 (2011).
[CrossRef]

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology - fundamentals and overview,” J. Lightwave Technol.15(8), 1263–1276 (1997).
[CrossRef]

Mills, J. D.

Niay, P.

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun.101(1-2), 85–91 (1993).
[CrossRef]

Nielsen, F. K.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011).
[CrossRef]

Nielsen, K.

I. P. Johnson, D. J. Webb, K. Kalli, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Polymer PCF Bragg grating sensor based on poly(methyl methacrylate) and TOPAS cyclic olefin copolymer,” Proc. SPIE8073, 80732V, 80732V-8 (2011).
[CrossRef]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett.47(4), 271–272 (2011).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Peng, G. D.

Z. F. Zhang, Ch. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” IEEE Photon. Technol. Lett.22(21), 1562–1564 (2010).
[CrossRef]

X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol.21(9), 094005 (2010).
[CrossRef]

K. Kalli, H. L. Dobb, D. J. Webb, K. Carroll, C. Themistos, M. Komodromos, G. D. Peng, Q. Fang, and I. W. Boyd, “Development of an electrically tunable Bragg grating filter in polymer optical fibre operating at 1.55 μm,” Meas. Sci. Technol.18(10), 3155–3164 (2007).
[CrossRef]

H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Novel growth behaviors of fiber Bragg gratings in polymer optical fiber under UV irradiation with low power,” IEEE Photon. Technol. Lett.16(1), 159–161 (2004).
[CrossRef]

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun.220(4-6), 337–343 (2003).
[CrossRef]

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett.13(8), 824–826 (2001).
[CrossRef]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett.11(3), 352–354 (1999).
[CrossRef]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Effects of the zeroth-order diffraction of a phase mask on Bragg gratings,” J. Lightwave Technol.17(11), 2361–2365 (1999).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Rasmussen, H.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett.47(4), 271–272 (2011).
[CrossRef]

Rasmussen, H. K.

I. P. Johnson, D. J. Webb, K. Kalli, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Polymer PCF Bragg grating sensor based on poly(methyl methacrylate) and TOPAS cyclic olefin copolymer,” Proc. SPIE8073, 80732V, 80732V-8 (2011).
[CrossRef]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

Roberts, A.

Rollinson, C. M.

Rose, B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011).
[CrossRef]

Sidiroglou, F.

S. A. Wade, W. G. Brown, H. K. Bal, F. Sidiroglou, G. W. Baxter, and S. F. Collins, “Effect of phase mask alignment on fiber Bragg grating spectra at harmonics of the Bragg wavelength,” J. Opt. Soc. Am. A29(8), 1597–1605 (2012).
[CrossRef] [PubMed]

H. K. Bal, F. Sidiroglou, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fibre Bragg grating transverse strain sensing using reflections at twice the Bragg wavelength,” Meas. Sci. Technol.21(9), 094004 (2010).
[CrossRef]

Sørensen, O. B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011).
[CrossRef]

Spälter, S.

Stecher, M.

A. Stefani, M. Stecher, O. Bang, and G. Town, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photon. Technol. Lett.24(13), 1148–1150 (2012).
[CrossRef]

Stefani, A.

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photon. Technol. Lett.24(5), 401–403 (2012).
[CrossRef]

A. Stefani, M. Stecher, O. Bang, and G. Town, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photon. Technol. Lett.24(13), 1148–1150 (2012).
[CrossRef]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett.24(9), 763–765 (2012).
[CrossRef]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850-nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett.23(10), 660–662 (2011).
[CrossRef]

I. P. Johnson, D. J. Webb, K. Kalli, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Polymer PCF Bragg grating sensor based on poly(methyl methacrylate) and TOPAS cyclic olefin copolymer,” Proc. SPIE8073, 80732V, 80732V-8 (2011).
[CrossRef]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett.47(4), 271–272 (2011).
[CrossRef]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011).
[CrossRef]

Stevenson, A. J.

Strasser, T. A.

Tao, X. M.

Z. F. Zhang, Ch. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” IEEE Photon. Technol. Lett.22(21), 1562–1564 (2010).
[CrossRef]

Themistos, C.

K. Kalli, H. L. Dobb, D. J. Webb, K. Carroll, C. Themistos, M. Komodromos, G. D. Peng, Q. Fang, and I. W. Boyd, “Development of an electrically tunable Bragg grating filter in polymer optical fibre operating at 1.55 μm,” Meas. Sci. Technol.18(10), 3155–3164 (2007).
[CrossRef]

Thienpont, H.

Town, G.

A. Stefani, M. Stecher, O. Bang, and G. Town, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photon. Technol. Lett.24(13), 1148–1150 (2012).
[CrossRef]

van Eijkelenborg, M. A.

Wade, S. A.

C. M. Rollinson, S. A. Wade, B. P. Kouskousis, D. J. Kitcher, G. W. Baxter, and S. F. Collins, “Variations of the growth of harmonic reflections in fiber Bragg gratings fabricated using phase masks,” J. Opt. Soc. Am. A29(7), 1259–1268 (2012).
[CrossRef] [PubMed]

S. A. Wade, W. G. Brown, H. K. Bal, F. Sidiroglou, G. W. Baxter, and S. F. Collins, “Effect of phase mask alignment on fiber Bragg grating spectra at harmonics of the Bragg wavelength,” J. Opt. Soc. Am. A29(8), 1597–1605 (2012).
[CrossRef] [PubMed]

H. K. Bal, F. Sidiroglou, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fibre Bragg grating transverse strain sensing using reflections at twice the Bragg wavelength,” Meas. Sci. Technol.21(9), 094004 (2010).
[CrossRef]

S. P. Yam, Z. Brodzeli, B. P. Kouskousis, C. M. Rollinson, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fabrication of a π -phase-shifted fiber Bragg grating at twice the Bragg wavelength with the standard phase mask technique,” Opt. Lett.34(13), 2021–2023 (2009).
[CrossRef] [PubMed]

B. P. Kouskousis, C. M. Rollinson, D. J. Kitcher, S. F. Collins, G. W. Baxter, S. A. Wade, N. M. Dragomir, and A. Roberts, “Quantitative investigation of the refractive-index modulation within the core of a fiber Bragg grating,” Opt. Express14(22), 10332–10338 (2006).
[CrossRef] [PubMed]

C. M. Rollinson, S. A. Wade, N. M. Dragomir, G. W. Baxter, S. F. Collins, and A. Roberts, “Reflections near 1030 nm from 1540 nm fibre Bragg gratings: evidence of a complex refractive index structure,” Opt. Commun.256(4-6), 310–318 (2005).
[CrossRef]

N. M. Dragomir, C. M. Rollinson, S. A. Wade, A. J. Stevenson, S. F. Collins, G. W. Baxter, P. M. Farrell, and A. Roberts, “Nondestructive imaging of a type I optical fiber Bragg grating,” Opt. Lett.28(10), 789–791 (2003).
[CrossRef] [PubMed]

Wang, G. F.

Z. F. Zhang, Ch. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” IEEE Photon. Technol. Lett.22(21), 1562–1564 (2010).
[CrossRef]

Webb, D. J.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett.47(4), 271–272 (2011).
[CrossRef]

I. P. Johnson, D. J. Webb, K. Kalli, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Polymer PCF Bragg grating sensor based on poly(methyl methacrylate) and TOPAS cyclic olefin copolymer,” Proc. SPIE8073, 80732V, 80732V-8 (2011).
[CrossRef]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol.21(9), 094005 (2010).
[CrossRef]

K. E. Carroll, Ch. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. J. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express15(14), 8844–8850 (2007).
[CrossRef] [PubMed]

K. Kalli, H. L. Dobb, D. J. Webb, K. Carroll, C. Themistos, M. Komodromos, G. D. Peng, Q. Fang, and I. W. Boyd, “Development of an electrically tunable Bragg grating filter in polymer optical fibre operating at 1.55 μm,” Meas. Sci. Technol.18(10), 3155–3164 (2007).
[CrossRef]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett.30(24), 3296–3298 (2005).
[CrossRef] [PubMed]

Westbrook, P. S.

Windeler, R. S.

Wu, B.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Effects of the zeroth-order diffraction of a phase mask on Bragg gratings,” J. Lightwave Technol.17(11), 2361–2365 (1999).
[CrossRef]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett.11(3), 352–354 (1999).
[CrossRef]

Xie, W. X.

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun.101(1-2), 85–91 (1993).
[CrossRef]

Xiong, Z.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett.11(3), 352–354 (1999).
[CrossRef]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Effects of the zeroth-order diffraction of a phase mask on Bragg gratings,” J. Lightwave Technol.17(11), 2361–2365 (1999).
[CrossRef]

Yam, S. P.

Yuan, W.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett.24(9), 763–765 (2012).
[CrossRef]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photon. Technol. Lett.24(5), 401–403 (2012).
[CrossRef]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850-nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett.23(10), 660–662 (2011).
[CrossRef]

I. P. Johnson, D. J. Webb, K. Kalli, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Polymer PCF Bragg grating sensor based on poly(methyl methacrylate) and TOPAS cyclic olefin copolymer,” Proc. SPIE8073, 80732V, 80732V-8 (2011).
[CrossRef]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett.47(4), 271–272 (2011).
[CrossRef]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011).
[CrossRef]

Zhang, C.

X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol.21(9), 094005 (2010).
[CrossRef]

Zhang, Ch.

Z. F. Zhang, Ch. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” IEEE Photon. Technol. Lett.22(21), 1562–1564 (2010).
[CrossRef]

K. E. Carroll, Ch. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. J. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express15(14), 8844–8850 (2007).
[CrossRef] [PubMed]

Zhang, Z. F.

Z. F. Zhang, Ch. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” IEEE Photon. Technol. Lett.22(21), 1562–1564 (2010).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett.47(4), 271–272 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (8)

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett.11(3), 352–354 (1999).
[CrossRef]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850-nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett.23(10), 660–662 (2011).
[CrossRef]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photon. Technol. Lett.24(5), 401–403 (2012).
[CrossRef]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett.24(9), 763–765 (2012).
[CrossRef]

A. Stefani, M. Stecher, O. Bang, and G. Town, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photon. Technol. Lett.24(13), 1148–1150 (2012).
[CrossRef]

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett.13(8), 824–826 (2001).
[CrossRef]

H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Novel growth behaviors of fiber Bragg gratings in polymer optical fiber under UV irradiation with low power,” IEEE Photon. Technol. Lett.16(1), 159–161 (2004).
[CrossRef]

Z. F. Zhang, Ch. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” IEEE Photon. Technol. Lett.22(21), 1562–1564 (2010).
[CrossRef]

J. Lightwave Technol. (3)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology - fundamentals and overview,” J. Lightwave Technol.15(8), 1263–1276 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Effects of the zeroth-order diffraction of a phase mask on Bragg gratings,” J. Lightwave Technol.17(11), 2361–2365 (1999).
[CrossRef]

J. Opt. Soc. Am. A (2)

Meas. Sci. Technol. (3)

X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol.21(9), 094005 (2010).
[CrossRef]

K. Kalli, H. L. Dobb, D. J. Webb, K. Carroll, C. Themistos, M. Komodromos, G. D. Peng, Q. Fang, and I. W. Boyd, “Development of an electrically tunable Bragg grating filter in polymer optical fibre operating at 1.55 μm,” Meas. Sci. Technol.18(10), 3155–3164 (2007).
[CrossRef]

H. K. Bal, F. Sidiroglou, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fibre Bragg grating transverse strain sensing using reflections at twice the Bragg wavelength,” Meas. Sci. Technol.21(9), 094004 (2010).
[CrossRef]

Opt. Commun. (4)

C. M. Rollinson, S. A. Wade, N. M. Dragomir, G. W. Baxter, S. F. Collins, and A. Roberts, “Reflections near 1030 nm from 1540 nm fibre Bragg gratings: evidence of a complex refractive index structure,” Opt. Commun.256(4-6), 310–318 (2005).
[CrossRef]

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun.101(1-2), 85–91 (1993).
[CrossRef]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011).
[CrossRef]

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun.220(4-6), 337–343 (2003).
[CrossRef]

Opt. Express (4)

Opt. Lett. (5)

Proc. SPIE (1)

I. P. Johnson, D. J. Webb, K. Kalli, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Polymer PCF Bragg grating sensor based on poly(methyl methacrylate) and TOPAS cyclic olefin copolymer,” Proc. SPIE8073, 80732V, 80732V-8 (2011).
[CrossRef]

Other (2)

N. G. Harbach, “Fiber Bragg gratings in polymer optical fibers,” Thesis, EPFL, Lausanne (2008).

D. Webb and K. Kalli, “Polymer fiber Bragg gratings,” in Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation, A. Cusano, A. Cutolo, and J. Albert, Eds. Sharjah (Bentham Science Publishers 2011), pp. 292−312.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup used for grating inscription in the mPOF shown in the inset.

Fig. 2
Fig. 2

Diffraction orders behind the phase mask for He-Cd laser writing beam (325 nm) used for Bragg grating inscription.

Fig. 3
Fig. 3

Reflection spectrum recorded during the fabrication process (in 28th minute of exposure) of Bragg grating in microstructured polymer fiber with three reflection peaks.

Fig. 4
Fig. 4

Evolution of reflection spectra at 1555 nm (a), 1040 nm (b) and 782 nm (c) during 41 min of inscription process for one of the fabricated gratings.

Fig. 5
Fig. 5

Evolution of Bragg wavelengths (a) and peaks’ height (b) registered during and after the writing process.

Fig. 6
Fig. 6

Evolution of the primary reflection spectra at λB = 1309 nm during 41 min of the inscription process (a) and the secondary Bragg peak at λB/2 = 659 nm registered after the inscription process was finished (b).

Fig. 7
Fig. 7

Evolution of the Bragg wavelength and the peak’s height registered for the grating at λB = 1309 nm during and after the writing process was finished.

Fig. 8
Fig. 8

Shift of Bragg wavelength induced by increasing and decreasing temperature in successive seven cycles registered for λB peak (a), 2λB/3 peak (b), λB/2 peak (c).

Fig. 9
Fig. 9

Response of all the Bragg peaks to step-like temperature change (a) with corresponding variation of the peaks’ heights (b).

Fig. 10
Fig. 10

Calculated intensity distribution in the space behind the phase mask filled with PMMA.

Fig. 11
Fig. 11

Refractive index change in the core of PMMA slab waveguide with mode field diameterτ.

Fig. 12
Fig. 12

Refractive index change in the core of the slab waveguide weighted with Gaussian mode shape (a), corresponding change in the mode effective index (b), absolute value of Fourier transform showing spatial frequencies present in the Bragg grating (c).

Tables (2)

Tables Icon

Table 1 Diffraction efficiencies measured for the phase masks with period of 1052 nm and 855 nm used for Bragg gratings fabrication.

Tables Icon

Table 2 Spatial frequencies expressed in 1/Λ corresponding to interference of m and n diffraction orders.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E( x,z )= m C m exp( imGz )exp( i k m x ) ,
X T ( m,n )= 2π | k m k n | ,
Z( m,n )= 2π | mGnG | = Λ | mn | ,

Metrics