Abstract

We compare several schemes for broadband optical frequency comb (OFC) generation based on several nonlinear effects in highly nonlinear fiber (HNLF). Cascaded four wave mixing (CFWM) and self-phase modulation (SPM) processes in HNLF are proved to be effective ways for spectrum broadening. We investigate some parameters affecting the performance of the output OFC in detail. When only CFWM occurs in the HNLF, broadband OFC can be generated with poor power flatness. When only SPM occurs in the HNLF, we obtain a 10 GHz OFC of 103 comb lines within 5-dB power deviation. When both CFWM and SPM simultaneously occur in the HNLF, we obtain a 10 GHz OFC of 143 comb lines within 4.5-dB power deviation. All the OFC generation schemes have the advantages of tunability of central wavelength and repetition frequency.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002).
    [CrossRef] [PubMed]
  2. Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007).
    [CrossRef]
  3. Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron.43(12), 1163–1174 (2007).
    [CrossRef]
  4. J. Yao, “Microwave photonics: Arbitrary waveform generation,” Nat. Photonics4(2), 79–80 (2010).
    [CrossRef]
  5. 5. Y. Takita, F. Futami, M. Doi, and S. Watanabe, “Highly stable ultra-short pulse generation by filtering out flat optical frequency components,” CLEO, CTuN1 (2004).
  6. T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” J. Lightwave Technol.24(6), 2311–2317 (2006).
    [CrossRef]
  7. S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett.20(1), 36–38 (2008).
    [CrossRef]
  8. T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating,” Electron. Lett.43(19), 1040–1042 (2007).
    [CrossRef]
  9. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett.35(19), 3234–3236 (2010).
    [CrossRef] [PubMed]
  10. Y. Dou, H. Zhang, and M. Yao, “Improvement of flatness of optical frequency comb based on nonlinear effect of intensity modulator,” Opt. Lett.36(14), 2749–2751 (2011).
    [CrossRef] [PubMed]
  11. J. Zhang, N. Chi, J. Yu, Y. Shao, J. Zhu, B. Huang, and L. Tao, “Generation of coherent and frequency-lock multi-carriers using cascaded phase modulators and recirculating frequency shifter for Tb/s optical communication,” Opt. Express19(14), 12891–12902 (2011).
    [CrossRef] [PubMed]
  12. J. Zhang, J. Yu, Z. Dong, Y. Shao, and N. Chi, “Generation of full C-band coherent and frequency-lock multi-carriers by using recirculating frequency shifter loops based on phase modulator with external injection,” Opt. Express19(27), 26370–26381 (2011).
    [CrossRef] [PubMed]
  13. L. Xi, J. Li, X. Zhang, F. Tian, and W. Zhang, “Factors affecting the performance of a multi-tone carrier source based re-circulating frequency shifter,” Chin. Phys. B20(8), 084202 (2011).
    [CrossRef]
  14. F. Tian, X. Zhang, J. Li, and L. Xi, “Generation of 50 stable frequency-locked optical carriers for Tb/s multicarrier optical transmission using a recirculating frequency shifter,” J. Lightwave Technol.29(8), 1085–1091 (2011).
    [CrossRef]
  15. A. Cerqueira Sodre, J. M. Chavez Boggio, A. A. Rieznik, H. E. Hernandez-Figueroa, H. L. Fragnito, and J. C. Knight, “Highly efficient generation of broadband cascaded four-wave mixing products,” Opt. Express16(4), 2816–2828 (2008).
    [CrossRef] [PubMed]
  16. F. C. Cruz, “Optical frequency combs generated by four-wave mixing in optical fibers for astrophysical spectrometer calibration and metrology,” Opt. Express16(17), 13267–13275 (2008).
    [CrossRef] [PubMed]
  17. J. Li, X. Xiao, L. Kong, and C. Yang, “Enhancement of cascaded four-wave mixing via optical feedback,” Opt. Express20(20), 21940–21945 (2012).
    [CrossRef] [PubMed]
  18. E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion,” Opt. Express20(3), 3331–3344 (2012).
    [CrossRef] [PubMed]
  19. R. Slavík, J. Kakande, P. Petropoulos, and D. J. Richardson, “Processing of optical combs with fiber optic parametric amplifiers,” Opt. Express20(9), 10059–10070 (2012).
    [CrossRef] [PubMed]
  20. K. Inoue, “Four-wave mixing in an optical fiber in zero-dispersion wavelength region,” J. Lightwave Technol.10(11), 1553–1561 (1992).
    [CrossRef]
  21. G. P. Agrawal, Nonlinear Fiber Optics, Fourth Edition (2006).
  22. Y. Ji, Y. Li, W. Li, X. Hong, H. Guo, Y. Zuo, K. Xu, J. Wu, and J. Lin, “Generation of 40 GHz phase stable optical short pulses using intensity modulator and two cascaded phase modulators,” Front. Optoelectron. China4(3), 292–297 (2011).
    [CrossRef]
  23. Y. Yang, C. Lou, H. Zhou, J. Wang, and Y. Gao, “Simple pulse compression scheme based on filtering self-phase modulation-broadened spectrum and its application in an optical time-division multiplexing system,” Appl. Opt.45(28), 7524–7528 (2006).
    [CrossRef] [PubMed]

2012 (3)

2011 (6)

2010 (2)

2008 (3)

2007 (3)

T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating,” Electron. Lett.43(19), 1040–1042 (2007).
[CrossRef]

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007).
[CrossRef]

Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron.43(12), 1163–1174 (2007).
[CrossRef]

2006 (2)

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002).
[CrossRef] [PubMed]

1992 (1)

K. Inoue, “Four-wave mixing in an optical fiber in zero-dispersion wavelength region,” J. Lightwave Technol.10(11), 1553–1561 (1992).
[CrossRef]

Abe, M.

Alic, N.

Cerqueira Sodre, A.

Chavez Boggio, J. M.

Chi, N.

Cruz, F. C.

Delfyett, P. J.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett.20(1), 36–38 (2008).
[CrossRef]

Dong, Z.

Dou, Y.

Fragnito, H. L.

Gao, Y.

Gee, S.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett.20(1), 36–38 (2008).
[CrossRef]

Guo, H.

Y. Ji, Y. Li, W. Li, X. Hong, H. Guo, Y. Zuo, K. Xu, J. Wu, and J. Lin, “Generation of 40 GHz phase stable optical short pulses using intensity modulator and two cascaded phase modulators,” Front. Optoelectron. China4(3), 292–297 (2011).
[CrossRef]

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Hernandez-Figueroa, H. E.

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Hong, X.

Y. Ji, Y. Li, W. Li, X. Hong, H. Guo, Y. Zuo, K. Xu, J. Wu, and J. Lin, “Generation of 40 GHz phase stable optical short pulses using intensity modulator and two cascaded phase modulators,” Front. Optoelectron. China4(3), 292–297 (2011).
[CrossRef]

Huang, B.

Huang, C.

Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron.43(12), 1163–1174 (2007).
[CrossRef]

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007).
[CrossRef]

Imai, K.

Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron.43(12), 1163–1174 (2007).
[CrossRef]

Inoue, K.

K. Inoue, “Four-wave mixing in an optical fiber in zero-dispersion wavelength region,” J. Lightwave Technol.10(11), 1553–1561 (1992).
[CrossRef]

Ji, Y.

Y. Ji, Y. Li, W. Li, X. Hong, H. Guo, Y. Zuo, K. Xu, J. Wu, and J. Lin, “Generation of 40 GHz phase stable optical short pulses using intensity modulator and two cascaded phase modulators,” Front. Optoelectron. China4(3), 292–297 (2011).
[CrossRef]

Jiang, Z.

Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron.43(12), 1163–1174 (2007).
[CrossRef]

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007).
[CrossRef]

Kakande, J.

Knight, J. C.

Komukai, T.

T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating,” Electron. Lett.43(19), 1040–1042 (2007).
[CrossRef]

Kong, L.

Kourogi, M.

Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron.43(12), 1163–1174 (2007).
[CrossRef]

Kuo, B. P. P.

Leaird, D. E.

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett.35(19), 3234–3236 (2010).
[CrossRef] [PubMed]

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007).
[CrossRef]

Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron.43(12), 1163–1174 (2007).
[CrossRef]

Li, J.

Li, W.

Y. Ji, Y. Li, W. Li, X. Hong, H. Guo, Y. Zuo, K. Xu, J. Wu, and J. Lin, “Generation of 40 GHz phase stable optical short pulses using intensity modulator and two cascaded phase modulators,” Front. Optoelectron. China4(3), 292–297 (2011).
[CrossRef]

Li, Y.

Y. Ji, Y. Li, W. Li, X. Hong, H. Guo, Y. Zuo, K. Xu, J. Wu, and J. Lin, “Generation of 40 GHz phase stable optical short pulses using intensity modulator and two cascaded phase modulators,” Front. Optoelectron. China4(3), 292–297 (2011).
[CrossRef]

Lin, J.

Y. Ji, Y. Li, W. Li, X. Hong, H. Guo, Y. Zuo, K. Xu, J. Wu, and J. Lin, “Generation of 40 GHz phase stable optical short pulses using intensity modulator and two cascaded phase modulators,” Front. Optoelectron. China4(3), 292–297 (2011).
[CrossRef]

Long, C. M.

Lou, C.

Masuda, H.

Miao, H.

Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron.43(12), 1163–1174 (2007).
[CrossRef]

Morioka, T.

Myslivets, E.

Ohara, T.

Ozdur, I.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett.20(1), 36–38 (2008).
[CrossRef]

Ozharar, S.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett.20(1), 36–38 (2008).
[CrossRef]

Petropoulos, P.

Quinlan, F.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett.20(1), 36–38 (2008).
[CrossRef]

Radic, S.

Richardson, D. J.

Rieznik, A. A.

Shao, Y.

Slavík, R.

Supradeepa, V. R.

Suzuki, K.

T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating,” Electron. Lett.43(19), 1040–1042 (2007).
[CrossRef]

Takada, A.

T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating,” Electron. Lett.43(19), 1040–1042 (2007).
[CrossRef]

Takahashi, H.

Takara, H.

Tao, L.

Tian, F.

F. Tian, X. Zhang, J. Li, and L. Xi, “Generation of 50 stable frequency-locked optical carriers for Tb/s multicarrier optical transmission using a recirculating frequency shifter,” J. Lightwave Technol.29(8), 1085–1091 (2011).
[CrossRef]

L. Xi, J. Li, X. Zhang, F. Tian, and W. Zhang, “Factors affecting the performance of a multi-tone carrier source based re-circulating frequency shifter,” Chin. Phys. B20(8), 084202 (2011).
[CrossRef]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Wang, J.

Weiner, A. M.

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett.35(19), 3234–3236 (2010).
[CrossRef] [PubMed]

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007).
[CrossRef]

Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron.43(12), 1163–1174 (2007).
[CrossRef]

Wu, J.

Y. Ji, Y. Li, W. Li, X. Hong, H. Guo, Y. Zuo, K. Xu, J. Wu, and J. Lin, “Generation of 40 GHz phase stable optical short pulses using intensity modulator and two cascaded phase modulators,” Front. Optoelectron. China4(3), 292–297 (2011).
[CrossRef]

Wu, R.

Xi, L.

L. Xi, J. Li, X. Zhang, F. Tian, and W. Zhang, “Factors affecting the performance of a multi-tone carrier source based re-circulating frequency shifter,” Chin. Phys. B20(8), 084202 (2011).
[CrossRef]

F. Tian, X. Zhang, J. Li, and L. Xi, “Generation of 50 stable frequency-locked optical carriers for Tb/s multicarrier optical transmission using a recirculating frequency shifter,” J. Lightwave Technol.29(8), 1085–1091 (2011).
[CrossRef]

Xiao, X.

Xu, K.

Y. Ji, Y. Li, W. Li, X. Hong, H. Guo, Y. Zuo, K. Xu, J. Wu, and J. Lin, “Generation of 40 GHz phase stable optical short pulses using intensity modulator and two cascaded phase modulators,” Front. Optoelectron. China4(3), 292–297 (2011).
[CrossRef]

Yamamoto, T.

T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating,” Electron. Lett.43(19), 1040–1042 (2007).
[CrossRef]

T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” J. Lightwave Technol.24(6), 2311–2317 (2006).
[CrossRef]

Yang, C.

Yang, Y.

Yao, J.

J. Yao, “Microwave photonics: Arbitrary waveform generation,” Nat. Photonics4(2), 79–80 (2010).
[CrossRef]

Yao, M.

Yu, J.

Zhang, H.

Zhang, J.

Zhang, W.

L. Xi, J. Li, X. Zhang, F. Tian, and W. Zhang, “Factors affecting the performance of a multi-tone carrier source based re-circulating frequency shifter,” Chin. Phys. B20(8), 084202 (2011).
[CrossRef]

Zhang, X.

L. Xi, J. Li, X. Zhang, F. Tian, and W. Zhang, “Factors affecting the performance of a multi-tone carrier source based re-circulating frequency shifter,” Chin. Phys. B20(8), 084202 (2011).
[CrossRef]

F. Tian, X. Zhang, J. Li, and L. Xi, “Generation of 50 stable frequency-locked optical carriers for Tb/s multicarrier optical transmission using a recirculating frequency shifter,” J. Lightwave Technol.29(8), 1085–1091 (2011).
[CrossRef]

Zhou, H.

Zhu, J.

Zuo, Y.

Y. Ji, Y. Li, W. Li, X. Hong, H. Guo, Y. Zuo, K. Xu, J. Wu, and J. Lin, “Generation of 40 GHz phase stable optical short pulses using intensity modulator and two cascaded phase modulators,” Front. Optoelectron. China4(3), 292–297 (2011).
[CrossRef]

Appl. Opt. (1)

Chin. Phys. B (1)

L. Xi, J. Li, X. Zhang, F. Tian, and W. Zhang, “Factors affecting the performance of a multi-tone carrier source based re-circulating frequency shifter,” Chin. Phys. B20(8), 084202 (2011).
[CrossRef]

Electron. Lett. (1)

T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating,” Electron. Lett.43(19), 1040–1042 (2007).
[CrossRef]

Front. Optoelectron. China (1)

Y. Ji, Y. Li, W. Li, X. Hong, H. Guo, Y. Zuo, K. Xu, J. Wu, and J. Lin, “Generation of 40 GHz phase stable optical short pulses using intensity modulator and two cascaded phase modulators,” Front. Optoelectron. China4(3), 292–297 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron.43(12), 1163–1174 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett.20(1), 36–38 (2008).
[CrossRef]

J. Lightwave Technol. (3)

Nat. Photonics (2)

J. Yao, “Microwave photonics: Arbitrary waveform generation,” Nat. Photonics4(2), 79–80 (2010).
[CrossRef]

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007).
[CrossRef]

Nature (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Opt. Express (7)

J. Zhang, N. Chi, J. Yu, Y. Shao, J. Zhu, B. Huang, and L. Tao, “Generation of coherent and frequency-lock multi-carriers using cascaded phase modulators and recirculating frequency shifter for Tb/s optical communication,” Opt. Express19(14), 12891–12902 (2011).
[CrossRef] [PubMed]

A. Cerqueira Sodre, J. M. Chavez Boggio, A. A. Rieznik, H. E. Hernandez-Figueroa, H. L. Fragnito, and J. C. Knight, “Highly efficient generation of broadband cascaded four-wave mixing products,” Opt. Express16(4), 2816–2828 (2008).
[CrossRef] [PubMed]

F. C. Cruz, “Optical frequency combs generated by four-wave mixing in optical fibers for astrophysical spectrometer calibration and metrology,” Opt. Express16(17), 13267–13275 (2008).
[CrossRef] [PubMed]

J. Zhang, J. Yu, Z. Dong, Y. Shao, and N. Chi, “Generation of full C-band coherent and frequency-lock multi-carriers by using recirculating frequency shifter loops based on phase modulator with external injection,” Opt. Express19(27), 26370–26381 (2011).
[CrossRef] [PubMed]

E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion,” Opt. Express20(3), 3331–3344 (2012).
[CrossRef] [PubMed]

R. Slavík, J. Kakande, P. Petropoulos, and D. J. Richardson, “Processing of optical combs with fiber optic parametric amplifiers,” Opt. Express20(9), 10059–10070 (2012).
[CrossRef] [PubMed]

J. Li, X. Xiao, L. Kong, and C. Yang, “Enhancement of cascaded four-wave mixing via optical feedback,” Opt. Express20(20), 21940–21945 (2012).
[CrossRef] [PubMed]

Opt. Lett. (2)

Other (2)

5. Y. Takita, F. Futami, M. Doi, and S. Watanabe, “Highly stable ultra-short pulse generation by filtering out flat optical frequency components,” CLEO, CTuN1 (2004).

G. P. Agrawal, Nonlinear Fiber Optics, Fourth Edition (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Experimental setup of a CFWM based OFCG.

Fig. 2
Fig. 2

(a) Output spectrum of the TLS, and (b) output spectrum of the PM.

Fig. 3
Fig. 3

Available spectral lines versus the output pump power of HP-EDFA.

Fig. 4
Fig. 4

(a) Available spectral lines versus the central wavelength of TLS (red square: output pump power is set at 450 mW, blue dot: output pump power is set at 800 mW). (b) Available spectral lines versus the repetition frequency of RF signal applied on the PM.

Fig. 5
Fig. 5

Experimental setup of the modified CFWM based OFCG.

Fig. 6
Fig. 6

FWHM of the short pulse obtained after SMF versus the length of SMF.

Fig. 7
Fig. 7

Available spectral lines versus the output pump power of the HP-EDFA when fixing the central wavelength of TLS as 1560.2 nm and the repetition frequency of RF signal applied on PM as 20 GHz.

Fig. 8
Fig. 8

Available spectral lines versus the central wavelength of the TLS with fixing the repetition frequency of RF signal applied on PM as 20 GHz. (red square: when output pump power of HP-EDFA is set as 450 mW, blue dot: when output pump power of HP-EDFA is set as 750 mW).

Fig. 9
Fig. 9

Output spectra of Scheme 1 and Scheme 2.

Fig. 10
Fig. 10

Experimental setup of the further improved OFCG.

Fig. 11
Fig. 11

(a) and (b) are the output waveform and spectrum of the MZM, respectively, (c) and (d) are the output waveform and spectrum after SMF1, respectively.

Fig. 12
Fig. 12

(a) Output spectrum of Scheme 3 when the output power of HP-EDFA is ~1.09 W, (b) flat OFC after a wavelength selective element.

Fig. 13
Fig. 13

(a) Output spectrum when the output pump power of HP-EDFA is 271.5 mW, (b) generated ultra-short pulse after SMF2.

Fig. 14
Fig. 14

Experimental setup of the SPM based OFCG.

Fig. 15
Fig. 15

(a) The wide spectrum obtained by the HNLF (solid line) and the filter shape of the OBPF (dash line) and (b) the flat OFC generated after the OBPF, when the input optical power of HNLF is ~970 mW. (c) The wide spectrum obtained by the HNLF (solid line) and the filter shape of the OBPF (dash line) and (d) the flat OFC generated after the OBPF, when the input optical power of HNLF is ~1.5W.

Fig. 16
Fig. 16

Ultra-short pulse generated after SMF2 in Scheme 4.

Fig. 17
Fig. 17

Experimental setup of modified hybrid OFCG.

Fig. 18
Fig. 18

(a) The wide spectrum obtained after HNLF2 (solid line) and the filter shape of the OBPF (dash line) and (b) the flat OFC generated after the OBPF, when the input optical power of HNLF1 is 970.8 mW.

Fig. 19
Fig. 19

Ultra-short pulse generated after SMF2 in Scheme 5.

Tables (1)

Tables Icon

Table 1 Comparison analysis of several OFCG schemes

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

κ=Δκ+Δ κ NL =0

Metrics