Abstract

We show that the third order optical nonlinearity of 15-atom gold clusters is significantly enhanced when in contact with indium tin oxide (ITO) conducting film. Open and close aperture z-scan experiments together with non-degenerate pump-probe differential transmission experiments were done using 80 fs laser pulses centered at 395 nm and 790 nm on gold clusters encased inside cyclodextrin cavities. We show that two photon absorption coefficient is enhanced by an order of magnitude as compared to that when the clusters are on pristine glass plate. The enhancement for the nonlinear optical refraction coefficient is ~3 times. The photo-induced excited state absorption using pump-probe experiments at pump wavelength of 395 nm and probe at 790 nm also show an enhancement by an order of magnitude. These results attributed to the excited state energy transfer in the coupled gold cluster-ITO system are different from the enhancement seen so far in charge donor-acceptor complexes and nanoparticle-conjugate polymer composites.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev.104(1), 293–346 (2004).
    [CrossRef] [PubMed]
  2. Y. Yang, M. Nogami, J. Shi, H. Chen, G. Ma, and S. Tang, “Enhancement of third-order optical nonlinearities in 3-dimensional films of dielectric shell capped Au composite nanoparticles,” J. Phys. Chem. B109(11), 4865–4871 (2005).
    [CrossRef] [PubMed]
  3. D. Chemla, J. Heritage, P. Liao, and E. Isaacs, “Enhanced four-wave mixing from silver particles,” Phys. Rev. B27(8), 4553–4558 (1983).
    [CrossRef]
  4. D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett.10(10), 511–513 (1985).
    [CrossRef] [PubMed]
  5. M. J. Bloemer, J. W. Haus, and P. R. Ashley, “Degenerate four-wave mixing in colloidal gold as a function of particle size,” J. Opt. Soc. Am. B7(5), 790–795 (1990).
    [CrossRef]
  6. R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver and gold-silver alloy nanoclusters,” Phys. Rev. B62(19), 13160–13166 (2000).
    [CrossRef]
  7. T. G. Schaaff, G. Knight, M. N. Shafigullin, R. F. Borkman, and R. L. Whetten, “Isolation and Selected Properties of a 10.4 kDa Gold:Glutathione Cluster Compound,” J. Phys. Chem. B102(52), 10643–10646 (1998).
    [CrossRef]
  8. T. G. Schaaff and R. L. Whetten, “Giant gold−glutathione cluster compounds: intense optical activity in metal-based transitions,” J. Phys. Chem. B104(12), 2630–2641 (2000).
    [CrossRef]
  9. S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, “Visible to Infrared Luminescence from a 28-Atom Gold Cluster,” J. Phys. Chem. B106(13), 3410–3415 (2002).
    [CrossRef]
  10. E. S. Shibu and T. Pradeep, “Quantum clusters in cavities: Trapped Au15 in cyclodextrins,” Chem. Mater.23(4), 989–999 (2011).
    [CrossRef]
  11. R. Jin, “Quantum sized, thiolate-protected gold nanoclusters,” Nanoscale2(3), 343–362 (2010).
    [CrossRef] [PubMed]
  12. B. D. Yadav and V. Kumar, “Gd@Au15: a magic magnetic gold cluster for cancer therapy and bioimaging,” Appl. Phys. Lett.97(13), 133701 (2010).
    [CrossRef]
  13. J. Thomas, M. Anija, J. Cyriac, T. Pradeep, and R. Philip, “Observation of a fifth order optical nonlinearity in 29 kDa Au@alkanethiol clusters excited in the visible,” Chem. Phys. Lett.403(4–6), 308–313 (2005).
    [CrossRef]
  14. S. Link, M. A. El-Sayed, T. Gregory Schaaff, and R. L. Whetten, “Transition from nanoparticle to molecular behavior: a femtosecond transient absorption study of a size-selected 28 atom gold cluster,” Chem. Phys. Lett.356(3–4), 240–246 (2002).
    [CrossRef]
  15. R. Philip, P. Chantharasupawong, H. Qian, R. Jin, and J. Thomas, “Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals,” Nano Lett.12(9), 4661–4667 (2012).
    [CrossRef] [PubMed]
  16. B. Dupuis, C. Michaut, I. Jouanin, J. Delaire, P. Robin, P. Feneyrou, and V. Dentan, “Photoinduced intramolecular charge-transfer systems based on porphyrin-viologen dyads for optical limiting,” Chem. Phys. Lett.300(1–2), 169–176 (1999).
    [CrossRef]
  17. M. P. Joshi, J. Swiatkiewicz, F. M. Xu, P. N. Prasad, B. A. Reinhardt, and R. Kannan, “Energy transfer coupling of two-photon absorption and reverse saturable absorption for enhanced optical power limiting,” Opt. Lett.23(22), 1742–1744 (1998).
    [CrossRef] [PubMed]
  18. C. H. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, and A. J. Heeger, “Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.100(11), 6297–6301 (2003).
    [CrossRef] [PubMed]
  19. V. Mamidala, L. Polavarapu, J. Balapanuru, K. P. Loh, Q.-H. Xu, and W. Ji, “Enhanced nonlinear optical responses in donor-acceptor ionic complexes via photo induced energy transfer,” Opt. Express18(25), 25928–25935 (2010).
    [CrossRef]
  20. A. Vargas, G. Santarossa, M. Iannuzzi, and A. Baiker, “Fluxionality of gold nanoparticles investigated by Born-Oppenheimer molecular dynamics,” Phys. Rev. B80(19), 195421 (2009).
    [CrossRef]
  21. M. S. -Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
  22. N. Kamaraju, S. Kumar, A. K. Sood, S. Guha, S. Krishnamurthy, and C. N. R. Rao, “Large nonlinear absorption and refraction coefficients of carbon nanotubes estimated from femtosecond z-scan measurements,” Appl. Phys. Lett.91(25), 251103 (2007).
    [CrossRef]
  23. H. I. Elim, W. Ji, and F. Zhu, “Carrier concentration dependence of optical Kerr nonlinearity in indium tin oxide films,” Appl. Phys. B82(3), 439–442 (2006).
    [CrossRef]
  24. A. C. Templeton, W. P. Wuelfing, and R. W. Murray, “Monolayer-protected cluster molecules,” Acc. Chem. Res.33(1), 27–36 (2000).
    [CrossRef] [PubMed]
  25. J. Lv, L. Jiang, C. Li, X. Liu, M. Yuan, J. Xu, W. Zhou, Y. Song, H. Liu, Y. Li, and D. Zhu, “Large third-order optical nonlinear effects of gold nanoparticles with unusual fluorescence enhancement,” Langmuir24(15), 8297–8302 (2008).
    [CrossRef] [PubMed]
  26. S. Franzen, C. Rhodes, M. Cerruti, R. W. Gerber, M. Losego, J.-P. Maria, and D. E. Aspnes, “Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films,” Opt. Lett.34(18), 2867–2869 (2009).
    [CrossRef] [PubMed]
  27. C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys.103(9), 093108 (2008).
    [CrossRef]
  28. F. Matino, L. Persano, V. Arima, D. Pisignano, R. I. R. Blyth, R. Cingolani, and R. Rinaldi, “Electronic structure of indium-tin-oxide films fabricated by reactive electron-beam deposition,” Phys. Rev. B72(8), 085437–085445 (2005).
    [CrossRef]
  29. R. Pal, L.-M. Wang, W. Huang, L.-S. Wang, and X. C. Zeng, “Structure evolution of gold cluster anions between the planar and cage structures by isoelectronic substitution: Aun- (n = 13-15) and MAun- (n = 12-14; M = Ag, Cu),” J. Chem. Phys.134(5), 054306 (2011).
    [CrossRef] [PubMed]
  30. R. S. Swathi and K. L. Sebastian, “Long range resonance energy transfer from a dye molecule to graphene has (distance)-4 dependence,” J. Chem. Phys.130(8), 086101–086103 (2009).
    [CrossRef] [PubMed]
  31. M. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz, and R. Jin, “Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties,” J. Am. Chem. Soc.130(18), 5883–5885 (2008).
    [CrossRef] [PubMed]
  32. M. Brunel, B. Campagne, M. Canva, A. Brun, F. Chaput, and J.-P. Boilot, “Ultrafast induced excited state absorption in organically doped xerogels,” Chem. Phys.246(1–3), 477–481 (1999).
    [CrossRef]
  33. S. Kumar, N. Kamaraju, K. S. Vasu, A. Nag, A. K. Sood, and C. N. R. Rao, “Graphene analogue BCN: Femtosecond nonlinear optical susceptibility and hot carrier dynamics,” Chem. Phys. Lett.499(1–3), 152–157 (2010).
    [CrossRef]
  34. R. F. Haglund, L. Yang, R. H. Magruder, J. E. Wittig, K. Becker, and R. A. Zuhr “Picosecond nonlinear optical response of a Cu:silica nanocluster composite,” Opt. Lett.18(5), 373–375 (1993).
    [CrossRef] [PubMed]
  35. R. Nakamura and Y. Kanematsu, “A simple and effective method for femtosecond spectral snapshots,” J. Lumin.94–95(2–4), 559–563 (2001).
    [CrossRef]

2012 (1)

R. Philip, P. Chantharasupawong, H. Qian, R. Jin, and J. Thomas, “Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals,” Nano Lett.12(9), 4661–4667 (2012).
[CrossRef] [PubMed]

2011 (2)

E. S. Shibu and T. Pradeep, “Quantum clusters in cavities: Trapped Au15 in cyclodextrins,” Chem. Mater.23(4), 989–999 (2011).
[CrossRef]

R. Pal, L.-M. Wang, W. Huang, L.-S. Wang, and X. C. Zeng, “Structure evolution of gold cluster anions between the planar and cage structures by isoelectronic substitution: Aun- (n = 13-15) and MAun- (n = 12-14; M = Ag, Cu),” J. Chem. Phys.134(5), 054306 (2011).
[CrossRef] [PubMed]

2010 (4)

S. Kumar, N. Kamaraju, K. S. Vasu, A. Nag, A. K. Sood, and C. N. R. Rao, “Graphene analogue BCN: Femtosecond nonlinear optical susceptibility and hot carrier dynamics,” Chem. Phys. Lett.499(1–3), 152–157 (2010).
[CrossRef]

V. Mamidala, L. Polavarapu, J. Balapanuru, K. P. Loh, Q.-H. Xu, and W. Ji, “Enhanced nonlinear optical responses in donor-acceptor ionic complexes via photo induced energy transfer,” Opt. Express18(25), 25928–25935 (2010).
[CrossRef]

R. Jin, “Quantum sized, thiolate-protected gold nanoclusters,” Nanoscale2(3), 343–362 (2010).
[CrossRef] [PubMed]

B. D. Yadav and V. Kumar, “Gd@Au15: a magic magnetic gold cluster for cancer therapy and bioimaging,” Appl. Phys. Lett.97(13), 133701 (2010).
[CrossRef]

2009 (3)

A. Vargas, G. Santarossa, M. Iannuzzi, and A. Baiker, “Fluxionality of gold nanoparticles investigated by Born-Oppenheimer molecular dynamics,” Phys. Rev. B80(19), 195421 (2009).
[CrossRef]

S. Franzen, C. Rhodes, M. Cerruti, R. W. Gerber, M. Losego, J.-P. Maria, and D. E. Aspnes, “Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films,” Opt. Lett.34(18), 2867–2869 (2009).
[CrossRef] [PubMed]

R. S. Swathi and K. L. Sebastian, “Long range resonance energy transfer from a dye molecule to graphene has (distance)-4 dependence,” J. Chem. Phys.130(8), 086101–086103 (2009).
[CrossRef] [PubMed]

2008 (3)

M. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz, and R. Jin, “Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties,” J. Am. Chem. Soc.130(18), 5883–5885 (2008).
[CrossRef] [PubMed]

J. Lv, L. Jiang, C. Li, X. Liu, M. Yuan, J. Xu, W. Zhou, Y. Song, H. Liu, Y. Li, and D. Zhu, “Large third-order optical nonlinear effects of gold nanoparticles with unusual fluorescence enhancement,” Langmuir24(15), 8297–8302 (2008).
[CrossRef] [PubMed]

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys.103(9), 093108 (2008).
[CrossRef]

2007 (1)

N. Kamaraju, S. Kumar, A. K. Sood, S. Guha, S. Krishnamurthy, and C. N. R. Rao, “Large nonlinear absorption and refraction coefficients of carbon nanotubes estimated from femtosecond z-scan measurements,” Appl. Phys. Lett.91(25), 251103 (2007).
[CrossRef]

2006 (1)

H. I. Elim, W. Ji, and F. Zhu, “Carrier concentration dependence of optical Kerr nonlinearity in indium tin oxide films,” Appl. Phys. B82(3), 439–442 (2006).
[CrossRef]

2005 (3)

Y. Yang, M. Nogami, J. Shi, H. Chen, G. Ma, and S. Tang, “Enhancement of third-order optical nonlinearities in 3-dimensional films of dielectric shell capped Au composite nanoparticles,” J. Phys. Chem. B109(11), 4865–4871 (2005).
[CrossRef] [PubMed]

J. Thomas, M. Anija, J. Cyriac, T. Pradeep, and R. Philip, “Observation of a fifth order optical nonlinearity in 29 kDa Au@alkanethiol clusters excited in the visible,” Chem. Phys. Lett.403(4–6), 308–313 (2005).
[CrossRef]

F. Matino, L. Persano, V. Arima, D. Pisignano, R. I. R. Blyth, R. Cingolani, and R. Rinaldi, “Electronic structure of indium-tin-oxide films fabricated by reactive electron-beam deposition,” Phys. Rev. B72(8), 085437–085445 (2005).
[CrossRef]

2004 (1)

M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev.104(1), 293–346 (2004).
[CrossRef] [PubMed]

2003 (1)

C. H. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, and A. J. Heeger, “Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.100(11), 6297–6301 (2003).
[CrossRef] [PubMed]

2002 (2)

S. Link, M. A. El-Sayed, T. Gregory Schaaff, and R. L. Whetten, “Transition from nanoparticle to molecular behavior: a femtosecond transient absorption study of a size-selected 28 atom gold cluster,” Chem. Phys. Lett.356(3–4), 240–246 (2002).
[CrossRef]

S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, “Visible to Infrared Luminescence from a 28-Atom Gold Cluster,” J. Phys. Chem. B106(13), 3410–3415 (2002).
[CrossRef]

2001 (1)

R. Nakamura and Y. Kanematsu, “A simple and effective method for femtosecond spectral snapshots,” J. Lumin.94–95(2–4), 559–563 (2001).
[CrossRef]

2000 (3)

T. G. Schaaff and R. L. Whetten, “Giant gold−glutathione cluster compounds: intense optical activity in metal-based transitions,” J. Phys. Chem. B104(12), 2630–2641 (2000).
[CrossRef]

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver and gold-silver alloy nanoclusters,” Phys. Rev. B62(19), 13160–13166 (2000).
[CrossRef]

A. C. Templeton, W. P. Wuelfing, and R. W. Murray, “Monolayer-protected cluster molecules,” Acc. Chem. Res.33(1), 27–36 (2000).
[CrossRef] [PubMed]

1999 (2)

B. Dupuis, C. Michaut, I. Jouanin, J. Delaire, P. Robin, P. Feneyrou, and V. Dentan, “Photoinduced intramolecular charge-transfer systems based on porphyrin-viologen dyads for optical limiting,” Chem. Phys. Lett.300(1–2), 169–176 (1999).
[CrossRef]

M. Brunel, B. Campagne, M. Canva, A. Brun, F. Chaput, and J.-P. Boilot, “Ultrafast induced excited state absorption in organically doped xerogels,” Chem. Phys.246(1–3), 477–481 (1999).
[CrossRef]

1998 (2)

M. P. Joshi, J. Swiatkiewicz, F. M. Xu, P. N. Prasad, B. A. Reinhardt, and R. Kannan, “Energy transfer coupling of two-photon absorption and reverse saturable absorption for enhanced optical power limiting,” Opt. Lett.23(22), 1742–1744 (1998).
[CrossRef] [PubMed]

T. G. Schaaff, G. Knight, M. N. Shafigullin, R. F. Borkman, and R. L. Whetten, “Isolation and Selected Properties of a 10.4 kDa Gold:Glutathione Cluster Compound,” J. Phys. Chem. B102(52), 10643–10646 (1998).
[CrossRef]

1993 (1)

1990 (2)

M. J. Bloemer, J. W. Haus, and P. R. Ashley, “Degenerate four-wave mixing in colloidal gold as a function of particle size,” J. Opt. Soc. Am. B7(5), 790–795 (1990).
[CrossRef]

M. S. -Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).

1985 (1)

1983 (1)

D. Chemla, J. Heritage, P. Liao, and E. Isaacs, “Enhanced four-wave mixing from silver particles,” Phys. Rev. B27(8), 4553–4558 (1983).
[CrossRef]

Aikens, C. M.

M. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz, and R. Jin, “Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties,” J. Am. Chem. Soc.130(18), 5883–5885 (2008).
[CrossRef] [PubMed]

Anija, M.

J. Thomas, M. Anija, J. Cyriac, T. Pradeep, and R. Philip, “Observation of a fifth order optical nonlinearity in 29 kDa Au@alkanethiol clusters excited in the visible,” Chem. Phys. Lett.403(4–6), 308–313 (2005).
[CrossRef]

Arima, V.

F. Matino, L. Persano, V. Arima, D. Pisignano, R. I. R. Blyth, R. Cingolani, and R. Rinaldi, “Electronic structure of indium-tin-oxide films fabricated by reactive electron-beam deposition,” Phys. Rev. B72(8), 085437–085445 (2005).
[CrossRef]

Ashley, P. R.

Aspnes, D. E.

S. Franzen, C. Rhodes, M. Cerruti, R. W. Gerber, M. Losego, J.-P. Maria, and D. E. Aspnes, “Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films,” Opt. Lett.34(18), 2867–2869 (2009).
[CrossRef] [PubMed]

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys.103(9), 093108 (2008).
[CrossRef]

Astruc, D.

M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev.104(1), 293–346 (2004).
[CrossRef] [PubMed]

-Bahae, M. S.

M. S. -Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).

Baiker, A.

A. Vargas, G. Santarossa, M. Iannuzzi, and A. Baiker, “Fluxionality of gold nanoparticles investigated by Born-Oppenheimer molecular dynamics,” Phys. Rev. B80(19), 195421 (2009).
[CrossRef]

Balapanuru, J.

Bazan, G. C.

C. H. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, and A. J. Heeger, “Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.100(11), 6297–6301 (2003).
[CrossRef] [PubMed]

Becker, K.

Beeby, A.

S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, “Visible to Infrared Luminescence from a 28-Atom Gold Cluster,” J. Phys. Chem. B106(13), 3410–3415 (2002).
[CrossRef]

Bloemer, M. J.

Blyth, R. I. R.

F. Matino, L. Persano, V. Arima, D. Pisignano, R. I. R. Blyth, R. Cingolani, and R. Rinaldi, “Electronic structure of indium-tin-oxide films fabricated by reactive electron-beam deposition,” Phys. Rev. B72(8), 085437–085445 (2005).
[CrossRef]

Boilot, J.-P.

M. Brunel, B. Campagne, M. Canva, A. Brun, F. Chaput, and J.-P. Boilot, “Ultrafast induced excited state absorption in organically doped xerogels,” Chem. Phys.246(1–3), 477–481 (1999).
[CrossRef]

Borkman, R. F.

T. G. Schaaff, G. Knight, M. N. Shafigullin, R. F. Borkman, and R. L. Whetten, “Isolation and Selected Properties of a 10.4 kDa Gold:Glutathione Cluster Compound,” J. Phys. Chem. B102(52), 10643–10646 (1998).
[CrossRef]

Brun, A.

M. Brunel, B. Campagne, M. Canva, A. Brun, F. Chaput, and J.-P. Boilot, “Ultrafast induced excited state absorption in organically doped xerogels,” Chem. Phys.246(1–3), 477–481 (1999).
[CrossRef]

Brunel, M.

M. Brunel, B. Campagne, M. Canva, A. Brun, F. Chaput, and J.-P. Boilot, “Ultrafast induced excited state absorption in organically doped xerogels,” Chem. Phys.246(1–3), 477–481 (1999).
[CrossRef]

Campagne, B.

M. Brunel, B. Campagne, M. Canva, A. Brun, F. Chaput, and J.-P. Boilot, “Ultrafast induced excited state absorption in organically doped xerogels,” Chem. Phys.246(1–3), 477–481 (1999).
[CrossRef]

Canva, M.

M. Brunel, B. Campagne, M. Canva, A. Brun, F. Chaput, and J.-P. Boilot, “Ultrafast induced excited state absorption in organically doped xerogels,” Chem. Phys.246(1–3), 477–481 (1999).
[CrossRef]

Cerruti, M.

S. Franzen, C. Rhodes, M. Cerruti, R. W. Gerber, M. Losego, J.-P. Maria, and D. E. Aspnes, “Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films,” Opt. Lett.34(18), 2867–2869 (2009).
[CrossRef] [PubMed]

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys.103(9), 093108 (2008).
[CrossRef]

Chantharasupawong, P.

R. Philip, P. Chantharasupawong, H. Qian, R. Jin, and J. Thomas, “Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals,” Nano Lett.12(9), 4661–4667 (2012).
[CrossRef] [PubMed]

Chaput, F.

M. Brunel, B. Campagne, M. Canva, A. Brun, F. Chaput, and J.-P. Boilot, “Ultrafast induced excited state absorption in organically doped xerogels,” Chem. Phys.246(1–3), 477–481 (1999).
[CrossRef]

Chemla, D.

D. Chemla, J. Heritage, P. Liao, and E. Isaacs, “Enhanced four-wave mixing from silver particles,” Phys. Rev. B27(8), 4553–4558 (1983).
[CrossRef]

Chen, H.

Y. Yang, M. Nogami, J. Shi, H. Chen, G. Ma, and S. Tang, “Enhancement of third-order optical nonlinearities in 3-dimensional films of dielectric shell capped Au composite nanoparticles,” J. Phys. Chem. B109(11), 4865–4871 (2005).
[CrossRef] [PubMed]

Cingolani, R.

F. Matino, L. Persano, V. Arima, D. Pisignano, R. I. R. Blyth, R. Cingolani, and R. Rinaldi, “Electronic structure of indium-tin-oxide films fabricated by reactive electron-beam deposition,” Phys. Rev. B72(8), 085437–085445 (2005).
[CrossRef]

Cyriac, J.

J. Thomas, M. Anija, J. Cyriac, T. Pradeep, and R. Philip, “Observation of a fifth order optical nonlinearity in 29 kDa Au@alkanethiol clusters excited in the visible,” Chem. Phys. Lett.403(4–6), 308–313 (2005).
[CrossRef]

Daniel, M. C.

M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev.104(1), 293–346 (2004).
[CrossRef] [PubMed]

Delaire, J.

B. Dupuis, C. Michaut, I. Jouanin, J. Delaire, P. Robin, P. Feneyrou, and V. Dentan, “Photoinduced intramolecular charge-transfer systems based on porphyrin-viologen dyads for optical limiting,” Chem. Phys. Lett.300(1–2), 169–176 (1999).
[CrossRef]

Dentan, V.

B. Dupuis, C. Michaut, I. Jouanin, J. Delaire, P. Robin, P. Feneyrou, and V. Dentan, “Photoinduced intramolecular charge-transfer systems based on porphyrin-viologen dyads for optical limiting,” Chem. Phys. Lett.300(1–2), 169–176 (1999).
[CrossRef]

Dupuis, B.

B. Dupuis, C. Michaut, I. Jouanin, J. Delaire, P. Robin, P. Feneyrou, and V. Dentan, “Photoinduced intramolecular charge-transfer systems based on porphyrin-viologen dyads for optical limiting,” Chem. Phys. Lett.300(1–2), 169–176 (1999).
[CrossRef]

Efremenko, A.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys.103(9), 093108 (2008).
[CrossRef]

Elim, H. I.

H. I. Elim, W. Ji, and F. Zhu, “Carrier concentration dependence of optical Kerr nonlinearity in indium tin oxide films,” Appl. Phys. B82(3), 439–442 (2006).
[CrossRef]

El-Sayed, M. A.

S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, “Visible to Infrared Luminescence from a 28-Atom Gold Cluster,” J. Phys. Chem. B106(13), 3410–3415 (2002).
[CrossRef]

S. Link, M. A. El-Sayed, T. Gregory Schaaff, and R. L. Whetten, “Transition from nanoparticle to molecular behavior: a femtosecond transient absorption study of a size-selected 28 atom gold cluster,” Chem. Phys. Lett.356(3–4), 240–246 (2002).
[CrossRef]

Fan, C. H.

C. H. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, and A. J. Heeger, “Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.100(11), 6297–6301 (2003).
[CrossRef] [PubMed]

Feneyrou, P.

B. Dupuis, C. Michaut, I. Jouanin, J. Delaire, P. Robin, P. Feneyrou, and V. Dentan, “Photoinduced intramolecular charge-transfer systems based on porphyrin-viologen dyads for optical limiting,” Chem. Phys. Lett.300(1–2), 169–176 (1999).
[CrossRef]

FitzGerald, S.

S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, “Visible to Infrared Luminescence from a 28-Atom Gold Cluster,” J. Phys. Chem. B106(13), 3410–3415 (2002).
[CrossRef]

Flytzanis, C.

Franzen, S.

S. Franzen, C. Rhodes, M. Cerruti, R. W. Gerber, M. Losego, J.-P. Maria, and D. E. Aspnes, “Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films,” Opt. Lett.34(18), 2867–2869 (2009).
[CrossRef] [PubMed]

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys.103(9), 093108 (2008).
[CrossRef]

Gerber, R. W.

Gregory Schaaff, T.

S. Link, M. A. El-Sayed, T. Gregory Schaaff, and R. L. Whetten, “Transition from nanoparticle to molecular behavior: a femtosecond transient absorption study of a size-selected 28 atom gold cluster,” Chem. Phys. Lett.356(3–4), 240–246 (2002).
[CrossRef]

Guha, S.

N. Kamaraju, S. Kumar, A. K. Sood, S. Guha, S. Krishnamurthy, and C. N. R. Rao, “Large nonlinear absorption and refraction coefficients of carbon nanotubes estimated from femtosecond z-scan measurements,” Appl. Phys. Lett.91(25), 251103 (2007).
[CrossRef]

Hagan, D. J.

M. S. -Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).

Haglund, R. F.

Haus, J. W.

Heeger, A. J.

C. H. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, and A. J. Heeger, “Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.100(11), 6297–6301 (2003).
[CrossRef] [PubMed]

Heritage, J.

D. Chemla, J. Heritage, P. Liao, and E. Isaacs, “Enhanced four-wave mixing from silver particles,” Phys. Rev. B27(8), 4553–4558 (1983).
[CrossRef]

Hollander, F. J.

M. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz, and R. Jin, “Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties,” J. Am. Chem. Soc.130(18), 5883–5885 (2008).
[CrossRef] [PubMed]

Hong, J. W.

C. H. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, and A. J. Heeger, “Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.100(11), 6297–6301 (2003).
[CrossRef] [PubMed]

Huang, W.

R. Pal, L.-M. Wang, W. Huang, L.-S. Wang, and X. C. Zeng, “Structure evolution of gold cluster anions between the planar and cage structures by isoelectronic substitution: Aun- (n = 13-15) and MAun- (n = 12-14; M = Ag, Cu),” J. Chem. Phys.134(5), 054306 (2011).
[CrossRef] [PubMed]

Iannuzzi, M.

A. Vargas, G. Santarossa, M. Iannuzzi, and A. Baiker, “Fluxionality of gold nanoparticles investigated by Born-Oppenheimer molecular dynamics,” Phys. Rev. B80(19), 195421 (2009).
[CrossRef]

Isaacs, E.

D. Chemla, J. Heritage, P. Liao, and E. Isaacs, “Enhanced four-wave mixing from silver particles,” Phys. Rev. B27(8), 4553–4558 (1983).
[CrossRef]

Ji, W.

Jiang, L.

J. Lv, L. Jiang, C. Li, X. Liu, M. Yuan, J. Xu, W. Zhou, Y. Song, H. Liu, Y. Li, and D. Zhu, “Large third-order optical nonlinear effects of gold nanoparticles with unusual fluorescence enhancement,” Langmuir24(15), 8297–8302 (2008).
[CrossRef] [PubMed]

Jin, R.

R. Philip, P. Chantharasupawong, H. Qian, R. Jin, and J. Thomas, “Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals,” Nano Lett.12(9), 4661–4667 (2012).
[CrossRef] [PubMed]

R. Jin, “Quantum sized, thiolate-protected gold nanoclusters,” Nanoscale2(3), 343–362 (2010).
[CrossRef] [PubMed]

M. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz, and R. Jin, “Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties,” J. Am. Chem. Soc.130(18), 5883–5885 (2008).
[CrossRef] [PubMed]

Joshi, M. P.

Jouanin, I.

B. Dupuis, C. Michaut, I. Jouanin, J. Delaire, P. Robin, P. Feneyrou, and V. Dentan, “Photoinduced intramolecular charge-transfer systems based on porphyrin-viologen dyads for optical limiting,” Chem. Phys. Lett.300(1–2), 169–176 (1999).
[CrossRef]

Kamaraju, N.

S. Kumar, N. Kamaraju, K. S. Vasu, A. Nag, A. K. Sood, and C. N. R. Rao, “Graphene analogue BCN: Femtosecond nonlinear optical susceptibility and hot carrier dynamics,” Chem. Phys. Lett.499(1–3), 152–157 (2010).
[CrossRef]

N. Kamaraju, S. Kumar, A. K. Sood, S. Guha, S. Krishnamurthy, and C. N. R. Rao, “Large nonlinear absorption and refraction coefficients of carbon nanotubes estimated from femtosecond z-scan measurements,” Appl. Phys. Lett.91(25), 251103 (2007).
[CrossRef]

Kanematsu, Y.

R. Nakamura and Y. Kanematsu, “A simple and effective method for femtosecond spectral snapshots,” J. Lumin.94–95(2–4), 559–563 (2001).
[CrossRef]

Kannan, R.

Knight, G.

T. G. Schaaff, G. Knight, M. N. Shafigullin, R. F. Borkman, and R. L. Whetten, “Isolation and Selected Properties of a 10.4 kDa Gold:Glutathione Cluster Compound,” J. Phys. Chem. B102(52), 10643–10646 (1998).
[CrossRef]

Krishnamurthy, S.

N. Kamaraju, S. Kumar, A. K. Sood, S. Guha, S. Krishnamurthy, and C. N. R. Rao, “Large nonlinear absorption and refraction coefficients of carbon nanotubes estimated from femtosecond z-scan measurements,” Appl. Phys. Lett.91(25), 251103 (2007).
[CrossRef]

Kumar, G. R.

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver and gold-silver alloy nanoclusters,” Phys. Rev. B62(19), 13160–13166 (2000).
[CrossRef]

Kumar, S.

S. Kumar, N. Kamaraju, K. S. Vasu, A. Nag, A. K. Sood, and C. N. R. Rao, “Graphene analogue BCN: Femtosecond nonlinear optical susceptibility and hot carrier dynamics,” Chem. Phys. Lett.499(1–3), 152–157 (2010).
[CrossRef]

N. Kamaraju, S. Kumar, A. K. Sood, S. Guha, S. Krishnamurthy, and C. N. R. Rao, “Large nonlinear absorption and refraction coefficients of carbon nanotubes estimated from femtosecond z-scan measurements,” Appl. Phys. Lett.91(25), 251103 (2007).
[CrossRef]

Kumar, V.

B. D. Yadav and V. Kumar, “Gd@Au15: a magic magnetic gold cluster for cancer therapy and bioimaging,” Appl. Phys. Lett.97(13), 133701 (2010).
[CrossRef]

Li, C.

J. Lv, L. Jiang, C. Li, X. Liu, M. Yuan, J. Xu, W. Zhou, Y. Song, H. Liu, Y. Li, and D. Zhu, “Large third-order optical nonlinear effects of gold nanoparticles with unusual fluorescence enhancement,” Langmuir24(15), 8297–8302 (2008).
[CrossRef] [PubMed]

Li, Y.

J. Lv, L. Jiang, C. Li, X. Liu, M. Yuan, J. Xu, W. Zhou, Y. Song, H. Liu, Y. Li, and D. Zhu, “Large third-order optical nonlinear effects of gold nanoparticles with unusual fluorescence enhancement,” Langmuir24(15), 8297–8302 (2008).
[CrossRef] [PubMed]

Liao, P.

D. Chemla, J. Heritage, P. Liao, and E. Isaacs, “Enhanced four-wave mixing from silver particles,” Phys. Rev. B27(8), 4553–4558 (1983).
[CrossRef]

Link, S.

S. Link, M. A. El-Sayed, T. Gregory Schaaff, and R. L. Whetten, “Transition from nanoparticle to molecular behavior: a femtosecond transient absorption study of a size-selected 28 atom gold cluster,” Chem. Phys. Lett.356(3–4), 240–246 (2002).
[CrossRef]

S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, “Visible to Infrared Luminescence from a 28-Atom Gold Cluster,” J. Phys. Chem. B106(13), 3410–3415 (2002).
[CrossRef]

Liu, H.

J. Lv, L. Jiang, C. Li, X. Liu, M. Yuan, J. Xu, W. Zhou, Y. Song, H. Liu, Y. Li, and D. Zhu, “Large third-order optical nonlinear effects of gold nanoparticles with unusual fluorescence enhancement,” Langmuir24(15), 8297–8302 (2008).
[CrossRef] [PubMed]

Liu, X.

J. Lv, L. Jiang, C. Li, X. Liu, M. Yuan, J. Xu, W. Zhou, Y. Song, H. Liu, Y. Li, and D. Zhu, “Large third-order optical nonlinear effects of gold nanoparticles with unusual fluorescence enhancement,” Langmuir24(15), 8297–8302 (2008).
[CrossRef] [PubMed]

Loh, K. P.

Losego, M.

S. Franzen, C. Rhodes, M. Cerruti, R. W. Gerber, M. Losego, J.-P. Maria, and D. E. Aspnes, “Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films,” Opt. Lett.34(18), 2867–2869 (2009).
[CrossRef] [PubMed]

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys.103(9), 093108 (2008).
[CrossRef]

Lv, J.

J. Lv, L. Jiang, C. Li, X. Liu, M. Yuan, J. Xu, W. Zhou, Y. Song, H. Liu, Y. Li, and D. Zhu, “Large third-order optical nonlinear effects of gold nanoparticles with unusual fluorescence enhancement,” Langmuir24(15), 8297–8302 (2008).
[CrossRef] [PubMed]

Ma, G.

Y. Yang, M. Nogami, J. Shi, H. Chen, G. Ma, and S. Tang, “Enhancement of third-order optical nonlinearities in 3-dimensional films of dielectric shell capped Au composite nanoparticles,” J. Phys. Chem. B109(11), 4865–4871 (2005).
[CrossRef] [PubMed]

Magruder, R. H.

Mamidala, V.

Maria, J.-P.

S. Franzen, C. Rhodes, M. Cerruti, R. W. Gerber, M. Losego, J.-P. Maria, and D. E. Aspnes, “Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films,” Opt. Lett.34(18), 2867–2869 (2009).
[CrossRef] [PubMed]

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys.103(9), 093108 (2008).
[CrossRef]

Matino, F.

F. Matino, L. Persano, V. Arima, D. Pisignano, R. I. R. Blyth, R. Cingolani, and R. Rinaldi, “Electronic structure of indium-tin-oxide films fabricated by reactive electron-beam deposition,” Phys. Rev. B72(8), 085437–085445 (2005).
[CrossRef]

Michaut, C.

B. Dupuis, C. Michaut, I. Jouanin, J. Delaire, P. Robin, P. Feneyrou, and V. Dentan, “Photoinduced intramolecular charge-transfer systems based on porphyrin-viologen dyads for optical limiting,” Chem. Phys. Lett.300(1–2), 169–176 (1999).
[CrossRef]

Murray, R. W.

A. C. Templeton, W. P. Wuelfing, and R. W. Murray, “Monolayer-protected cluster molecules,” Acc. Chem. Res.33(1), 27–36 (2000).
[CrossRef] [PubMed]

Nag, A.

S. Kumar, N. Kamaraju, K. S. Vasu, A. Nag, A. K. Sood, and C. N. R. Rao, “Graphene analogue BCN: Femtosecond nonlinear optical susceptibility and hot carrier dynamics,” Chem. Phys. Lett.499(1–3), 152–157 (2010).
[CrossRef]

Nakamura, R.

R. Nakamura and Y. Kanematsu, “A simple and effective method for femtosecond spectral snapshots,” J. Lumin.94–95(2–4), 559–563 (2001).
[CrossRef]

Nogami, M.

Y. Yang, M. Nogami, J. Shi, H. Chen, G. Ma, and S. Tang, “Enhancement of third-order optical nonlinearities in 3-dimensional films of dielectric shell capped Au composite nanoparticles,” J. Phys. Chem. B109(11), 4865–4871 (2005).
[CrossRef] [PubMed]

Pal, R.

R. Pal, L.-M. Wang, W. Huang, L.-S. Wang, and X. C. Zeng, “Structure evolution of gold cluster anions between the planar and cage structures by isoelectronic substitution: Aun- (n = 13-15) and MAun- (n = 12-14; M = Ag, Cu),” J. Chem. Phys.134(5), 054306 (2011).
[CrossRef] [PubMed]

Persano, L.

F. Matino, L. Persano, V. Arima, D. Pisignano, R. I. R. Blyth, R. Cingolani, and R. Rinaldi, “Electronic structure of indium-tin-oxide films fabricated by reactive electron-beam deposition,” Phys. Rev. B72(8), 085437–085445 (2005).
[CrossRef]

Philip, R.

R. Philip, P. Chantharasupawong, H. Qian, R. Jin, and J. Thomas, “Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals,” Nano Lett.12(9), 4661–4667 (2012).
[CrossRef] [PubMed]

J. Thomas, M. Anija, J. Cyriac, T. Pradeep, and R. Philip, “Observation of a fifth order optical nonlinearity in 29 kDa Au@alkanethiol clusters excited in the visible,” Chem. Phys. Lett.403(4–6), 308–313 (2005).
[CrossRef]

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver and gold-silver alloy nanoclusters,” Phys. Rev. B62(19), 13160–13166 (2000).
[CrossRef]

Pisignano, D.

F. Matino, L. Persano, V. Arima, D. Pisignano, R. I. R. Blyth, R. Cingolani, and R. Rinaldi, “Electronic structure of indium-tin-oxide films fabricated by reactive electron-beam deposition,” Phys. Rev. B72(8), 085437–085445 (2005).
[CrossRef]

Plaxco, K. W.

C. H. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, and A. J. Heeger, “Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.100(11), 6297–6301 (2003).
[CrossRef] [PubMed]

Polavarapu, L.

Pradeep, T.

E. S. Shibu and T. Pradeep, “Quantum clusters in cavities: Trapped Au15 in cyclodextrins,” Chem. Mater.23(4), 989–999 (2011).
[CrossRef]

J. Thomas, M. Anija, J. Cyriac, T. Pradeep, and R. Philip, “Observation of a fifth order optical nonlinearity in 29 kDa Au@alkanethiol clusters excited in the visible,” Chem. Phys. Lett.403(4–6), 308–313 (2005).
[CrossRef]

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver and gold-silver alloy nanoclusters,” Phys. Rev. B62(19), 13160–13166 (2000).
[CrossRef]

Prasad, P. N.

Qian, H.

R. Philip, P. Chantharasupawong, H. Qian, R. Jin, and J. Thomas, “Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals,” Nano Lett.12(9), 4661–4667 (2012).
[CrossRef] [PubMed]

Rao, C. N. R.

S. Kumar, N. Kamaraju, K. S. Vasu, A. Nag, A. K. Sood, and C. N. R. Rao, “Graphene analogue BCN: Femtosecond nonlinear optical susceptibility and hot carrier dynamics,” Chem. Phys. Lett.499(1–3), 152–157 (2010).
[CrossRef]

N. Kamaraju, S. Kumar, A. K. Sood, S. Guha, S. Krishnamurthy, and C. N. R. Rao, “Large nonlinear absorption and refraction coefficients of carbon nanotubes estimated from femtosecond z-scan measurements,” Appl. Phys. Lett.91(25), 251103 (2007).
[CrossRef]

Reinhardt, B. A.

Rhodes, C.

S. Franzen, C. Rhodes, M. Cerruti, R. W. Gerber, M. Losego, J.-P. Maria, and D. E. Aspnes, “Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films,” Opt. Lett.34(18), 2867–2869 (2009).
[CrossRef] [PubMed]

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys.103(9), 093108 (2008).
[CrossRef]

Ricard, D.

Rinaldi, R.

F. Matino, L. Persano, V. Arima, D. Pisignano, R. I. R. Blyth, R. Cingolani, and R. Rinaldi, “Electronic structure of indium-tin-oxide films fabricated by reactive electron-beam deposition,” Phys. Rev. B72(8), 085437–085445 (2005).
[CrossRef]

Robin, P.

B. Dupuis, C. Michaut, I. Jouanin, J. Delaire, P. Robin, P. Feneyrou, and V. Dentan, “Photoinduced intramolecular charge-transfer systems based on porphyrin-viologen dyads for optical limiting,” Chem. Phys. Lett.300(1–2), 169–176 (1999).
[CrossRef]

Roussignol, P.

Said, A. A.

M. S. -Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).

Sandhyarani, N.

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver and gold-silver alloy nanoclusters,” Phys. Rev. B62(19), 13160–13166 (2000).
[CrossRef]

Santarossa, G.

A. Vargas, G. Santarossa, M. Iannuzzi, and A. Baiker, “Fluxionality of gold nanoparticles investigated by Born-Oppenheimer molecular dynamics,” Phys. Rev. B80(19), 195421 (2009).
[CrossRef]

Schaaff, T. G.

S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, “Visible to Infrared Luminescence from a 28-Atom Gold Cluster,” J. Phys. Chem. B106(13), 3410–3415 (2002).
[CrossRef]

T. G. Schaaff and R. L. Whetten, “Giant gold−glutathione cluster compounds: intense optical activity in metal-based transitions,” J. Phys. Chem. B104(12), 2630–2641 (2000).
[CrossRef]

T. G. Schaaff, G. Knight, M. N. Shafigullin, R. F. Borkman, and R. L. Whetten, “Isolation and Selected Properties of a 10.4 kDa Gold:Glutathione Cluster Compound,” J. Phys. Chem. B102(52), 10643–10646 (1998).
[CrossRef]

Schatz, G. C.

M. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz, and R. Jin, “Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties,” J. Am. Chem. Soc.130(18), 5883–5885 (2008).
[CrossRef] [PubMed]

Sebastian, K. L.

R. S. Swathi and K. L. Sebastian, “Long range resonance energy transfer from a dye molecule to graphene has (distance)-4 dependence,” J. Chem. Phys.130(8), 086101–086103 (2009).
[CrossRef] [PubMed]

Shafigullin, M. N.

T. G. Schaaff, G. Knight, M. N. Shafigullin, R. F. Borkman, and R. L. Whetten, “Isolation and Selected Properties of a 10.4 kDa Gold:Glutathione Cluster Compound,” J. Phys. Chem. B102(52), 10643–10646 (1998).
[CrossRef]

Shi, J.

Y. Yang, M. Nogami, J. Shi, H. Chen, G. Ma, and S. Tang, “Enhancement of third-order optical nonlinearities in 3-dimensional films of dielectric shell capped Au composite nanoparticles,” J. Phys. Chem. B109(11), 4865–4871 (2005).
[CrossRef] [PubMed]

Shibu, E. S.

E. S. Shibu and T. Pradeep, “Quantum clusters in cavities: Trapped Au15 in cyclodextrins,” Chem. Mater.23(4), 989–999 (2011).
[CrossRef]

Song, Y.

J. Lv, L. Jiang, C. Li, X. Liu, M. Yuan, J. Xu, W. Zhou, Y. Song, H. Liu, Y. Li, and D. Zhu, “Large third-order optical nonlinear effects of gold nanoparticles with unusual fluorescence enhancement,” Langmuir24(15), 8297–8302 (2008).
[CrossRef] [PubMed]

Sood, A. K.

S. Kumar, N. Kamaraju, K. S. Vasu, A. Nag, A. K. Sood, and C. N. R. Rao, “Graphene analogue BCN: Femtosecond nonlinear optical susceptibility and hot carrier dynamics,” Chem. Phys. Lett.499(1–3), 152–157 (2010).
[CrossRef]

N. Kamaraju, S. Kumar, A. K. Sood, S. Guha, S. Krishnamurthy, and C. N. R. Rao, “Large nonlinear absorption and refraction coefficients of carbon nanotubes estimated from femtosecond z-scan measurements,” Appl. Phys. Lett.91(25), 251103 (2007).
[CrossRef]

Swathi, R. S.

R. S. Swathi and K. L. Sebastian, “Long range resonance energy transfer from a dye molecule to graphene has (distance)-4 dependence,” J. Chem. Phys.130(8), 086101–086103 (2009).
[CrossRef] [PubMed]

Swiatkiewicz, J.

Tang, S.

Y. Yang, M. Nogami, J. Shi, H. Chen, G. Ma, and S. Tang, “Enhancement of third-order optical nonlinearities in 3-dimensional films of dielectric shell capped Au composite nanoparticles,” J. Phys. Chem. B109(11), 4865–4871 (2005).
[CrossRef] [PubMed]

Templeton, A. C.

A. C. Templeton, W. P. Wuelfing, and R. W. Murray, “Monolayer-protected cluster molecules,” Acc. Chem. Res.33(1), 27–36 (2000).
[CrossRef] [PubMed]

Thomas, J.

R. Philip, P. Chantharasupawong, H. Qian, R. Jin, and J. Thomas, “Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals,” Nano Lett.12(9), 4661–4667 (2012).
[CrossRef] [PubMed]

J. Thomas, M. Anija, J. Cyriac, T. Pradeep, and R. Philip, “Observation of a fifth order optical nonlinearity in 29 kDa Au@alkanethiol clusters excited in the visible,” Chem. Phys. Lett.403(4–6), 308–313 (2005).
[CrossRef]

Van Stryland, E. W.

M. S. -Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).

Vargas, A.

A. Vargas, G. Santarossa, M. Iannuzzi, and A. Baiker, “Fluxionality of gold nanoparticles investigated by Born-Oppenheimer molecular dynamics,” Phys. Rev. B80(19), 195421 (2009).
[CrossRef]

Vasu, K. S.

S. Kumar, N. Kamaraju, K. S. Vasu, A. Nag, A. K. Sood, and C. N. R. Rao, “Graphene analogue BCN: Femtosecond nonlinear optical susceptibility and hot carrier dynamics,” Chem. Phys. Lett.499(1–3), 152–157 (2010).
[CrossRef]

Wang, L.-M.

R. Pal, L.-M. Wang, W. Huang, L.-S. Wang, and X. C. Zeng, “Structure evolution of gold cluster anions between the planar and cage structures by isoelectronic substitution: Aun- (n = 13-15) and MAun- (n = 12-14; M = Ag, Cu),” J. Chem. Phys.134(5), 054306 (2011).
[CrossRef] [PubMed]

Wang, L.-S.

R. Pal, L.-M. Wang, W. Huang, L.-S. Wang, and X. C. Zeng, “Structure evolution of gold cluster anions between the planar and cage structures by isoelectronic substitution: Aun- (n = 13-15) and MAun- (n = 12-14; M = Ag, Cu),” J. Chem. Phys.134(5), 054306 (2011).
[CrossRef] [PubMed]

Wang, S.

C. H. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, and A. J. Heeger, “Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.100(11), 6297–6301 (2003).
[CrossRef] [PubMed]

Wei, T.-H.

M. S. -Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).

Whetten, R. L.

S. Link, M. A. El-Sayed, T. Gregory Schaaff, and R. L. Whetten, “Transition from nanoparticle to molecular behavior: a femtosecond transient absorption study of a size-selected 28 atom gold cluster,” Chem. Phys. Lett.356(3–4), 240–246 (2002).
[CrossRef]

S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, “Visible to Infrared Luminescence from a 28-Atom Gold Cluster,” J. Phys. Chem. B106(13), 3410–3415 (2002).
[CrossRef]

T. G. Schaaff and R. L. Whetten, “Giant gold−glutathione cluster compounds: intense optical activity in metal-based transitions,” J. Phys. Chem. B104(12), 2630–2641 (2000).
[CrossRef]

T. G. Schaaff, G. Knight, M. N. Shafigullin, R. F. Borkman, and R. L. Whetten, “Isolation and Selected Properties of a 10.4 kDa Gold:Glutathione Cluster Compound,” J. Phys. Chem. B102(52), 10643–10646 (1998).
[CrossRef]

Wittig, J. E.

Wuelfing, W. P.

A. C. Templeton, W. P. Wuelfing, and R. W. Murray, “Monolayer-protected cluster molecules,” Acc. Chem. Res.33(1), 27–36 (2000).
[CrossRef] [PubMed]

Xu, F. M.

Xu, J.

J. Lv, L. Jiang, C. Li, X. Liu, M. Yuan, J. Xu, W. Zhou, Y. Song, H. Liu, Y. Li, and D. Zhu, “Large third-order optical nonlinear effects of gold nanoparticles with unusual fluorescence enhancement,” Langmuir24(15), 8297–8302 (2008).
[CrossRef] [PubMed]

Xu, Q.-H.

Yadav, B. D.

B. D. Yadav and V. Kumar, “Gd@Au15: a magic magnetic gold cluster for cancer therapy and bioimaging,” Appl. Phys. Lett.97(13), 133701 (2010).
[CrossRef]

Yang, L.

Yang, Y.

Y. Yang, M. Nogami, J. Shi, H. Chen, G. Ma, and S. Tang, “Enhancement of third-order optical nonlinearities in 3-dimensional films of dielectric shell capped Au composite nanoparticles,” J. Phys. Chem. B109(11), 4865–4871 (2005).
[CrossRef] [PubMed]

Yuan, M.

J. Lv, L. Jiang, C. Li, X. Liu, M. Yuan, J. Xu, W. Zhou, Y. Song, H. Liu, Y. Li, and D. Zhu, “Large third-order optical nonlinear effects of gold nanoparticles with unusual fluorescence enhancement,” Langmuir24(15), 8297–8302 (2008).
[CrossRef] [PubMed]

Zeng, X. C.

R. Pal, L.-M. Wang, W. Huang, L.-S. Wang, and X. C. Zeng, “Structure evolution of gold cluster anions between the planar and cage structures by isoelectronic substitution: Aun- (n = 13-15) and MAun- (n = 12-14; M = Ag, Cu),” J. Chem. Phys.134(5), 054306 (2011).
[CrossRef] [PubMed]

Zhou, W.

J. Lv, L. Jiang, C. Li, X. Liu, M. Yuan, J. Xu, W. Zhou, Y. Song, H. Liu, Y. Li, and D. Zhu, “Large third-order optical nonlinear effects of gold nanoparticles with unusual fluorescence enhancement,” Langmuir24(15), 8297–8302 (2008).
[CrossRef] [PubMed]

Zhu, D.

J. Lv, L. Jiang, C. Li, X. Liu, M. Yuan, J. Xu, W. Zhou, Y. Song, H. Liu, Y. Li, and D. Zhu, “Large third-order optical nonlinear effects of gold nanoparticles with unusual fluorescence enhancement,” Langmuir24(15), 8297–8302 (2008).
[CrossRef] [PubMed]

Zhu, F.

H. I. Elim, W. Ji, and F. Zhu, “Carrier concentration dependence of optical Kerr nonlinearity in indium tin oxide films,” Appl. Phys. B82(3), 439–442 (2006).
[CrossRef]

Zhu, M.

M. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz, and R. Jin, “Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties,” J. Am. Chem. Soc.130(18), 5883–5885 (2008).
[CrossRef] [PubMed]

Zuhr, R. A.

Acc. Chem. Res. (1)

A. C. Templeton, W. P. Wuelfing, and R. W. Murray, “Monolayer-protected cluster molecules,” Acc. Chem. Res.33(1), 27–36 (2000).
[CrossRef] [PubMed]

Appl. Phys. B (1)

H. I. Elim, W. Ji, and F. Zhu, “Carrier concentration dependence of optical Kerr nonlinearity in indium tin oxide films,” Appl. Phys. B82(3), 439–442 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

N. Kamaraju, S. Kumar, A. K. Sood, S. Guha, S. Krishnamurthy, and C. N. R. Rao, “Large nonlinear absorption and refraction coefficients of carbon nanotubes estimated from femtosecond z-scan measurements,” Appl. Phys. Lett.91(25), 251103 (2007).
[CrossRef]

B. D. Yadav and V. Kumar, “Gd@Au15: a magic magnetic gold cluster for cancer therapy and bioimaging,” Appl. Phys. Lett.97(13), 133701 (2010).
[CrossRef]

Chem. Mater. (1)

E. S. Shibu and T. Pradeep, “Quantum clusters in cavities: Trapped Au15 in cyclodextrins,” Chem. Mater.23(4), 989–999 (2011).
[CrossRef]

Chem. Phys. (1)

M. Brunel, B. Campagne, M. Canva, A. Brun, F. Chaput, and J.-P. Boilot, “Ultrafast induced excited state absorption in organically doped xerogels,” Chem. Phys.246(1–3), 477–481 (1999).
[CrossRef]

Chem. Phys. Lett. (4)

S. Kumar, N. Kamaraju, K. S. Vasu, A. Nag, A. K. Sood, and C. N. R. Rao, “Graphene analogue BCN: Femtosecond nonlinear optical susceptibility and hot carrier dynamics,” Chem. Phys. Lett.499(1–3), 152–157 (2010).
[CrossRef]

J. Thomas, M. Anija, J. Cyriac, T. Pradeep, and R. Philip, “Observation of a fifth order optical nonlinearity in 29 kDa Au@alkanethiol clusters excited in the visible,” Chem. Phys. Lett.403(4–6), 308–313 (2005).
[CrossRef]

S. Link, M. A. El-Sayed, T. Gregory Schaaff, and R. L. Whetten, “Transition from nanoparticle to molecular behavior: a femtosecond transient absorption study of a size-selected 28 atom gold cluster,” Chem. Phys. Lett.356(3–4), 240–246 (2002).
[CrossRef]

B. Dupuis, C. Michaut, I. Jouanin, J. Delaire, P. Robin, P. Feneyrou, and V. Dentan, “Photoinduced intramolecular charge-transfer systems based on porphyrin-viologen dyads for optical limiting,” Chem. Phys. Lett.300(1–2), 169–176 (1999).
[CrossRef]

Chem. Rev. (1)

M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev.104(1), 293–346 (2004).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

M. S. -Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).

J. Am. Chem. Soc. (1)

M. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz, and R. Jin, “Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties,” J. Am. Chem. Soc.130(18), 5883–5885 (2008).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys.103(9), 093108 (2008).
[CrossRef]

J. Chem. Phys. (2)

R. Pal, L.-M. Wang, W. Huang, L.-S. Wang, and X. C. Zeng, “Structure evolution of gold cluster anions between the planar and cage structures by isoelectronic substitution: Aun- (n = 13-15) and MAun- (n = 12-14; M = Ag, Cu),” J. Chem. Phys.134(5), 054306 (2011).
[CrossRef] [PubMed]

R. S. Swathi and K. L. Sebastian, “Long range resonance energy transfer from a dye molecule to graphene has (distance)-4 dependence,” J. Chem. Phys.130(8), 086101–086103 (2009).
[CrossRef] [PubMed]

J. Lumin. (1)

R. Nakamura and Y. Kanematsu, “A simple and effective method for femtosecond spectral snapshots,” J. Lumin.94–95(2–4), 559–563 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (4)

Y. Yang, M. Nogami, J. Shi, H. Chen, G. Ma, and S. Tang, “Enhancement of third-order optical nonlinearities in 3-dimensional films of dielectric shell capped Au composite nanoparticles,” J. Phys. Chem. B109(11), 4865–4871 (2005).
[CrossRef] [PubMed]

T. G. Schaaff, G. Knight, M. N. Shafigullin, R. F. Borkman, and R. L. Whetten, “Isolation and Selected Properties of a 10.4 kDa Gold:Glutathione Cluster Compound,” J. Phys. Chem. B102(52), 10643–10646 (1998).
[CrossRef]

T. G. Schaaff and R. L. Whetten, “Giant gold−glutathione cluster compounds: intense optical activity in metal-based transitions,” J. Phys. Chem. B104(12), 2630–2641 (2000).
[CrossRef]

S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, “Visible to Infrared Luminescence from a 28-Atom Gold Cluster,” J. Phys. Chem. B106(13), 3410–3415 (2002).
[CrossRef]

Langmuir (1)

J. Lv, L. Jiang, C. Li, X. Liu, M. Yuan, J. Xu, W. Zhou, Y. Song, H. Liu, Y. Li, and D. Zhu, “Large third-order optical nonlinear effects of gold nanoparticles with unusual fluorescence enhancement,” Langmuir24(15), 8297–8302 (2008).
[CrossRef] [PubMed]

Nano Lett. (1)

R. Philip, P. Chantharasupawong, H. Qian, R. Jin, and J. Thomas, “Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals,” Nano Lett.12(9), 4661–4667 (2012).
[CrossRef] [PubMed]

Nanoscale (1)

R. Jin, “Quantum sized, thiolate-protected gold nanoclusters,” Nanoscale2(3), 343–362 (2010).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. B (4)

F. Matino, L. Persano, V. Arima, D. Pisignano, R. I. R. Blyth, R. Cingolani, and R. Rinaldi, “Electronic structure of indium-tin-oxide films fabricated by reactive electron-beam deposition,” Phys. Rev. B72(8), 085437–085445 (2005).
[CrossRef]

D. Chemla, J. Heritage, P. Liao, and E. Isaacs, “Enhanced four-wave mixing from silver particles,” Phys. Rev. B27(8), 4553–4558 (1983).
[CrossRef]

A. Vargas, G. Santarossa, M. Iannuzzi, and A. Baiker, “Fluxionality of gold nanoparticles investigated by Born-Oppenheimer molecular dynamics,” Phys. Rev. B80(19), 195421 (2009).
[CrossRef]

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver and gold-silver alloy nanoclusters,” Phys. Rev. B62(19), 13160–13166 (2000).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

C. H. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, and A. J. Heeger, “Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.100(11), 6297–6301 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

UV-Vis absorption spectrum of Au15 clusters inside cyclodextrin (CD) cavities plotted as the natural logarithm of the Jacobian factor. Well defined absorption features related to molecular character of the clusters are marked with upward arrows. Lower inset shows a plot of the absorption spectrum on a linear-linear scale. Upper inset shows the schematic illustration of CD-assisted one-pot synthesis of the Au15 clusters via the core etching reaction [10]. GSH indicates glutathione used as the core-etching agent and as the ligand to protect the Au15 core.

Fig. 2
Fig. 2

Nonlinear transmission results measured using z-scan method in both OA and CA configurations taken at an excitation wavelength of 395 nm (3.15 eV). Normalized transmittance of Au15 clusters in contact with (a) ITO-coated glass plate, and (b) bare glass plate. The insets in (a) and (b) show results for bare ITO and glass plates alone. The continuous curves are numerical fits to retrieve the two-photon absorption and nonlinear refraction coefficients as given in Table 1.

Fig. 3
Fig. 3

Transient differential transmission data from non-degenerate pump-probe spectroscopy of Au15-ITO and Au15-SiO2 samples using 395 nm pump and 790 nm probe, shown in (a) linear-linear plot, and (b) log-linear plot. Continuous red and blue curves are fits using bi-exponentially decaying function with fast time-constant τ1 and slow time-constant, τ2 along with a rising contribution with rise time τr. The inset in (a) is the result on an ITO plate using the highest experimental pump-fluence of ~1 mJ/cm2.

Fig. 4
Fig. 4

Schematic of the electronic energy-diagram of Au15 cluster coupled with the electronic energy-band diagram of ITO. The blue and red arrows represent the pump and probe photon energies. Possible excited-state intersystem coupling between Au15 clusters and ITO is represented by the curved arrow. Some of the possible interstate relaxation processes are marked by thin downward arrows.

Tables (1)

Tables Icon

Table 1 Nonlinear optical coefficients obtained from z-scan measurements at 395 nm (3.15 eV). Here β is two-photon absorption coefficient, γ is nonlinear refraction coefficient and Reχ(3) and Imχ(3) represent the real and imaginary parts of the third-order optical susceptibility, χ(3).

Metrics