Abstract

Different from traditional panorama stereo acquisition technique shooting with numerous cameras, this study equips a double-symmetric prism in front of a single-lens camera to acquire images from four different angles of view, and the images acquired from the cameras every 20 degrees complete a pair of panorama stereo images with vertical angle of view ( ± 16 degrees) by image-based rendering. The panorama stereo acquisition technique reduces the number of cameras by three-fourth, and the acquired images contain vertical angles of view. Moreover, the image resolution is enhanced several times of the resolution of integral photography without moiré effect.

©2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiocular image sensor with on-chip beam-splitter and inner meta-micro-lens for single-main-lens stereo camera

Shinzo Koyama, Kazutoshi Onozawa, Keisuke Tanaka, Shigeru Saito, Sahim Mohamed Kourkouss, and Yoshihisa Kato
Opt. Express 24(16) 18035-18048 (2016)

Optics system design applying a micro-prism array of a single lens stereo image pair

Chien-Yue Chen, Ting-Ting Yang, and Wen - Shing Sun
Opt. Express 16(20) 15495-15505 (2008)

Single-camera panoramic stereo imaging system with a fisheye lens and a convex mirror

Weiming Li and Y. F. Li
Opt. Express 19(7) 5855-5867 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 1–30 (2008).
    [Crossref] [PubMed]
  2. S. Y. Park, N. Lee, and S. Kim, “Stereoscopic imaging camera with simultaneous vergence and focus control,” Opt. Eng. 43(12), 3130–3137 (2004).
    [Crossref]
  3. S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
    [Crossref] [PubMed]
  4. T. P. Pachidis and J. N. Lygouras, “Pseudo-stereo vision system: A detailed Study,” J. Intell. Robot. Syst. 42(2), 135–167 (2005).
    [Crossref]
  5. J. Gluckman and S. K. Nayar, “Rectified catadioptric stereo sensors,” IEEE Trans. Pattern Anal. Mach. Intell. 24(2), 224–236 (2002).
    [Crossref]
  6. J. Zhu, Y. Li, and S. Ye, “Design and calibration of a single-camera-based stereo vision sensor,” Opt. Eng. 45(8), 083001 (2006).
    [Crossref]
  7. Y. Xiao and K. B. Lim, “A prism-based single-lens stereovision system: From trinocular to multi-ocular,” Image Vis. Comput. 25(11), 1725–1736 (2007).
    [Crossref]
  8. D. H. Lee and I. S. Kweon, “A novel stereo camera system by a biprism,” IEEE Trans. Robot. Autom. 16(5), 528–541 (2000).
    [Crossref]
  9. C. Y. Chen, T. T. Yang, and W. S. Sun, “Optics system design applying a micro-prism array of a single lens stereo image pair,” Opt. Express 16(20), 15495–15505 (2008).
    [Crossref] [PubMed]
  10. S. Peleg, M. Ben-Ezra, and Y. Pritch, “Omnistereo: panoramic stereo imaging,” IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 279–290 (2001).
    [Crossref]
  11. S. E. Chen and L. Williams, “Quicktime VR-an image-based approach to virtual environment navigation,” in SIGGRAPH’95, (Association for Computing Machinery, Los Angeles, 1995), pp. 29–38.
  12. L. McMillan and G. Bishop, “Plenoptic modeling: an image-based rendering system,” in SIGGRAPH’95, (Association for Computing Machinery, Los Angeles, 1995), pp. 39–46.
  13. Y. C. Chen, C. F. Chang, and Z. N. Shen, “Image-based model acquisition and interactive rendering for building 3D digital archives,” in Proceedings of 2005 International Conference on Digital Archives Technologies (ICDAT 2005).
  14. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36(7), 1598–1603 (1997).
    [Crossref] [PubMed]
  15. T. Naemura, T. Yoshida, and H. Harashima, “3-D computer graphics based on integral photography,” Opt. Express 8(4), 255–262 (2001).
    [Crossref] [PubMed]
  16. H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15(8), 2059–2065 (1998).
    [Crossref]
  17. M. Okui, M. Kobayashi, J. Arai, and F. Okano, “Moiré fringe reduction by optical filters in integral threedimensional imaging on a color flat-panel display,” Appl. Opt. 44(21), 4475–4483 (2005).
    [Crossref] [PubMed]
  18. W. J. Smith, in Modern Optical Engineering (Mc Graw Hill, 2008), pp.123–125.
  19. J. K. Hasegawa and C. L. Tozzi, “Shepe from Shading with perspective projection and camera calibration,” Comput. Graph. -UK 20(3), 351–364 (1996).
    [Crossref]
  20. B. Julesz, “Cyclopean perception and neurophysiology,” Invest. Ophthalmol. 11(6), 540–548 (1972).
    [PubMed]

2008 (2)

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 1–30 (2008).
[Crossref] [PubMed]

C. Y. Chen, T. T. Yang, and W. S. Sun, “Optics system design applying a micro-prism array of a single lens stereo image pair,” Opt. Express 16(20), 15495–15505 (2008).
[Crossref] [PubMed]

2007 (1)

Y. Xiao and K. B. Lim, “A prism-based single-lens stereovision system: From trinocular to multi-ocular,” Image Vis. Comput. 25(11), 1725–1736 (2007).
[Crossref]

2006 (1)

J. Zhu, Y. Li, and S. Ye, “Design and calibration of a single-camera-based stereo vision sensor,” Opt. Eng. 45(8), 083001 (2006).
[Crossref]

2005 (3)

M. Okui, M. Kobayashi, J. Arai, and F. Okano, “Moiré fringe reduction by optical filters in integral threedimensional imaging on a color flat-panel display,” Appl. Opt. 44(21), 4475–4483 (2005).
[Crossref] [PubMed]

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

T. P. Pachidis and J. N. Lygouras, “Pseudo-stereo vision system: A detailed Study,” J. Intell. Robot. Syst. 42(2), 135–167 (2005).
[Crossref]

2004 (1)

S. Y. Park, N. Lee, and S. Kim, “Stereoscopic imaging camera with simultaneous vergence and focus control,” Opt. Eng. 43(12), 3130–3137 (2004).
[Crossref]

2002 (1)

J. Gluckman and S. K. Nayar, “Rectified catadioptric stereo sensors,” IEEE Trans. Pattern Anal. Mach. Intell. 24(2), 224–236 (2002).
[Crossref]

2001 (2)

S. Peleg, M. Ben-Ezra, and Y. Pritch, “Omnistereo: panoramic stereo imaging,” IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 279–290 (2001).
[Crossref]

T. Naemura, T. Yoshida, and H. Harashima, “3-D computer graphics based on integral photography,” Opt. Express 8(4), 255–262 (2001).
[Crossref] [PubMed]

2000 (1)

D. H. Lee and I. S. Kweon, “A novel stereo camera system by a biprism,” IEEE Trans. Robot. Autom. 16(5), 528–541 (2000).
[Crossref]

1998 (1)

1997 (1)

1996 (1)

J. K. Hasegawa and C. L. Tozzi, “Shepe from Shading with perspective projection and camera calibration,” Comput. Graph. -UK 20(3), 351–364 (1996).
[Crossref]

1972 (1)

B. Julesz, “Cyclopean perception and neurophysiology,” Invest. Ophthalmol. 11(6), 540–548 (1972).
[PubMed]

Akeley, K.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 1–30 (2008).
[Crossref] [PubMed]

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

Arai, J.

Banks, M. S.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 1–30 (2008).
[Crossref] [PubMed]

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

Ben-Ezra, M.

S. Peleg, M. Ben-Ezra, and Y. Pritch, “Omnistereo: panoramic stereo imaging,” IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 279–290 (2001).
[Crossref]

Chang, C. F.

Y. C. Chen, C. F. Chang, and Z. N. Shen, “Image-based model acquisition and interactive rendering for building 3D digital archives,” in Proceedings of 2005 International Conference on Digital Archives Technologies (ICDAT 2005).

Chen, C. Y.

Chen, Y. C.

Y. C. Chen, C. F. Chang, and Z. N. Shen, “Image-based model acquisition and interactive rendering for building 3D digital archives,” in Proceedings of 2005 International Conference on Digital Archives Technologies (ICDAT 2005).

Ernst, M. O.

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

Girshick, A. R.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 1–30 (2008).
[Crossref] [PubMed]

Gluckman, J.

J. Gluckman and S. K. Nayar, “Rectified catadioptric stereo sensors,” IEEE Trans. Pattern Anal. Mach. Intell. 24(2), 224–236 (2002).
[Crossref]

Harashima, H.

Hasegawa, J. K.

J. K. Hasegawa and C. L. Tozzi, “Shepe from Shading with perspective projection and camera calibration,” Comput. Graph. -UK 20(3), 351–364 (1996).
[Crossref]

Hoffman, D. M.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 1–30 (2008).
[Crossref] [PubMed]

Hoshino, H.

Isono, H.

Julesz, B.

B. Julesz, “Cyclopean perception and neurophysiology,” Invest. Ophthalmol. 11(6), 540–548 (1972).
[PubMed]

Kim, S.

S. Y. Park, N. Lee, and S. Kim, “Stereoscopic imaging camera with simultaneous vergence and focus control,” Opt. Eng. 43(12), 3130–3137 (2004).
[Crossref]

Kobayashi, M.

Kweon, I. S.

D. H. Lee and I. S. Kweon, “A novel stereo camera system by a biprism,” IEEE Trans. Robot. Autom. 16(5), 528–541 (2000).
[Crossref]

Lee, D. H.

D. H. Lee and I. S. Kweon, “A novel stereo camera system by a biprism,” IEEE Trans. Robot. Autom. 16(5), 528–541 (2000).
[Crossref]

Lee, N.

S. Y. Park, N. Lee, and S. Kim, “Stereoscopic imaging camera with simultaneous vergence and focus control,” Opt. Eng. 43(12), 3130–3137 (2004).
[Crossref]

Li, Y.

J. Zhu, Y. Li, and S. Ye, “Design and calibration of a single-camera-based stereo vision sensor,” Opt. Eng. 45(8), 083001 (2006).
[Crossref]

Lim, K. B.

Y. Xiao and K. B. Lim, “A prism-based single-lens stereovision system: From trinocular to multi-ocular,” Image Vis. Comput. 25(11), 1725–1736 (2007).
[Crossref]

Lygouras, J. N.

T. P. Pachidis and J. N. Lygouras, “Pseudo-stereo vision system: A detailed Study,” J. Intell. Robot. Syst. 42(2), 135–167 (2005).
[Crossref]

Naemura, T.

Nayar, S. K.

J. Gluckman and S. K. Nayar, “Rectified catadioptric stereo sensors,” IEEE Trans. Pattern Anal. Mach. Intell. 24(2), 224–236 (2002).
[Crossref]

Okano, F.

Okui, M.

Pachidis, T. P.

T. P. Pachidis and J. N. Lygouras, “Pseudo-stereo vision system: A detailed Study,” J. Intell. Robot. Syst. 42(2), 135–167 (2005).
[Crossref]

Park, S. Y.

S. Y. Park, N. Lee, and S. Kim, “Stereoscopic imaging camera with simultaneous vergence and focus control,” Opt. Eng. 43(12), 3130–3137 (2004).
[Crossref]

Peleg, S.

S. Peleg, M. Ben-Ezra, and Y. Pritch, “Omnistereo: panoramic stereo imaging,” IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 279–290 (2001).
[Crossref]

Pritch, Y.

S. Peleg, M. Ben-Ezra, and Y. Pritch, “Omnistereo: panoramic stereo imaging,” IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 279–290 (2001).
[Crossref]

Shen, Z. N.

Y. C. Chen, C. F. Chang, and Z. N. Shen, “Image-based model acquisition and interactive rendering for building 3D digital archives,” in Proceedings of 2005 International Conference on Digital Archives Technologies (ICDAT 2005).

Sun, W. S.

Tozzi, C. L.

J. K. Hasegawa and C. L. Tozzi, “Shepe from Shading with perspective projection and camera calibration,” Comput. Graph. -UK 20(3), 351–364 (1996).
[Crossref]

Watt, S. J.

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

Xiao, Y.

Y. Xiao and K. B. Lim, “A prism-based single-lens stereovision system: From trinocular to multi-ocular,” Image Vis. Comput. 25(11), 1725–1736 (2007).
[Crossref]

Yang, T. T.

Ye, S.

J. Zhu, Y. Li, and S. Ye, “Design and calibration of a single-camera-based stereo vision sensor,” Opt. Eng. 45(8), 083001 (2006).
[Crossref]

Yoshida, T.

Yuyama, I.

Zhu, J.

J. Zhu, Y. Li, and S. Ye, “Design and calibration of a single-camera-based stereo vision sensor,” Opt. Eng. 45(8), 083001 (2006).
[Crossref]

Appl. Opt. (2)

Comput. Graph. -UK (1)

J. K. Hasegawa and C. L. Tozzi, “Shepe from Shading with perspective projection and camera calibration,” Comput. Graph. -UK 20(3), 351–364 (1996).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (2)

S. Peleg, M. Ben-Ezra, and Y. Pritch, “Omnistereo: panoramic stereo imaging,” IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 279–290 (2001).
[Crossref]

J. Gluckman and S. K. Nayar, “Rectified catadioptric stereo sensors,” IEEE Trans. Pattern Anal. Mach. Intell. 24(2), 224–236 (2002).
[Crossref]

IEEE Trans. Robot. Autom. (1)

D. H. Lee and I. S. Kweon, “A novel stereo camera system by a biprism,” IEEE Trans. Robot. Autom. 16(5), 528–541 (2000).
[Crossref]

Image Vis. Comput. (1)

Y. Xiao and K. B. Lim, “A prism-based single-lens stereovision system: From trinocular to multi-ocular,” Image Vis. Comput. 25(11), 1725–1736 (2007).
[Crossref]

Invest. Ophthalmol. (1)

B. Julesz, “Cyclopean perception and neurophysiology,” Invest. Ophthalmol. 11(6), 540–548 (1972).
[PubMed]

J. Intell. Robot. Syst. (1)

T. P. Pachidis and J. N. Lygouras, “Pseudo-stereo vision system: A detailed Study,” J. Intell. Robot. Syst. 42(2), 135–167 (2005).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Vis. (2)

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 1–30 (2008).
[Crossref] [PubMed]

Opt. Eng. (2)

S. Y. Park, N. Lee, and S. Kim, “Stereoscopic imaging camera with simultaneous vergence and focus control,” Opt. Eng. 43(12), 3130–3137 (2004).
[Crossref]

J. Zhu, Y. Li, and S. Ye, “Design and calibration of a single-camera-based stereo vision sensor,” Opt. Eng. 45(8), 083001 (2006).
[Crossref]

Opt. Express (2)

Other (4)

S. E. Chen and L. Williams, “Quicktime VR-an image-based approach to virtual environment navigation,” in SIGGRAPH’95, (Association for Computing Machinery, Los Angeles, 1995), pp. 29–38.

L. McMillan and G. Bishop, “Plenoptic modeling: an image-based rendering system,” in SIGGRAPH’95, (Association for Computing Machinery, Los Angeles, 1995), pp. 39–46.

Y. C. Chen, C. F. Chang, and Z. N. Shen, “Image-based model acquisition and interactive rendering for building 3D digital archives,” in Proceedings of 2005 International Conference on Digital Archives Technologies (ICDAT 2005).

W. J. Smith, in Modern Optical Engineering (Mc Graw Hill, 2008), pp.123–125.

Supplementary Material (2)

» Media 1: MP4 (544 KB)     
» Media 2: MP4 (563 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Optic path of the single-lens camera for the panorama stereo acquisition technique.

Fig. 2
Fig. 2

The collect cone angles δο and δω of the system: (a) marginal ray; (b) chief ray.

Fig. 3
Fig. 3

Lens layout after optimization.

Fig. 4
Fig. 4

Image quality of the lens: (a) MTF; (b) field curvature and distortion; and (c) relative illumination.

Fig. 5
Fig. 5

The collection area of the half-angle of view of the symmetric prism camera: (a) Horizontal angle of view; (b) Vertical angle of view.

Fig. 6
Fig. 6

Schematic diagram of the double-symmetric prism.

Fig. 7
Fig. 7

Panorama acquisition of the 18 double-symmetric prism cameras.

Fig. 8
Fig. 8

(a)stereo image pairs processed by IBR; (b) panorama stereo image.

Fig. 9
Fig. 9

The double-symmetric prism: (left) top of view, (right) right of view.

Fig. 10
Fig. 10

Test image with the double-symmetric prism camera (a) without the double-symmetric prism, (b) with the double-symmetric prism.

Fig. 11
Fig. 11

Quadrant images shot by the double-symmetric prism camera (a) camera 1 at 0°, (b) camera 2 at 20°.

Fig. 12
Fig. 12

Stereo image pair.

Fig. 13
Fig. 13

The results of the panorama stereo image pair: (a) upper side of view; (b) lower side of view.

Tables (1)

Tables Icon

Table 1 The specifications of CCD camera.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δ ο = sin 1 (sinα ( n 2 sin 2 α) 1/2 cosαsinα)
δ ω = sin 1 {cosαsin(α θ ω )sinα [ n 2 sin 2 (α θ ω )] 1/2 }

Metrics