Abstract

The formation of self-organized micro- and nano-structured surfaces on nickel via both above surface growth (ASG) and below surface growth (BSG) mechanisms using femtosecond laser pulse illumination is reported. Detailed stepped growth experiments demonstrate that conical mound-shaped surface structure development is characterized by a balance of growth mechanisms including scattering from surface structures and geometric effects causing preferential ablation of the valleys, flow of the surface melt, and redeposition of ablated material; all of which are influenced by the laser fluence and the number of laser shots on the sample. BSG-mound formation is dominated by scattering, while ASG-mound formation is dominated by material flow and redeposition. This is the first demonstration to our knowledge of the use of femtosecond laser pulses to fabricate metallic surface structures that rise above the original surface. These results are useful in understanding the details of multi-pulse femtosecond laser interaction with metals.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. G. Lee, H. M. Branz, Y.-T. Lin, E. Mazur, and M.-J. Sher, “Light trapping for thin silicon solar cells by femtosecond laser texturing preprint,” in IEEE Phot. Spec. Conf. (2012).
  2. H. Wang, P. Kongsuwan, G. Satoh, and Y. Lawrence Yao, “Femtosecond laser-induced simultaneous surface texturing and crystallization of a-Si:H thin film: absorption and crystallinity,” J. Manuf. Sci. Eng.134(3), 031006 (2012).
    [CrossRef]
  3. H. Wang, P. Kongsuwan, G. Satoh, and Y. L. Yao, “Effect of processing medium and condition on absorption enhancement of femtosecond laser treated a-Si: H thin film,” Proceedings of NAMRI39, (2011).
  4. M.-J. Sher, M. T. Winkler, and E. Mazur, “Pulsed-laser hyperdoping and surface texturing for photovoltaics,” MRS Bull.36(06), 439–445 (2011).
    [CrossRef]
  5. V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energy Mater. Sol. Cells94(12), 2251–2257 (2010).
    [CrossRef]
  6. M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin Solid Films516(20), 6791–6795 (2008).
    [CrossRef]
  7. A. Serpengüzel, A. Kurt, I. Inanç, J. Cary, E. Mazur, A. Serpenguzel, I. Inanç, and J. E. Carey, “Luminescence of black silicon,” J. Nanophotonics2(1), 021770 (2008).
    [CrossRef]
  8. B. K. Nayak and M. C. Gupta, “Femtosecond-laser-induced-crystallization and simultaneous formation of light trapping microstructures in thin a-Si:H films,” Appl. Phys. Adv. Mater.89, 663–666 (2007).
  9. J. E. Carey, C. H. Crouch, and E. Mazur, “Femtosecond-laser-assisted microstructuring of silicon surfaces,” Lasers and Electro-Optics Society (LEOS) (2003), pp. 97–98.
  10. R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” Jpn. J. Appl. Phys.93(5), 2626 (2003).
    [CrossRef]
  11. A. Y. Vorobyev and C. Guo, “Laser turns silicon superwicking,” Opt. Express18(7), 6455–6460 (2010).
    [CrossRef] [PubMed]
  12. A. Y. Vorobyev and C. Guo, “Water sprints uphill on glass,” Jpn. J. Appl. Phys.108(12), 123512 (2010).
    [CrossRef]
  13. B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci.256(1), 61–66 (2009).
    [CrossRef]
  14. A.-M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, “Patterned superhydrophobic metallic surfaces,” Langmuir25(8), 4821–4827 (2009).
    [CrossRef] [PubMed]
  15. E. Fadeeva, V. K. Truong, M. Stiesch, B. N. Chichkov, R. J. Crawford, J. Wang, and E. P. Ivanova, “Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation,” Langmuir27(6), 3012–3019 (2011).
    [CrossRef] [PubMed]
  16. P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, and E. Audouard, “Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment,” Appl. Surf. Sci.257(12), 5213–5218 (2011).
    [CrossRef]
  17. B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation,” Nanotechnology18(19), 195302 (2007).
    [CrossRef]
  18. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. Adv. Mater.74, 19–25 (2002).
  19. K. W. Kolasinski, D. Mills, and M. Nahidi, “Laser assisted and wet chemical etching of silicon nanostructures,” J. Vac. Sci. Technol. A24(4), 1474 (2006).
    [CrossRef]
  20. V. Zorba, N. Boukos, I. Zergioti, and C. Fotakis, “Ultraviolet femtosecond, picosecond and nanosecond laser microstructuring of silicon: structural and optical properties,” Appl. Opt.47(11), 1846–1850 (2008).
    [CrossRef] [PubMed]
  21. J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations,” Appl. Surf. Sci.245(1-4), 102–108 (2005).
    [CrossRef]
  22. V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
    [CrossRef]
  23. T. Yong Hwang and C. Guo, “Polarization and angular effects of femtosecond laser-induced conical microstructures on Ni,” Jpn. J. Appl. Phys.111(8), 083518 (2012).
    [CrossRef]
  24. T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. Adv. Mater.70, 383–385 (2000).
  25. B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bull.31(08), 626–633 (2006).
    [CrossRef]
  26. C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett.84(11), 1850 (2004).
    [CrossRef]
  27. T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673 (1998).
    [CrossRef]
  28. B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Ultrafast-laser-assisted chemical restructuring of silicon and germanium surfaces,” Appl. Surf. Sci.253(15), 6580–6583 (2007).
    [CrossRef]
  29. M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater.17(14), 3582–3586 (2005).
    [CrossRef]
  30. D. Riedel, J. L. Hernandez-Pozos, R. E. Palmer, and K. W. Kolasinski, “Fabrication of ordered arrays of silicon cones by optical diffraction in ultrafast laser etching with SF6,” Appl. Phys. Adv. Mater.78, 381–385 (2004).
  31. B. K. Nayak and M. C. Gupta, “Ultrafast laser-induced self-organized conical micro/nano surface structures and their origin,” Opt. Lasers Eng.48(10), 966–973 (2010).
    [CrossRef]
  32. K. Kuršelis, R. Kiyan, and B. N. Chichkov, “Formation of corrugated and porous steel surfaces by femtosecond laser irradiation,” Appl. Surf. Sci.258(22), 8845–8852 (2012).
    [CrossRef]
  33. V. Dumas, A. Rattner, L. Vico, E. Audouard, J. C. Dumas, P. Naisson, and P. Bertrand, “Multiscale grooved titanium processed with femtosecond laser influences mesenchymal stem cell morphology, adhesion, and matrix organization,” J. Biomed. Mater. Res. A100(11), 3108–3116 (2012).
    [CrossRef] [PubMed]
  34. B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng.48(10), 940–949 (2010).
    [CrossRef]
  35. Y. Yang, J. Yang, C. Liang, H. Wang, X. Zhu, and N. Zhang, “Surface microstructuring of Ti plates by femtosecond lasers in liquid ambiences: a new approach to improving biocompatibility,” Opt. Express17(23), 21124–21133 (2009).
    [CrossRef] [PubMed]
  36. C. Liang, Y. Yang, H. Wang, J. Yang, and X. Yang, “Preparation of porous microstructures on NiTi alloy surface with femtosecond laser pulses,” Chin. Sci. Bull.53(5), 700–705 (2008).
    [CrossRef]
  37. N. G. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, and K. G. Watkins, “Femtosecond laser surface texturing of a nickel-based superalloy,” Appl. Surf. Sci.255(5), 2796–2802 (2008).
    [CrossRef]
  38. N. G. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, S. Logothetidis, and K. G. Watkins, “Femtosecond laser ablation characteristics of nickel-based superalloy C263,” Appl. Phys. Adv. Mater.94, 999–1009 (2008).
  39. A. Y. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci.253(17), 7272–7280 (2007).
    [CrossRef]
  40. M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, and N. Abe, “Microstructures formation on titanium plate by femtosecond laser ablation,” J. Phys. Conf. Ser.59, 666–669 (2007).
    [CrossRef]
  41. W. Jia, Z. Peng, Z. Wang, X. Ni, and C. Wang, “The effect of femtosecond laser micromachining on the surface characteristics and subsurface microstructure of amorphous FeCuNbSiB alloy,” Appl. Surf. Sci.253(3), 1299–1303 (2006).
    [CrossRef]
  42. P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci.233(1-4), 275–287 (2004).
    [CrossRef]
  43. M. Bereznai, I. Pelsöczi, Z. Tóth, K. Turzó, M. Radnai, Z. Bor, and A. Fazekas, “Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material,” Biomaterials24(23), 4197–4203 (2003).
    [CrossRef] [PubMed]
  44. G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys. Adv. Mater.74, 729–739 (2002).
  45. B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. Adv. Mater.90, 399–402 (2007).
  46. A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 1 – 23 (2012).
  47. B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng.48(10), 940–949 (2010).
    [CrossRef]
  48. V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Ultralow reflectance metal surfaces by ultrafast laser texturing,” Appl. Opt.49(31), 5983 (2010).
    [CrossRef]
  49. A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B72(19), 195422 (2005).
    [CrossRef]
  50. G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B86(11), 115316 (2012).
    [CrossRef]
  51. M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715 (2003).
    [CrossRef]
  52. A. P. Singh, A. Kapoor, K. N. Tripathi, and G. R. Kumar, “Laser damage studies of silicon surfaces using ultra-short laser pulses,” Opt. Laser Technol.34(1), 37–43 (2002).
    [CrossRef]
  53. F. Sánchez, J. L. Morenza, R. Aguiar, J. C. Delgado, and M. Varela, “Dynamics of the hydrodynamical growth of columns on silicon exposed to ArF excimer-laser irradiation,” Appl. Phys. Adv. Mater.66, 83–86 (1998).
  54. F. Sanchez, J. L. Morenza, and V. Trtik, “Characterization of the progressive growth of columns by excimer laser irradiation of silicon,” Appl. Phys. Lett.75(21), 3303 (1999).
    [CrossRef]
  55. S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Formation of conical microstructures upon laser evaporation of solids,” Appl. Phys. Adv. Mater.73, 177–181 (2001).
  56. D. H. Lowndes, J. D. Fowlkes, and A. J. Pedraza, “Early stages of pulsed-laser growth of silicon microcolumns and microcones in air and SF6,” Appl. Surf. Sci.154–155, 647–658 (2000).
    [CrossRef]
  57. D. Mills and K. W. Kolasinski, “Solidification driven extrusion of spikes during laser melting of silicon pillars,” Nanotechnology17(11), 2741–2744 (2006).
    [CrossRef]
  58. A. J. Pedraza, J. D. Fowlkes, S. Jesse, C. Mao, and D. H. Lowndes, “Surface micro-structuring of silicon by excimer-laser irradiation in reactive atmospheres,” Appl. Surf. Sci.168(1-4), 251–257 (2000).
    [CrossRef]
  59. A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Self-organized silicon microcolumn arrays generated by pulsed laser irradiation,” Mater. Sci.734, 731–734 (2008).
  60. A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Silicon microcolumn arrays grown by nanosecond pulsed-excimer laser irradiation,” Appl. Phys. Lett.74(16), 2322–2324 (1999).
    [CrossRef]
  61. A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Laser ablation and column formation in silicon under oxygen-rich atmospheres,” Appl. Phys. Lett.77(19), 3018 (2000).
    [CrossRef]
  62. F. Sanchez, J. L. Morenza, R. Aguiar, J. C. Delgado, and M. Varela, “Whiskerlike structure growth on silicon exposed to ArF excimer laser irradiation,” Appl. Phys. Lett.69(5), 620 (1996).
    [CrossRef]
  63. V. V. Voronov, S. I. Dolgaev, S. V. Lavrishchev, A. A. Lyalin, A. V. Simakin, and G. A. Shafeev, “Formation of conic microstructures upon pulsed laser evaporation of solids,” Quantum Electron.30(8), 710–714 (2000).
    [CrossRef]
  64. R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett.4(5), 89 (1964).
    [CrossRef]
  65. J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl.24(4), 042006 (2012).
    [CrossRef]
  66. H. van Driel, J. Sipe, and J. Young, “Laser-Induced Periodic Surface Structure on Solids: A Universal Phenomenon,” Phys. Rev. Lett.49(26), 1955–1958 (1982).
    [CrossRef]
  67. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
    [CrossRef]

2012 (7)

H. Wang, P. Kongsuwan, G. Satoh, and Y. Lawrence Yao, “Femtosecond laser-induced simultaneous surface texturing and crystallization of a-Si:H thin film: absorption and crystallinity,” J. Manuf. Sci. Eng.134(3), 031006 (2012).
[CrossRef]

T. Yong Hwang and C. Guo, “Polarization and angular effects of femtosecond laser-induced conical microstructures on Ni,” Jpn. J. Appl. Phys.111(8), 083518 (2012).
[CrossRef]

K. Kuršelis, R. Kiyan, and B. N. Chichkov, “Formation of corrugated and porous steel surfaces by femtosecond laser irradiation,” Appl. Surf. Sci.258(22), 8845–8852 (2012).
[CrossRef]

V. Dumas, A. Rattner, L. Vico, E. Audouard, J. C. Dumas, P. Naisson, and P. Bertrand, “Multiscale grooved titanium processed with femtosecond laser influences mesenchymal stem cell morphology, adhesion, and matrix organization,” J. Biomed. Mater. Res. A100(11), 3108–3116 (2012).
[CrossRef] [PubMed]

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 1 – 23 (2012).

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B86(11), 115316 (2012).
[CrossRef]

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl.24(4), 042006 (2012).
[CrossRef]

2011 (3)

E. Fadeeva, V. K. Truong, M. Stiesch, B. N. Chichkov, R. J. Crawford, J. Wang, and E. P. Ivanova, “Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation,” Langmuir27(6), 3012–3019 (2011).
[CrossRef] [PubMed]

P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, and E. Audouard, “Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment,” Appl. Surf. Sci.257(12), 5213–5218 (2011).
[CrossRef]

M.-J. Sher, M. T. Winkler, and E. Mazur, “Pulsed-laser hyperdoping and surface texturing for photovoltaics,” MRS Bull.36(06), 439–445 (2011).
[CrossRef]

2010 (7)

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energy Mater. Sol. Cells94(12), 2251–2257 (2010).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Laser turns silicon superwicking,” Opt. Express18(7), 6455–6460 (2010).
[CrossRef] [PubMed]

A. Y. Vorobyev and C. Guo, “Water sprints uphill on glass,” Jpn. J. Appl. Phys.108(12), 123512 (2010).
[CrossRef]

B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng.48(10), 940–949 (2010).
[CrossRef]

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Ultralow reflectance metal surfaces by ultrafast laser texturing,” Appl. Opt.49(31), 5983 (2010).
[CrossRef]

B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng.48(10), 940–949 (2010).
[CrossRef]

B. K. Nayak and M. C. Gupta, “Ultrafast laser-induced self-organized conical micro/nano surface structures and their origin,” Opt. Lasers Eng.48(10), 966–973 (2010).
[CrossRef]

2009 (3)

Y. Yang, J. Yang, C. Liang, H. Wang, X. Zhu, and N. Zhang, “Surface microstructuring of Ti plates by femtosecond lasers in liquid ambiences: a new approach to improving biocompatibility,” Opt. Express17(23), 21124–21133 (2009).
[CrossRef] [PubMed]

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci.256(1), 61–66 (2009).
[CrossRef]

A.-M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, “Patterned superhydrophobic metallic surfaces,” Langmuir25(8), 4821–4827 (2009).
[CrossRef] [PubMed]

2008 (7)

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin Solid Films516(20), 6791–6795 (2008).
[CrossRef]

A. Serpengüzel, A. Kurt, I. Inanç, J. Cary, E. Mazur, A. Serpenguzel, I. Inanç, and J. E. Carey, “Luminescence of black silicon,” J. Nanophotonics2(1), 021770 (2008).
[CrossRef]

V. Zorba, N. Boukos, I. Zergioti, and C. Fotakis, “Ultraviolet femtosecond, picosecond and nanosecond laser microstructuring of silicon: structural and optical properties,” Appl. Opt.47(11), 1846–1850 (2008).
[CrossRef] [PubMed]

C. Liang, Y. Yang, H. Wang, J. Yang, and X. Yang, “Preparation of porous microstructures on NiTi alloy surface with femtosecond laser pulses,” Chin. Sci. Bull.53(5), 700–705 (2008).
[CrossRef]

N. G. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, and K. G. Watkins, “Femtosecond laser surface texturing of a nickel-based superalloy,” Appl. Surf. Sci.255(5), 2796–2802 (2008).
[CrossRef]

N. G. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, S. Logothetidis, and K. G. Watkins, “Femtosecond laser ablation characteristics of nickel-based superalloy C263,” Appl. Phys. Adv. Mater.94, 999–1009 (2008).

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Self-organized silicon microcolumn arrays generated by pulsed laser irradiation,” Mater. Sci.734, 731–734 (2008).

2007 (6)

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. Adv. Mater.90, 399–402 (2007).

A. Y. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci.253(17), 7272–7280 (2007).
[CrossRef]

M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, and N. Abe, “Microstructures formation on titanium plate by femtosecond laser ablation,” J. Phys. Conf. Ser.59, 666–669 (2007).
[CrossRef]

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Ultrafast-laser-assisted chemical restructuring of silicon and germanium surfaces,” Appl. Surf. Sci.253(15), 6580–6583 (2007).
[CrossRef]

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation,” Nanotechnology18(19), 195302 (2007).
[CrossRef]

B. K. Nayak and M. C. Gupta, “Femtosecond-laser-induced-crystallization and simultaneous formation of light trapping microstructures in thin a-Si:H films,” Appl. Phys. Adv. Mater.89, 663–666 (2007).

2006 (4)

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bull.31(08), 626–633 (2006).
[CrossRef]

W. Jia, Z. Peng, Z. Wang, X. Ni, and C. Wang, “The effect of femtosecond laser micromachining on the surface characteristics and subsurface microstructure of amorphous FeCuNbSiB alloy,” Appl. Surf. Sci.253(3), 1299–1303 (2006).
[CrossRef]

K. W. Kolasinski, D. Mills, and M. Nahidi, “Laser assisted and wet chemical etching of silicon nanostructures,” J. Vac. Sci. Technol. A24(4), 1474 (2006).
[CrossRef]

D. Mills and K. W. Kolasinski, “Solidification driven extrusion of spikes during laser melting of silicon pillars,” Nanotechnology17(11), 2741–2744 (2006).
[CrossRef]

2005 (3)

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater.17(14), 3582–3586 (2005).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B72(19), 195422 (2005).
[CrossRef]

J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations,” Appl. Surf. Sci.245(1-4), 102–108 (2005).
[CrossRef]

2004 (4)

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

D. Riedel, J. L. Hernandez-Pozos, R. E. Palmer, and K. W. Kolasinski, “Fabrication of ordered arrays of silicon cones by optical diffraction in ultrafast laser etching with SF6,” Appl. Phys. Adv. Mater.78, 381–385 (2004).

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett.84(11), 1850 (2004).
[CrossRef]

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci.233(1-4), 275–287 (2004).
[CrossRef]

2003 (3)

M. Bereznai, I. Pelsöczi, Z. Tóth, K. Turzó, M. Radnai, Z. Bor, and A. Fazekas, “Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material,” Biomaterials24(23), 4197–4203 (2003).
[CrossRef] [PubMed]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” Jpn. J. Appl. Phys.93(5), 2626 (2003).
[CrossRef]

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715 (2003).
[CrossRef]

2002 (3)

A. P. Singh, A. Kapoor, K. N. Tripathi, and G. R. Kumar, “Laser damage studies of silicon surfaces using ultra-short laser pulses,” Opt. Laser Technol.34(1), 37–43 (2002).
[CrossRef]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. Adv. Mater.74, 19–25 (2002).

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys. Adv. Mater.74, 729–739 (2002).

2001 (1)

S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Formation of conical microstructures upon laser evaporation of solids,” Appl. Phys. Adv. Mater.73, 177–181 (2001).

2000 (5)

D. H. Lowndes, J. D. Fowlkes, and A. J. Pedraza, “Early stages of pulsed-laser growth of silicon microcolumns and microcones in air and SF6,” Appl. Surf. Sci.154–155, 647–658 (2000).
[CrossRef]

A. J. Pedraza, J. D. Fowlkes, S. Jesse, C. Mao, and D. H. Lowndes, “Surface micro-structuring of silicon by excimer-laser irradiation in reactive atmospheres,” Appl. Surf. Sci.168(1-4), 251–257 (2000).
[CrossRef]

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Laser ablation and column formation in silicon under oxygen-rich atmospheres,” Appl. Phys. Lett.77(19), 3018 (2000).
[CrossRef]

V. V. Voronov, S. I. Dolgaev, S. V. Lavrishchev, A. A. Lyalin, A. V. Simakin, and G. A. Shafeev, “Formation of conic microstructures upon pulsed laser evaporation of solids,” Quantum Electron.30(8), 710–714 (2000).
[CrossRef]

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. Adv. Mater.70, 383–385 (2000).

1999 (2)

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Silicon microcolumn arrays grown by nanosecond pulsed-excimer laser irradiation,” Appl. Phys. Lett.74(16), 2322–2324 (1999).
[CrossRef]

F. Sanchez, J. L. Morenza, and V. Trtik, “Characterization of the progressive growth of columns by excimer laser irradiation of silicon,” Appl. Phys. Lett.75(21), 3303 (1999).
[CrossRef]

1998 (2)

F. Sánchez, J. L. Morenza, R. Aguiar, J. C. Delgado, and M. Varela, “Dynamics of the hydrodynamical growth of columns on silicon exposed to ArF excimer-laser irradiation,” Appl. Phys. Adv. Mater.66, 83–86 (1998).

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673 (1998).
[CrossRef]

1996 (1)

F. Sanchez, J. L. Morenza, R. Aguiar, J. C. Delgado, and M. Varela, “Whiskerlike structure growth on silicon exposed to ArF excimer laser irradiation,” Appl. Phys. Lett.69(5), 620 (1996).
[CrossRef]

1983 (1)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

1982 (1)

H. van Driel, J. Sipe, and J. Young, “Laser-Induced Periodic Surface Structure on Solids: A Universal Phenomenon,” Phys. Rev. Lett.49(26), 1955–1958 (1982).
[CrossRef]

1964 (1)

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett.4(5), 89 (1964).
[CrossRef]

Abe, N.

M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, and N. Abe, “Microstructures formation on titanium plate by femtosecond laser ablation,” J. Phys. Conf. Ser.59, 666–669 (2007).
[CrossRef]

Aguiar, R.

F. Sánchez, J. L. Morenza, R. Aguiar, J. C. Delgado, and M. Varela, “Dynamics of the hydrodynamical growth of columns on silicon exposed to ArF excimer-laser irradiation,” Appl. Phys. Adv. Mater.66, 83–86 (1998).

F. Sanchez, J. L. Morenza, R. Aguiar, J. C. Delgado, and M. Varela, “Whiskerlike structure growth on silicon exposed to ArF excimer laser irradiation,” Appl. Phys. Lett.69(5), 620 (1996).
[CrossRef]

Alexandrou, I.

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

Amaratunga, G. A. J.

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

Audouard, E.

V. Dumas, A. Rattner, L. Vico, E. Audouard, J. C. Dumas, P. Naisson, and P. Bertrand, “Multiscale grooved titanium processed with femtosecond laser influences mesenchymal stem cell morphology, adhesion, and matrix organization,” J. Biomed. Mater. Res. A100(11), 3108–3116 (2012).
[CrossRef] [PubMed]

P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, and E. Audouard, “Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment,” Appl. Surf. Sci.257(12), 5213–5218 (2011).
[CrossRef]

Aziz, M. J.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett.84(11), 1850 (2004).
[CrossRef]

Barberoglou, M.

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B86(11), 115316 (2012).
[CrossRef]

Baudach, S.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. Adv. Mater.74, 19–25 (2002).

Beaugiraud, B.

P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, and E. Audouard, “Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment,” Appl. Surf. Sci.257(12), 5213–5218 (2011).
[CrossRef]

Benayoun, S.

P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, and E. Audouard, “Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment,” Appl. Surf. Sci.257(12), 5213–5218 (2011).
[CrossRef]

Bereznai, M.

M. Bereznai, I. Pelsöczi, Z. Tóth, K. Turzó, M. Radnai, Z. Bor, and A. Fazekas, “Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material,” Biomaterials24(23), 4197–4203 (2003).
[CrossRef] [PubMed]

Bertrand, P.

V. Dumas, A. Rattner, L. Vico, E. Audouard, J. C. Dumas, P. Naisson, and P. Bertrand, “Multiscale grooved titanium processed with femtosecond laser influences mesenchymal stem cell morphology, adhesion, and matrix organization,” J. Biomed. Mater. Res. A100(11), 3108–3116 (2012).
[CrossRef] [PubMed]

Bizi-Bandoki, P.

P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, and E. Audouard, “Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment,” Appl. Surf. Sci.257(12), 5213–5218 (2011).
[CrossRef]

Bonse, J.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl.24(4), 042006 (2012).
[CrossRef]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. Adv. Mater.74, 19–25 (2002).

Bor, Z.

M. Bereznai, I. Pelsöczi, Z. Tóth, K. Turzó, M. Radnai, Z. Bor, and A. Fazekas, “Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material,” Biomaterials24(23), 4197–4203 (2003).
[CrossRef] [PubMed]

Boukos, N.

Branz, H. M.

B. G. Lee, H. M. Branz, Y.-T. Lin, E. Mazur, and M.-J. Sher, “Light trapping for thin silicon solar cells by femtosecond laser texturing preprint,” in IEEE Phot. Spec. Conf. (2012).

Cai, L.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci.256(1), 61–66 (2009).
[CrossRef]

Carey, J. E.

A. Serpengüzel, A. Kurt, I. Inanç, J. Cary, E. Mazur, A. Serpenguzel, I. Inanç, and J. E. Carey, “Luminescence of black silicon,” J. Nanophotonics2(1), 021770 (2008).
[CrossRef]

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bull.31(08), 626–633 (2006).
[CrossRef]

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater.17(14), 3582–3586 (2005).
[CrossRef]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett.84(11), 1850 (2004).
[CrossRef]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” Jpn. J. Appl. Phys.93(5), 2626 (2003).
[CrossRef]

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715 (2003).
[CrossRef]

Cary, J.

A. Serpengüzel, A. Kurt, I. Inanç, J. Cary, E. Mazur, A. Serpenguzel, I. Inanç, and J. E. Carey, “Luminescence of black silicon,” J. Nanophotonics2(1), 021770 (2008).
[CrossRef]

Chen, D.

J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations,” Appl. Surf. Sci.245(1-4), 102–108 (2005).
[CrossRef]

Chichkov, B. N.

K. Kuršelis, R. Kiyan, and B. N. Chichkov, “Formation of corrugated and porous steel surfaces by femtosecond laser irradiation,” Appl. Surf. Sci.258(22), 8845–8852 (2012).
[CrossRef]

E. Fadeeva, V. K. Truong, M. Stiesch, B. N. Chichkov, R. J. Crawford, J. Wang, and E. P. Ivanova, “Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation,” Langmuir27(6), 3012–3019 (2011).
[CrossRef] [PubMed]

Coyne, E.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci.233(1-4), 275–287 (2004).
[CrossRef]

Crawford, R. J.

E. Fadeeva, V. K. Truong, M. Stiesch, B. N. Chichkov, R. J. Crawford, J. Wang, and E. P. Ivanova, “Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation,” Langmuir27(6), 3012–3019 (2011).
[CrossRef] [PubMed]

Crouch, C. H.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett.84(11), 1850 (2004).
[CrossRef]

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715 (2003).
[CrossRef]

Dearden, G.

N. G. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, S. Logothetidis, and K. G. Watkins, “Femtosecond laser ablation characteristics of nickel-based superalloy C263,” Appl. Phys. Adv. Mater.94, 999–1009 (2008).

N. G. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, and K. G. Watkins, “Femtosecond laser surface texturing of a nickel-based superalloy,” Appl. Surf. Sci.255(5), 2796–2802 (2008).
[CrossRef]

Delaporte, P.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin Solid Films516(20), 6791–6795 (2008).
[CrossRef]

Delgado, J. C.

F. Sánchez, J. L. Morenza, R. Aguiar, J. C. Delgado, and M. Varela, “Dynamics of the hydrodynamical growth of columns on silicon exposed to ArF excimer-laser irradiation,” Appl. Phys. Adv. Mater.66, 83–86 (1998).

F. Sanchez, J. L. Morenza, R. Aguiar, J. C. Delgado, and M. Varela, “Whiskerlike structure growth on silicon exposed to ArF excimer laser irradiation,” Appl. Phys. Lett.69(5), 620 (1996).
[CrossRef]

Deliwala, S.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673 (1998).
[CrossRef]

Dolgaev, S. I.

S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Formation of conical microstructures upon laser evaporation of solids,” Appl. Phys. Adv. Mater.73, 177–181 (2001).

V. V. Voronov, S. I. Dolgaev, S. V. Lavrishchev, A. A. Lyalin, A. V. Simakin, and G. A. Shafeev, “Formation of conic microstructures upon pulsed laser evaporation of solids,” Quantum Electron.30(8), 710–714 (2000).
[CrossRef]

Ducati, C.

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

Dumas, J. C.

V. Dumas, A. Rattner, L. Vico, E. Audouard, J. C. Dumas, P. Naisson, and P. Bertrand, “Multiscale grooved titanium processed with femtosecond laser influences mesenchymal stem cell morphology, adhesion, and matrix organization,” J. Biomed. Mater. Res. A100(11), 3108–3116 (2012).
[CrossRef] [PubMed]

Dumas, V.

V. Dumas, A. Rattner, L. Vico, E. Audouard, J. C. Dumas, P. Naisson, and P. Bertrand, “Multiscale grooved titanium processed with femtosecond laser influences mesenchymal stem cell morphology, adhesion, and matrix organization,” J. Biomed. Mater. Res. A100(11), 3108–3116 (2012).
[CrossRef] [PubMed]

Dumitru, G.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys. Adv. Mater.74, 729–739 (2002).

Ellis, W. C.

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett.4(5), 89 (1964).
[CrossRef]

Englezos, P.

A.-M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, “Patterned superhydrophobic metallic surfaces,” Langmuir25(8), 4821–4827 (2009).
[CrossRef] [PubMed]

Etienne, H.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin Solid Films516(20), 6791–6795 (2008).
[CrossRef]

Fadeeva, E.

E. Fadeeva, V. K. Truong, M. Stiesch, B. N. Chichkov, R. J. Crawford, J. Wang, and E. P. Ivanova, “Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation,” Langmuir27(6), 3012–3019 (2011).
[CrossRef] [PubMed]

Fazekas, A.

M. Bereznai, I. Pelsöczi, Z. Tóth, K. Turzó, M. Radnai, Z. Bor, and A. Fazekas, “Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material,” Biomaterials24(23), 4197–4203 (2003).
[CrossRef] [PubMed]

Finlay, R. J.

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. Adv. Mater.70, 383–385 (2000).

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673 (1998).
[CrossRef]

Fotakis, C.

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B86(11), 115316 (2012).
[CrossRef]

V. Zorba, N. Boukos, I. Zergioti, and C. Fotakis, “Ultraviolet femtosecond, picosecond and nanosecond laser microstructuring of silicon: structural and optical properties,” Appl. Opt.47(11), 1846–1850 (2008).
[CrossRef] [PubMed]

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

Fowlkes, J. D.

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Self-organized silicon microcolumn arrays generated by pulsed laser irradiation,” Mater. Sci.734, 731–734 (2008).

A. J. Pedraza, J. D. Fowlkes, S. Jesse, C. Mao, and D. H. Lowndes, “Surface micro-structuring of silicon by excimer-laser irradiation in reactive atmospheres,” Appl. Surf. Sci.168(1-4), 251–257 (2000).
[CrossRef]

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Laser ablation and column formation in silicon under oxygen-rich atmospheres,” Appl. Phys. Lett.77(19), 3018 (2000).
[CrossRef]

D. H. Lowndes, J. D. Fowlkes, and A. J. Pedraza, “Early stages of pulsed-laser growth of silicon microcolumns and microcones in air and SF6,” Appl. Surf. Sci.154–155, 647–658 (2000).
[CrossRef]

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Silicon microcolumn arrays grown by nanosecond pulsed-excimer laser irradiation,” Appl. Phys. Lett.74(16), 2322–2324 (1999).
[CrossRef]

French, P.

N. G. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, and K. G. Watkins, “Femtosecond laser surface texturing of a nickel-based superalloy,” Appl. Surf. Sci.255(5), 2796–2802 (2008).
[CrossRef]

N. G. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, S. Logothetidis, and K. G. Watkins, “Femtosecond laser ablation characteristics of nickel-based superalloy C263,” Appl. Phys. Adv. Mater.94, 999–1009 (2008).

Friend, C. M.

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater.17(14), 3582–3586 (2005).
[CrossRef]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” Jpn. J. Appl. Phys.93(5), 2626 (2003).
[CrossRef]

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715 (2003).
[CrossRef]

Fujita, M.

M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, and N. Abe, “Microstructures formation on titanium plate by femtosecond laser ablation,” J. Phys. Conf. Ser.59, 666–669 (2007).
[CrossRef]

Génin, F. Y.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett.84(11), 1850 (2004).
[CrossRef]

Glynn, T. J.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci.233(1-4), 275–287 (2004).
[CrossRef]

Guo, C.

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 1 – 23 (2012).

T. Yong Hwang and C. Guo, “Polarization and angular effects of femtosecond laser-induced conical microstructures on Ni,” Jpn. J. Appl. Phys.111(8), 083518 (2012).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Water sprints uphill on glass,” Jpn. J. Appl. Phys.108(12), 123512 (2010).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Laser turns silicon superwicking,” Opt. Express18(7), 6455–6460 (2010).
[CrossRef] [PubMed]

A. Y. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci.253(17), 7272–7280 (2007).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B72(19), 195422 (2005).
[CrossRef]

Gupta, M. C.

B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng.48(10), 940–949 (2010).
[CrossRef]

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energy Mater. Sol. Cells94(12), 2251–2257 (2010).
[CrossRef]

B. K. Nayak and M. C. Gupta, “Ultrafast laser-induced self-organized conical micro/nano surface structures and their origin,” Opt. Lasers Eng.48(10), 966–973 (2010).
[CrossRef]

B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng.48(10), 940–949 (2010).
[CrossRef]

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Ultralow reflectance metal surfaces by ultrafast laser texturing,” Appl. Opt.49(31), 5983 (2010).
[CrossRef]

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Ultrafast-laser-assisted chemical restructuring of silicon and germanium surfaces,” Appl. Surf. Sci.253(15), 6580–6583 (2007).
[CrossRef]

B. K. Nayak and M. C. Gupta, “Femtosecond-laser-induced-crystallization and simultaneous formation of light trapping microstructures in thin a-Si:H films,” Appl. Phys. Adv. Mater.89, 663–666 (2007).

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation,” Nanotechnology18(19), 195302 (2007).
[CrossRef]

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. Adv. Mater.90, 399–402 (2007).

Halbwax, M.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin Solid Films516(20), 6791–6795 (2008).
[CrossRef]

Hashida, M.

M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, and N. Abe, “Microstructures formation on titanium plate by femtosecond laser ablation,” J. Phys. Conf. Ser.59, 666–669 (2007).
[CrossRef]

Hatzikiriakos, S. G.

A.-M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, “Patterned superhydrophobic metallic surfaces,” Langmuir25(8), 4821–4827 (2009).
[CrossRef] [PubMed]

Her, T. H.

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. Adv. Mater.70, 383–385 (2000).

Her, T.-H.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673 (1998).
[CrossRef]

Hernandez-Pozos, J. L.

D. Riedel, J. L. Hernandez-Pozos, R. E. Palmer, and K. W. Kolasinski, “Fabrication of ordered arrays of silicon cones by optical diffraction in ultrafast laser etching with SF6,” Appl. Phys. Adv. Mater.78, 381–385 (2004).

Höhm, S.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl.24(4), 042006 (2012).
[CrossRef]

Inanç, I.

A. Serpengüzel, A. Kurt, I. Inanç, J. Cary, E. Mazur, A. Serpenguzel, I. Inanç, and J. E. Carey, “Luminescence of black silicon,” J. Nanophotonics2(1), 021770 (2008).
[CrossRef]

A. Serpengüzel, A. Kurt, I. Inanç, J. Cary, E. Mazur, A. Serpenguzel, I. Inanç, and J. E. Carey, “Luminescence of black silicon,” J. Nanophotonics2(1), 021770 (2008).
[CrossRef]

Ivanova, E. P.

E. Fadeeva, V. K. Truong, M. Stiesch, B. N. Chichkov, R. J. Crawford, J. Wang, and E. P. Ivanova, “Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation,” Langmuir27(6), 3012–3019 (2011).
[CrossRef] [PubMed]

Iyengar, V. V.

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energy Mater. Sol. Cells94(12), 2251–2257 (2010).
[CrossRef]

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Ultralow reflectance metal surfaces by ultrafast laser texturing,” Appl. Opt.49(31), 5983 (2010).
[CrossRef]

Jesse, S.

A. J. Pedraza, J. D. Fowlkes, S. Jesse, C. Mao, and D. H. Lowndes, “Surface micro-structuring of silicon by excimer-laser irradiation in reactive atmospheres,” Appl. Surf. Sci.168(1-4), 251–257 (2000).
[CrossRef]

Jia, W.

W. Jia, Z. Peng, Z. Wang, X. Ni, and C. Wang, “The effect of femtosecond laser micromachining on the surface characteristics and subsurface microstructure of amorphous FeCuNbSiB alloy,” Appl. Surf. Sci.253(3), 1299–1303 (2006).
[CrossRef]

Kapoor, A.

A. P. Singh, A. Kapoor, K. N. Tripathi, and G. R. Kumar, “Laser damage studies of silicon surfaces using ultra-short laser pulses,” Opt. Laser Technol.34(1), 37–43 (2002).
[CrossRef]

Katto, M.

M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, and N. Abe, “Microstructures formation on titanium plate by femtosecond laser ablation,” J. Phys. Conf. Ser.59, 666–669 (2007).
[CrossRef]

Kautek, W.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. Adv. Mater.74, 19–25 (2002).

Kayahara, T.

M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, and N. Abe, “Microstructures formation on titanium plate by femtosecond laser ablation,” J. Phys. Conf. Ser.59, 666–669 (2007).
[CrossRef]

Kietzig, A.-M.

A.-M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, “Patterned superhydrophobic metallic surfaces,” Langmuir25(8), 4821–4827 (2009).
[CrossRef] [PubMed]

Kiyan, R.

K. Kuršelis, R. Kiyan, and B. N. Chichkov, “Formation of corrugated and porous steel surfaces by femtosecond laser irradiation,” Appl. Surf. Sci.258(22), 8845–8852 (2012).
[CrossRef]

Kolasinski, K. W.

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Ultrafast-laser-assisted chemical restructuring of silicon and germanium surfaces,” Appl. Surf. Sci.253(15), 6580–6583 (2007).
[CrossRef]

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation,” Nanotechnology18(19), 195302 (2007).
[CrossRef]

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. Adv. Mater.90, 399–402 (2007).

D. Mills and K. W. Kolasinski, “Solidification driven extrusion of spikes during laser melting of silicon pillars,” Nanotechnology17(11), 2741–2744 (2006).
[CrossRef]

K. W. Kolasinski, D. Mills, and M. Nahidi, “Laser assisted and wet chemical etching of silicon nanostructures,” J. Vac. Sci. Technol. A24(4), 1474 (2006).
[CrossRef]

D. Riedel, J. L. Hernandez-Pozos, R. E. Palmer, and K. W. Kolasinski, “Fabrication of ordered arrays of silicon cones by optical diffraction in ultrafast laser etching with SF6,” Appl. Phys. Adv. Mater.78, 381–385 (2004).

Kongsuwan, P.

H. Wang, P. Kongsuwan, G. Satoh, and Y. Lawrence Yao, “Femtosecond laser-induced simultaneous surface texturing and crystallization of a-Si:H thin film: absorption and crystallinity,” J. Manuf. Sci. Eng.134(3), 031006 (2012).
[CrossRef]

H. Wang, P. Kongsuwan, G. Satoh, and Y. L. Yao, “Effect of processing medium and condition on absorption enhancement of femtosecond laser treated a-Si: H thin film,” Proceedings of NAMRI39, (2011).

Krüger, J.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl.24(4), 042006 (2012).
[CrossRef]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. Adv. Mater.74, 19–25 (2002).

Kumar, G. R.

A. P. Singh, A. Kapoor, K. N. Tripathi, and G. R. Kumar, “Laser damage studies of silicon surfaces using ultra-short laser pulses,” Opt. Laser Technol.34(1), 37–43 (2002).
[CrossRef]

Kuršelis, K.

K. Kuršelis, R. Kiyan, and B. N. Chichkov, “Formation of corrugated and porous steel surfaces by femtosecond laser irradiation,” Appl. Surf. Sci.258(22), 8845–8852 (2012).
[CrossRef]

Kurt, A.

A. Serpengüzel, A. Kurt, I. Inanç, J. Cary, E. Mazur, A. Serpenguzel, I. Inanç, and J. E. Carey, “Luminescence of black silicon,” J. Nanophotonics2(1), 021770 (2008).
[CrossRef]

Lavrishchev, S. V.

V. V. Voronov, S. I. Dolgaev, S. V. Lavrishchev, A. A. Lyalin, A. V. Simakin, and G. A. Shafeev, “Formation of conic microstructures upon pulsed laser evaporation of solids,” Quantum Electron.30(8), 710–714 (2000).
[CrossRef]

Lavrishev, S. V.

S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Formation of conical microstructures upon laser evaporation of solids,” Appl. Phys. Adv. Mater.73, 177–181 (2001).

Lawrence Yao, Y.

H. Wang, P. Kongsuwan, G. Satoh, and Y. Lawrence Yao, “Femtosecond laser-induced simultaneous surface texturing and crystallization of a-Si:H thin film: absorption and crystallinity,” J. Manuf. Sci. Eng.134(3), 031006 (2012).
[CrossRef]

Lee, B. G.

B. G. Lee, H. M. Branz, Y.-T. Lin, E. Mazur, and M.-J. Sher, “Light trapping for thin silicon solar cells by femtosecond laser texturing preprint,” in IEEE Phot. Spec. Conf. (2012).

Lenzner, M.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. Adv. Mater.74, 19–25 (2002).

Levinson, J. A.

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” Jpn. J. Appl. Phys.93(5), 2626 (2003).
[CrossRef]

Li, G.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci.256(1), 61–66 (2009).
[CrossRef]

Li, J.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci.256(1), 61–66 (2009).
[CrossRef]

Liang, C.

Y. Yang, J. Yang, C. Liang, H. Wang, X. Zhu, and N. Zhang, “Surface microstructuring of Ti plates by femtosecond lasers in liquid ambiences: a new approach to improving biocompatibility,” Opt. Express17(23), 21124–21133 (2009).
[CrossRef] [PubMed]

C. Liang, Y. Yang, H. Wang, J. Yang, and X. Yang, “Preparation of porous microstructures on NiTi alloy surface with femtosecond laser pulses,” Chin. Sci. Bull.53(5), 700–705 (2008).
[CrossRef]

Lin, Y.-T.

B. G. Lee, H. M. Branz, Y.-T. Lin, E. Mazur, and M.-J. Sher, “Light trapping for thin silicon solar cells by femtosecond laser texturing preprint,” in IEEE Phot. Spec. Conf. (2012).

Logothetidis, S.

N. G. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, S. Logothetidis, and K. G. Watkins, “Femtosecond laser ablation characteristics of nickel-based superalloy C263,” Appl. Phys. Adv. Mater.94, 999–1009 (2008).

Loukakos, P. A.

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B86(11), 115316 (2012).
[CrossRef]

Lowndes, D. H.

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Self-organized silicon microcolumn arrays generated by pulsed laser irradiation,” Mater. Sci.734, 731–734 (2008).

A. J. Pedraza, J. D. Fowlkes, S. Jesse, C. Mao, and D. H. Lowndes, “Surface micro-structuring of silicon by excimer-laser irradiation in reactive atmospheres,” Appl. Surf. Sci.168(1-4), 251–257 (2000).
[CrossRef]

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Laser ablation and column formation in silicon under oxygen-rich atmospheres,” Appl. Phys. Lett.77(19), 3018 (2000).
[CrossRef]

D. H. Lowndes, J. D. Fowlkes, and A. J. Pedraza, “Early stages of pulsed-laser growth of silicon microcolumns and microcones in air and SF6,” Appl. Surf. Sci.154–155, 647–658 (2000).
[CrossRef]

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Silicon microcolumn arrays grown by nanosecond pulsed-excimer laser irradiation,” Appl. Phys. Lett.74(16), 2322–2324 (1999).
[CrossRef]

Lyalin, A. A.

S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Formation of conical microstructures upon laser evaporation of solids,” Appl. Phys. Adv. Mater.73, 177–181 (2001).

V. V. Voronov, S. I. Dolgaev, S. V. Lavrishchev, A. A. Lyalin, A. V. Simakin, and G. A. Shafeev, “Formation of conic microstructures upon pulsed laser evaporation of solids,” Quantum Electron.30(8), 710–714 (2000).
[CrossRef]

Magee, J.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci.233(1-4), 275–287 (2004).
[CrossRef]

Mannion, P. T.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci.233(1-4), 275–287 (2004).
[CrossRef]

Manousaki, A.

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

Mao, C.

A. J. Pedraza, J. D. Fowlkes, S. Jesse, C. Mao, and D. H. Lowndes, “Surface micro-structuring of silicon by excimer-laser irradiation in reactive atmospheres,” Appl. Surf. Sci.168(1-4), 251–257 (2000).
[CrossRef]

Marine, W.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys. Adv. Mater.74, 729–739 (2002).

Martinuzzi, S.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin Solid Films516(20), 6791–6795 (2008).
[CrossRef]

Mazur, E.

M.-J. Sher, M. T. Winkler, and E. Mazur, “Pulsed-laser hyperdoping and surface texturing for photovoltaics,” MRS Bull.36(06), 439–445 (2011).
[CrossRef]

A. Serpengüzel, A. Kurt, I. Inanç, J. Cary, E. Mazur, A. Serpenguzel, I. Inanç, and J. E. Carey, “Luminescence of black silicon,” J. Nanophotonics2(1), 021770 (2008).
[CrossRef]

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bull.31(08), 626–633 (2006).
[CrossRef]

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater.17(14), 3582–3586 (2005).
[CrossRef]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett.84(11), 1850 (2004).
[CrossRef]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” Jpn. J. Appl. Phys.93(5), 2626 (2003).
[CrossRef]

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715 (2003).
[CrossRef]

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. Adv. Mater.70, 383–385 (2000).

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673 (1998).
[CrossRef]

B. G. Lee, H. M. Branz, Y.-T. Lin, E. Mazur, and M.-J. Sher, “Light trapping for thin silicon solar cells by femtosecond laser texturing preprint,” in IEEE Phot. Spec. Conf. (2012).

McDonald, J. P.

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bull.31(08), 626–633 (2006).
[CrossRef]

Mills, D.

K. W. Kolasinski, D. Mills, and M. Nahidi, “Laser assisted and wet chemical etching of silicon nanostructures,” J. Vac. Sci. Technol. A24(4), 1474 (2006).
[CrossRef]

D. Mills and K. W. Kolasinski, “Solidification driven extrusion of spikes during laser melting of silicon pillars,” Nanotechnology17(11), 2741–2744 (2006).
[CrossRef]

Morenza, J. L.

F. Sanchez, J. L. Morenza, and V. Trtik, “Characterization of the progressive growth of columns by excimer laser irradiation of silicon,” Appl. Phys. Lett.75(21), 3303 (1999).
[CrossRef]

F. Sánchez, J. L. Morenza, R. Aguiar, J. C. Delgado, and M. Varela, “Dynamics of the hydrodynamical growth of columns on silicon exposed to ArF excimer-laser irradiation,” Appl. Phys. Adv. Mater.66, 83–86 (1998).

F. Sanchez, J. L. Morenza, R. Aguiar, J. C. Delgado, and M. Varela, “Whiskerlike structure growth on silicon exposed to ArF excimer laser irradiation,” Appl. Phys. Lett.69(5), 620 (1996).
[CrossRef]

Nahidi, M.

K. W. Kolasinski, D. Mills, and M. Nahidi, “Laser assisted and wet chemical etching of silicon nanostructures,” J. Vac. Sci. Technol. A24(4), 1474 (2006).
[CrossRef]

Naisson, P.

V. Dumas, A. Rattner, L. Vico, E. Audouard, J. C. Dumas, P. Naisson, and P. Bertrand, “Multiscale grooved titanium processed with femtosecond laser influences mesenchymal stem cell morphology, adhesion, and matrix organization,” J. Biomed. Mater. Res. A100(11), 3108–3116 (2012).
[CrossRef] [PubMed]

Nakano, H.

M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, and N. Abe, “Microstructures formation on titanium plate by femtosecond laser ablation,” J. Phys. Conf. Ser.59, 666–669 (2007).
[CrossRef]

Nayak, B. K.

B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng.48(10), 940–949 (2010).
[CrossRef]

B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng.48(10), 940–949 (2010).
[CrossRef]

B. K. Nayak and M. C. Gupta, “Ultrafast laser-induced self-organized conical micro/nano surface structures and their origin,” Opt. Lasers Eng.48(10), 966–973 (2010).
[CrossRef]

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energy Mater. Sol. Cells94(12), 2251–2257 (2010).
[CrossRef]

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Ultralow reflectance metal surfaces by ultrafast laser texturing,” Appl. Opt.49(31), 5983 (2010).
[CrossRef]

B. K. Nayak and M. C. Gupta, “Femtosecond-laser-induced-crystallization and simultaneous formation of light trapping microstructures in thin a-Si:H films,” Appl. Phys. Adv. Mater.89, 663–666 (2007).

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation,” Nanotechnology18(19), 195302 (2007).
[CrossRef]

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Ultrafast-laser-assisted chemical restructuring of silicon and germanium surfaces,” Appl. Surf. Sci.253(15), 6580–6583 (2007).
[CrossRef]

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. Adv. Mater.90, 399–402 (2007).

Neumeister, A.

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

Ni, X.

W. Jia, Z. Peng, Z. Wang, X. Ni, and C. Wang, “The effect of femtosecond laser micromachining on the surface characteristics and subsurface microstructure of amorphous FeCuNbSiB alloy,” Appl. Surf. Sci.253(3), 1299–1303 (2006).
[CrossRef]

O’Connor, G. M.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci.233(1-4), 275–287 (2004).
[CrossRef]

Palmer, R. E.

D. Riedel, J. L. Hernandez-Pozos, R. E. Palmer, and K. W. Kolasinski, “Fabrication of ordered arrays of silicon cones by optical diffraction in ultrafast laser etching with SF6,” Appl. Phys. Adv. Mater.78, 381–385 (2004).

Pedraza, A. J.

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Self-organized silicon microcolumn arrays generated by pulsed laser irradiation,” Mater. Sci.734, 731–734 (2008).

A. J. Pedraza, J. D. Fowlkes, S. Jesse, C. Mao, and D. H. Lowndes, “Surface micro-structuring of silicon by excimer-laser irradiation in reactive atmospheres,” Appl. Surf. Sci.168(1-4), 251–257 (2000).
[CrossRef]

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Laser ablation and column formation in silicon under oxygen-rich atmospheres,” Appl. Phys. Lett.77(19), 3018 (2000).
[CrossRef]

D. H. Lowndes, J. D. Fowlkes, and A. J. Pedraza, “Early stages of pulsed-laser growth of silicon microcolumns and microcones in air and SF6,” Appl. Surf. Sci.154–155, 647–658 (2000).
[CrossRef]

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Silicon microcolumn arrays grown by nanosecond pulsed-excimer laser irradiation,” Appl. Phys. Lett.74(16), 2322–2324 (1999).
[CrossRef]

Pelsöczi, I.

M. Bereznai, I. Pelsöczi, Z. Tóth, K. Turzó, M. Radnai, Z. Bor, and A. Fazekas, “Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material,” Biomaterials24(23), 4197–4203 (2003).
[CrossRef] [PubMed]

Peng, Z.

W. Jia, Z. Peng, Z. Wang, X. Ni, and C. Wang, “The effect of femtosecond laser micromachining on the surface characteristics and subsurface microstructure of amorphous FeCuNbSiB alloy,” Appl. Surf. Sci.253(3), 1299–1303 (2006).
[CrossRef]

Perichaud, I.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin Solid Films516(20), 6791–6795 (2008).
[CrossRef]

Perrie, W.

N. G. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, and K. G. Watkins, “Femtosecond laser surface texturing of a nickel-based superalloy,” Appl. Surf. Sci.255(5), 2796–2802 (2008).
[CrossRef]

N. G. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, S. Logothetidis, and K. G. Watkins, “Femtosecond laser ablation characteristics of nickel-based superalloy C263,” Appl. Phys. Adv. Mater.94, 999–1009 (2008).

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

Radnai, M.

M. Bereznai, I. Pelsöczi, Z. Tóth, K. Turzó, M. Radnai, Z. Bor, and A. Fazekas, “Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material,” Biomaterials24(23), 4197–4203 (2003).
[CrossRef] [PubMed]

Rattner, A.

V. Dumas, A. Rattner, L. Vico, E. Audouard, J. C. Dumas, P. Naisson, and P. Bertrand, “Multiscale grooved titanium processed with femtosecond laser influences mesenchymal stem cell morphology, adhesion, and matrix organization,” J. Biomed. Mater. Res. A100(11), 3108–3116 (2012).
[CrossRef] [PubMed]

Riedel, D.

D. Riedel, J. L. Hernandez-Pozos, R. E. Palmer, and K. W. Kolasinski, “Fabrication of ordered arrays of silicon cones by optical diffraction in ultrafast laser etching with SF6,” Appl. Phys. Adv. Mater.78, 381–385 (2004).

Romano, V.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys. Adv. Mater.74, 729–739 (2002).

Rosenfeld, A.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl.24(4), 042006 (2012).
[CrossRef]

Sanchez, F.

F. Sanchez, J. L. Morenza, and V. Trtik, “Characterization of the progressive growth of columns by excimer laser irradiation of silicon,” Appl. Phys. Lett.75(21), 3303 (1999).
[CrossRef]

F. Sanchez, J. L. Morenza, R. Aguiar, J. C. Delgado, and M. Varela, “Whiskerlike structure growth on silicon exposed to ArF excimer laser irradiation,” Appl. Phys. Lett.69(5), 620 (1996).
[CrossRef]

Sánchez, F.

F. Sánchez, J. L. Morenza, R. Aguiar, J. C. Delgado, and M. Varela, “Dynamics of the hydrodynamical growth of columns on silicon exposed to ArF excimer-laser irradiation,” Appl. Phys. Adv. Mater.66, 83–86 (1998).

Sarnet, T.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin Solid Films516(20), 6791–6795 (2008).
[CrossRef]

Satoh, G.

H. Wang, P. Kongsuwan, G. Satoh, and Y. Lawrence Yao, “Femtosecond laser-induced simultaneous surface texturing and crystallization of a-Si:H thin film: absorption and crystallinity,” J. Manuf. Sci. Eng.134(3), 031006 (2012).
[CrossRef]

H. Wang, P. Kongsuwan, G. Satoh, and Y. L. Yao, “Effect of processing medium and condition on absorption enhancement of femtosecond laser treated a-Si: H thin film,” Proceedings of NAMRI39, (2011).

Semaltianos, N. G.

N. G. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, and K. G. Watkins, “Femtosecond laser surface texturing of a nickel-based superalloy,” Appl. Surf. Sci.255(5), 2796–2802 (2008).
[CrossRef]

N. G. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, S. Logothetidis, and K. G. Watkins, “Femtosecond laser ablation characteristics of nickel-based superalloy C263,” Appl. Phys. Adv. Mater.94, 999–1009 (2008).

Sentis, M.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin Solid Films516(20), 6791–6795 (2008).
[CrossRef]

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys. Adv. Mater.74, 729–739 (2002).

Serpenguzel, A.

A. Serpengüzel, A. Kurt, I. Inanç, J. Cary, E. Mazur, A. Serpenguzel, I. Inanç, and J. E. Carey, “Luminescence of black silicon,” J. Nanophotonics2(1), 021770 (2008).
[CrossRef]

Serpengüzel, A.

A. Serpengüzel, A. Kurt, I. Inanç, J. Cary, E. Mazur, A. Serpenguzel, I. Inanç, and J. E. Carey, “Luminescence of black silicon,” J. Nanophotonics2(1), 021770 (2008).
[CrossRef]

Shafeev, G. A.

S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Formation of conical microstructures upon laser evaporation of solids,” Appl. Phys. Adv. Mater.73, 177–181 (2001).

V. V. Voronov, S. I. Dolgaev, S. V. Lavrishchev, A. A. Lyalin, A. V. Simakin, and G. A. Shafeev, “Formation of conic microstructures upon pulsed laser evaporation of solids,” Quantum Electron.30(8), 710–714 (2000).
[CrossRef]

Sharp, M.

N. G. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, S. Logothetidis, and K. G. Watkins, “Femtosecond laser ablation characteristics of nickel-based superalloy C263,” Appl. Phys. Adv. Mater.94, 999–1009 (2008).

N. G. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, and K. G. Watkins, “Femtosecond laser surface texturing of a nickel-based superalloy,” Appl. Surf. Sci.255(5), 2796–2802 (2008).
[CrossRef]

Sheehy, M.

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715 (2003).
[CrossRef]

Sheehy, M. A.

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater.17(14), 3582–3586 (2005).
[CrossRef]

Shen, M. Y.

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715 (2003).
[CrossRef]

Sher, M.-J.

M.-J. Sher, M. T. Winkler, and E. Mazur, “Pulsed-laser hyperdoping and surface texturing for photovoltaics,” MRS Bull.36(06), 439–445 (2011).
[CrossRef]

B. G. Lee, H. M. Branz, Y.-T. Lin, E. Mazur, and M.-J. Sher, “Light trapping for thin silicon solar cells by femtosecond laser texturing preprint,” in IEEE Phot. Spec. Conf. (2012).

Simakin, A. V.

S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Formation of conical microstructures upon laser evaporation of solids,” Appl. Phys. Adv. Mater.73, 177–181 (2001).

V. V. Voronov, S. I. Dolgaev, S. V. Lavrishchev, A. A. Lyalin, A. V. Simakin, and G. A. Shafeev, “Formation of conic microstructures upon pulsed laser evaporation of solids,” Quantum Electron.30(8), 710–714 (2000).
[CrossRef]

Singh, A. P.

A. P. Singh, A. Kapoor, K. N. Tripathi, and G. R. Kumar, “Laser damage studies of silicon surfaces using ultra-short laser pulses,” Opt. Laser Technol.34(1), 37–43 (2002).
[CrossRef]

Sipe, J.

H. van Driel, J. Sipe, and J. Young, “Laser-Induced Periodic Surface Structure on Solids: A Universal Phenomenon,” Phys. Rev. Lett.49(26), 1955–1958 (1982).
[CrossRef]

Sipe, J. E.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

Stiesch, M.

E. Fadeeva, V. K. Truong, M. Stiesch, B. N. Chichkov, R. J. Crawford, J. Wang, and E. P. Ivanova, “Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation,” Langmuir27(6), 3012–3019 (2011).
[CrossRef] [PubMed]

Stratakis, E.

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B86(11), 115316 (2012).
[CrossRef]

Tanaka, M.

M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, and N. Abe, “Microstructures formation on titanium plate by femtosecond laser ablation,” J. Phys. Conf. Ser.59, 666–669 (2007).
[CrossRef]

Torregrosa, F.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin Solid Films516(20), 6791–6795 (2008).
[CrossRef]

Tóth, Z.

M. Bereznai, I. Pelsöczi, Z. Tóth, K. Turzó, M. Radnai, Z. Bor, and A. Fazekas, “Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material,” Biomaterials24(23), 4197–4203 (2003).
[CrossRef] [PubMed]

Tripathi, K. N.

A. P. Singh, A. Kapoor, K. N. Tripathi, and G. R. Kumar, “Laser damage studies of silicon surfaces using ultra-short laser pulses,” Opt. Laser Technol.34(1), 37–43 (2002).
[CrossRef]

Trtik, V.

F. Sanchez, J. L. Morenza, and V. Trtik, “Characterization of the progressive growth of columns by excimer laser irradiation of silicon,” Appl. Phys. Lett.75(21), 3303 (1999).
[CrossRef]

Truong, V. K.

E. Fadeeva, V. K. Truong, M. Stiesch, B. N. Chichkov, R. J. Crawford, J. Wang, and E. P. Ivanova, “Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation,” Langmuir27(6), 3012–3019 (2011).
[CrossRef] [PubMed]

Tsibidis, G. D.

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B86(11), 115316 (2012).
[CrossRef]

Tsukamoto, M.

M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, and N. Abe, “Microstructures formation on titanium plate by femtosecond laser ablation,” J. Phys. Conf. Ser.59, 666–669 (2007).
[CrossRef]

Tull, B. R.

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bull.31(08), 626–633 (2006).
[CrossRef]

Turzó, K.

M. Bereznai, I. Pelsöczi, Z. Tóth, K. Turzó, M. Radnai, Z. Bor, and A. Fazekas, “Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material,” Biomaterials24(23), 4197–4203 (2003).
[CrossRef] [PubMed]

Valette, S.

P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, and E. Audouard, “Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment,” Appl. Surf. Sci.257(12), 5213–5218 (2011).
[CrossRef]

van Driel, H.

H. van Driel, J. Sipe, and J. Young, “Laser-Induced Periodic Surface Structure on Solids: A Universal Phenomenon,” Phys. Rev. Lett.49(26), 1955–1958 (1982).
[CrossRef]

van Driel, H. M.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

Varela, M.

F. Sánchez, J. L. Morenza, R. Aguiar, J. C. Delgado, and M. Varela, “Dynamics of the hydrodynamical growth of columns on silicon exposed to ArF excimer-laser irradiation,” Appl. Phys. Adv. Mater.66, 83–86 (1998).

F. Sanchez, J. L. Morenza, R. Aguiar, J. C. Delgado, and M. Varela, “Whiskerlike structure growth on silicon exposed to ArF excimer laser irradiation,” Appl. Phys. Lett.69(5), 620 (1996).
[CrossRef]

Vervisch, V.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin Solid Films516(20), 6791–6795 (2008).
[CrossRef]

Vico, L.

V. Dumas, A. Rattner, L. Vico, E. Audouard, J. C. Dumas, P. Naisson, and P. Bertrand, “Multiscale grooved titanium processed with femtosecond laser influences mesenchymal stem cell morphology, adhesion, and matrix organization,” J. Biomed. Mater. Res. A100(11), 3108–3116 (2012).
[CrossRef] [PubMed]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 1 – 23 (2012).

A. Y. Vorobyev and C. Guo, “Water sprints uphill on glass,” Jpn. J. Appl. Phys.108(12), 123512 (2010).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Laser turns silicon superwicking,” Opt. Express18(7), 6455–6460 (2010).
[CrossRef] [PubMed]

A. Y. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci.253(17), 7272–7280 (2007).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B72(19), 195422 (2005).
[CrossRef]

Voronov, V. V.

S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Formation of conical microstructures upon laser evaporation of solids,” Appl. Phys. Adv. Mater.73, 177–181 (2001).

V. V. Voronov, S. I. Dolgaev, S. V. Lavrishchev, A. A. Lyalin, A. V. Simakin, and G. A. Shafeev, “Formation of conic microstructures upon pulsed laser evaporation of solids,” Quantum Electron.30(8), 710–714 (2000).
[CrossRef]

Wagner, R. S.

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett.4(5), 89 (1964).
[CrossRef]

Wang, C.

W. Jia, Z. Peng, Z. Wang, X. Ni, and C. Wang, “The effect of femtosecond laser micromachining on the surface characteristics and subsurface microstructure of amorphous FeCuNbSiB alloy,” Appl. Surf. Sci.253(3), 1299–1303 (2006).
[CrossRef]

Wang, H.

H. Wang, P. Kongsuwan, G. Satoh, and Y. Lawrence Yao, “Femtosecond laser-induced simultaneous surface texturing and crystallization of a-Si:H thin film: absorption and crystallinity,” J. Manuf. Sci. Eng.134(3), 031006 (2012).
[CrossRef]

Y. Yang, J. Yang, C. Liang, H. Wang, X. Zhu, and N. Zhang, “Surface microstructuring of Ti plates by femtosecond lasers in liquid ambiences: a new approach to improving biocompatibility,” Opt. Express17(23), 21124–21133 (2009).
[CrossRef] [PubMed]

C. Liang, Y. Yang, H. Wang, J. Yang, and X. Yang, “Preparation of porous microstructures on NiTi alloy surface with femtosecond laser pulses,” Chin. Sci. Bull.53(5), 700–705 (2008).
[CrossRef]

H. Wang, P. Kongsuwan, G. Satoh, and Y. L. Yao, “Effect of processing medium and condition on absorption enhancement of femtosecond laser treated a-Si: H thin film,” Proceedings of NAMRI39, (2011).

Wang, J.

E. Fadeeva, V. K. Truong, M. Stiesch, B. N. Chichkov, R. J. Crawford, J. Wang, and E. P. Ivanova, “Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation,” Langmuir27(6), 3012–3019 (2011).
[CrossRef] [PubMed]

Wang, Z.

W. Jia, Z. Peng, Z. Wang, X. Ni, and C. Wang, “The effect of femtosecond laser micromachining on the surface characteristics and subsurface microstructure of amorphous FeCuNbSiB alloy,” Appl. Surf. Sci.253(3), 1299–1303 (2006).
[CrossRef]

Warrender, J. M.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett.84(11), 1850 (2004).
[CrossRef]

Watkins, K. G.

N. G. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, S. Logothetidis, and K. G. Watkins, “Femtosecond laser ablation characteristics of nickel-based superalloy C263,” Appl. Phys. Adv. Mater.94, 999–1009 (2008).

N. G. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, and K. G. Watkins, “Femtosecond laser surface texturing of a nickel-based superalloy,” Appl. Surf. Sci.255(5), 2796–2802 (2008).
[CrossRef]

Weber, H. P.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys. Adv. Mater.74, 729–739 (2002).

Winkler, M. T.

M.-J. Sher, M. T. Winkler, and E. Mazur, “Pulsed-laser hyperdoping and surface texturing for photovoltaics,” MRS Bull.36(06), 439–445 (2011).
[CrossRef]

Winston, L.

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater.17(14), 3582–3586 (2005).
[CrossRef]

Wu, B.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci.256(1), 61–66 (2009).
[CrossRef]

Wu, C.

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. Adv. Mater.70, 383–385 (2000).

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673 (1998).
[CrossRef]

Yalisove, S. M.

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bull.31(08), 626–633 (2006).
[CrossRef]

Yang, J.

Y. Yang, J. Yang, C. Liang, H. Wang, X. Zhu, and N. Zhang, “Surface microstructuring of Ti plates by femtosecond lasers in liquid ambiences: a new approach to improving biocompatibility,” Opt. Express17(23), 21124–21133 (2009).
[CrossRef] [PubMed]

C. Liang, Y. Yang, H. Wang, J. Yang, and X. Yang, “Preparation of porous microstructures on NiTi alloy surface with femtosecond laser pulses,” Chin. Sci. Bull.53(5), 700–705 (2008).
[CrossRef]

Yang, X.

C. Liang, Y. Yang, H. Wang, J. Yang, and X. Yang, “Preparation of porous microstructures on NiTi alloy surface with femtosecond laser pulses,” Chin. Sci. Bull.53(5), 700–705 (2008).
[CrossRef]

Yang, Y.

Y. Yang, J. Yang, C. Liang, H. Wang, X. Zhu, and N. Zhang, “Surface microstructuring of Ti plates by femtosecond lasers in liquid ambiences: a new approach to improving biocompatibility,” Opt. Express17(23), 21124–21133 (2009).
[CrossRef] [PubMed]

C. Liang, Y. Yang, H. Wang, J. Yang, and X. Yang, “Preparation of porous microstructures on NiTi alloy surface with femtosecond laser pulses,” Chin. Sci. Bull.53(5), 700–705 (2008).
[CrossRef]

Yao, Y. L.

H. Wang, P. Kongsuwan, G. Satoh, and Y. L. Yao, “Effect of processing medium and condition on absorption enhancement of femtosecond laser treated a-Si: H thin film,” Proceedings of NAMRI39, (2011).

Ye, X.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci.256(1), 61–66 (2009).
[CrossRef]

Yin, G.

J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations,” Appl. Surf. Sci.245(1-4), 102–108 (2005).
[CrossRef]

Yong Hwang, T.

T. Yong Hwang and C. Guo, “Polarization and angular effects of femtosecond laser-induced conical microstructures on Ni,” Jpn. J. Appl. Phys.111(8), 083518 (2012).
[CrossRef]

Young, J.

H. van Driel, J. Sipe, and J. Young, “Laser-Induced Periodic Surface Structure on Solids: A Universal Phenomenon,” Phys. Rev. Lett.49(26), 1955–1958 (1982).
[CrossRef]

Young, J. F.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

Younkin, R.

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715 (2003).
[CrossRef]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” Jpn. J. Appl. Phys.93(5), 2626 (2003).
[CrossRef]

Zergioti, I.

V. Zorba, N. Boukos, I. Zergioti, and C. Fotakis, “Ultraviolet femtosecond, picosecond and nanosecond laser microstructuring of silicon: structural and optical properties,” Appl. Opt.47(11), 1846–1850 (2008).
[CrossRef] [PubMed]

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

Zhang, N.

Zhao, L.

J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations,” Appl. Surf. Sci.245(1-4), 102–108 (2005).
[CrossRef]

Zhao, M.

J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations,” Appl. Surf. Sci.245(1-4), 102–108 (2005).
[CrossRef]

Zhou, M.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci.256(1), 61–66 (2009).
[CrossRef]

Zhu, J.

J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations,” Appl. Surf. Sci.245(1-4), 102–108 (2005).
[CrossRef]

Zhu, X.

Zorba, V.

V. Zorba, N. Boukos, I. Zergioti, and C. Fotakis, “Ultraviolet femtosecond, picosecond and nanosecond laser microstructuring of silicon: structural and optical properties,” Appl. Opt.47(11), 1846–1850 (2008).
[CrossRef] [PubMed]

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Adv. Mater. (9)

F. Sánchez, J. L. Morenza, R. Aguiar, J. C. Delgado, and M. Varela, “Dynamics of the hydrodynamical growth of columns on silicon exposed to ArF excimer-laser irradiation,” Appl. Phys. Adv. Mater.66, 83–86 (1998).

S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Formation of conical microstructures upon laser evaporation of solids,” Appl. Phys. Adv. Mater.73, 177–181 (2001).

N. G. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, S. Logothetidis, and K. G. Watkins, “Femtosecond laser ablation characteristics of nickel-based superalloy C263,” Appl. Phys. Adv. Mater.94, 999–1009 (2008).

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys. Adv. Mater.74, 729–739 (2002).

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. Adv. Mater.90, 399–402 (2007).

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. Adv. Mater.70, 383–385 (2000).

D. Riedel, J. L. Hernandez-Pozos, R. E. Palmer, and K. W. Kolasinski, “Fabrication of ordered arrays of silicon cones by optical diffraction in ultrafast laser etching with SF6,” Appl. Phys. Adv. Mater.78, 381–385 (2004).

B. K. Nayak and M. C. Gupta, “Femtosecond-laser-induced-crystallization and simultaneous formation of light trapping microstructures in thin a-Si:H films,” Appl. Phys. Adv. Mater.89, 663–666 (2007).

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. Adv. Mater.74, 19–25 (2002).

Appl. Phys. Lett. (8)

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett.84(11), 1850 (2004).
[CrossRef]

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673 (1998).
[CrossRef]

F. Sanchez, J. L. Morenza, and V. Trtik, “Characterization of the progressive growth of columns by excimer laser irradiation of silicon,” Appl. Phys. Lett.75(21), 3303 (1999).
[CrossRef]

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715 (2003).
[CrossRef]

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Silicon microcolumn arrays grown by nanosecond pulsed-excimer laser irradiation,” Appl. Phys. Lett.74(16), 2322–2324 (1999).
[CrossRef]

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Laser ablation and column formation in silicon under oxygen-rich atmospheres,” Appl. Phys. Lett.77(19), 3018 (2000).
[CrossRef]

F. Sanchez, J. L. Morenza, R. Aguiar, J. C. Delgado, and M. Varela, “Whiskerlike structure growth on silicon exposed to ArF excimer laser irradiation,” Appl. Phys. Lett.69(5), 620 (1996).
[CrossRef]

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett.4(5), 89 (1964).
[CrossRef]

Appl. Surf. Sci. (11)

A. J. Pedraza, J. D. Fowlkes, S. Jesse, C. Mao, and D. H. Lowndes, “Surface micro-structuring of silicon by excimer-laser irradiation in reactive atmospheres,” Appl. Surf. Sci.168(1-4), 251–257 (2000).
[CrossRef]

D. H. Lowndes, J. D. Fowlkes, and A. J. Pedraza, “Early stages of pulsed-laser growth of silicon microcolumns and microcones in air and SF6,” Appl. Surf. Sci.154–155, 647–658 (2000).
[CrossRef]

N. G. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, and K. G. Watkins, “Femtosecond laser surface texturing of a nickel-based superalloy,” Appl. Surf. Sci.255(5), 2796–2802 (2008).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci.253(17), 7272–7280 (2007).
[CrossRef]

W. Jia, Z. Peng, Z. Wang, X. Ni, and C. Wang, “The effect of femtosecond laser micromachining on the surface characteristics and subsurface microstructure of amorphous FeCuNbSiB alloy,” Appl. Surf. Sci.253(3), 1299–1303 (2006).
[CrossRef]

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci.233(1-4), 275–287 (2004).
[CrossRef]

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Ultrafast-laser-assisted chemical restructuring of silicon and germanium surfaces,” Appl. Surf. Sci.253(15), 6580–6583 (2007).
[CrossRef]

J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations,” Appl. Surf. Sci.245(1-4), 102–108 (2005).
[CrossRef]

K. Kuršelis, R. Kiyan, and B. N. Chichkov, “Formation of corrugated and porous steel surfaces by femtosecond laser irradiation,” Appl. Surf. Sci.258(22), 8845–8852 (2012).
[CrossRef]

P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, and E. Audouard, “Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment,” Appl. Surf. Sci.257(12), 5213–5218 (2011).
[CrossRef]

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci.256(1), 61–66 (2009).
[CrossRef]

Biomaterials (1)

M. Bereznai, I. Pelsöczi, Z. Tóth, K. Turzó, M. Radnai, Z. Bor, and A. Fazekas, “Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material,” Biomaterials24(23), 4197–4203 (2003).
[CrossRef] [PubMed]

Chem. Mater. (1)

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater.17(14), 3582–3586 (2005).
[CrossRef]

Chin. Sci. Bull. (1)

C. Liang, Y. Yang, H. Wang, J. Yang, and X. Yang, “Preparation of porous microstructures on NiTi alloy surface with femtosecond laser pulses,” Chin. Sci. Bull.53(5), 700–705 (2008).
[CrossRef]

J. Biomed. Mater. Res. A (1)

V. Dumas, A. Rattner, L. Vico, E. Audouard, J. C. Dumas, P. Naisson, and P. Bertrand, “Multiscale grooved titanium processed with femtosecond laser influences mesenchymal stem cell morphology, adhesion, and matrix organization,” J. Biomed. Mater. Res. A100(11), 3108–3116 (2012).
[CrossRef] [PubMed]

J. Laser Appl. (1)

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl.24(4), 042006 (2012).
[CrossRef]

J. Manuf. Sci. Eng. (1)

H. Wang, P. Kongsuwan, G. Satoh, and Y. Lawrence Yao, “Femtosecond laser-induced simultaneous surface texturing and crystallization of a-Si:H thin film: absorption and crystallinity,” J. Manuf. Sci. Eng.134(3), 031006 (2012).
[CrossRef]

J. Nanophotonics (1)

A. Serpengüzel, A. Kurt, I. Inanç, J. Cary, E. Mazur, A. Serpenguzel, I. Inanç, and J. E. Carey, “Luminescence of black silicon,” J. Nanophotonics2(1), 021770 (2008).
[CrossRef]

J. Phys. Conf. Ser. (1)

M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, and N. Abe, “Microstructures formation on titanium plate by femtosecond laser ablation,” J. Phys. Conf. Ser.59, 666–669 (2007).
[CrossRef]

J. Vac. Sci. Technol. A (1)

K. W. Kolasinski, D. Mills, and M. Nahidi, “Laser assisted and wet chemical etching of silicon nanostructures,” J. Vac. Sci. Technol. A24(4), 1474 (2006).
[CrossRef]

Jpn. J. Appl. Phys. (3)

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” Jpn. J. Appl. Phys.93(5), 2626 (2003).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Water sprints uphill on glass,” Jpn. J. Appl. Phys.108(12), 123512 (2010).
[CrossRef]

T. Yong Hwang and C. Guo, “Polarization and angular effects of femtosecond laser-induced conical microstructures on Ni,” Jpn. J. Appl. Phys.111(8), 083518 (2012).
[CrossRef]

Langmuir (2)

A.-M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, “Patterned superhydrophobic metallic surfaces,” Langmuir25(8), 4821–4827 (2009).
[CrossRef] [PubMed]

E. Fadeeva, V. K. Truong, M. Stiesch, B. N. Chichkov, R. J. Crawford, J. Wang, and E. P. Ivanova, “Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation,” Langmuir27(6), 3012–3019 (2011).
[CrossRef] [PubMed]

Mater. Sci. (1)

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Self-organized silicon microcolumn arrays generated by pulsed laser irradiation,” Mater. Sci.734, 731–734 (2008).

MRS Bull. (2)

M.-J. Sher, M. T. Winkler, and E. Mazur, “Pulsed-laser hyperdoping and surface texturing for photovoltaics,” MRS Bull.36(06), 439–445 (2011).
[CrossRef]

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bull.31(08), 626–633 (2006).
[CrossRef]

Nanotechnology (2)

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation,” Nanotechnology18(19), 195302 (2007).
[CrossRef]

D. Mills and K. W. Kolasinski, “Solidification driven extrusion of spikes during laser melting of silicon pillars,” Nanotechnology17(11), 2741–2744 (2006).
[CrossRef]

Opt. Express (2)

Opt. Laser Technol. (1)

A. P. Singh, A. Kapoor, K. N. Tripathi, and G. R. Kumar, “Laser damage studies of silicon surfaces using ultra-short laser pulses,” Opt. Laser Technol.34(1), 37–43 (2002).
[CrossRef]

Opt. Lasers Eng. (3)

B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng.48(10), 940–949 (2010).
[CrossRef]

B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng.48(10), 940–949 (2010).
[CrossRef]

B. K. Nayak and M. C. Gupta, “Ultrafast laser-induced self-organized conical micro/nano surface structures and their origin,” Opt. Lasers Eng.48(10), 966–973 (2010).
[CrossRef]

Phys. Rev. B (3)

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B72(19), 195422 (2005).
[CrossRef]

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B86(11), 115316 (2012).
[CrossRef]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

Phys. Rev. Lett. (1)

H. van Driel, J. Sipe, and J. Young, “Laser-Induced Periodic Surface Structure on Solids: A Universal Phenomenon,” Phys. Rev. Lett.49(26), 1955–1958 (1982).
[CrossRef]

Quantum Electron. (1)

V. V. Voronov, S. I. Dolgaev, S. V. Lavrishchev, A. A. Lyalin, A. V. Simakin, and G. A. Shafeev, “Formation of conic microstructures upon pulsed laser evaporation of solids,” Quantum Electron.30(8), 710–714 (2000).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energy Mater. Sol. Cells94(12), 2251–2257 (2010).
[CrossRef]

Thin Solid Films (2)

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin Solid Films516(20), 6791–6795 (2008).
[CrossRef]

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

Other (4)

H. Wang, P. Kongsuwan, G. Satoh, and Y. L. Yao, “Effect of processing medium and condition on absorption enhancement of femtosecond laser treated a-Si: H thin film,” Proceedings of NAMRI39, (2011).

B. G. Lee, H. M. Branz, Y.-T. Lin, E. Mazur, and M.-J. Sher, “Light trapping for thin silicon solar cells by femtosecond laser texturing preprint,” in IEEE Phot. Spec. Conf. (2012).

J. E. Carey, C. H. Crouch, and E. Mazur, “Femtosecond-laser-assisted microstructuring of silicon surfaces,” Lasers and Electro-Optics Society (LEOS) (2003), pp. 97–98.

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 1 – 23 (2012).

Supplementary Material (6)

» Media 1: MP4 (1639 KB)     
» Media 2: MP4 (1497 KB)     
» Media 3: MP4 (1485 KB)     
» Media 4: MP4 (1070 KB)     
» Media 5: MP4 (1729 KB)     
» Media 6: MP4 (2179 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(left) Experimental setup utilized in this paper. (right) Flat-top beam profile as measured by beam profiler.

Fig. 2
Fig. 2

(a) – (d) SEM images of the same location on nickel (200/201) ablated at 3.08 J/cm2 with (a) 1, (b) 2, (c) 5 and (d) 6 pulses. (e) and (f) SEM images of different nickel samples ablated with 10 pulses at (e) 1.39 J/cm2 and (f) 3.08 J/cm2.

Fig. 3
Fig. 3

SEM images of nickel (200/201) ablated with (a) 80, (b) 90, (c) 100, (d) 110, (e) 120, and (f) 130 pulses at 1.392 J/cm2. Note the formation of micro-ripples parallel to the laser polarization and the formation of domes on top of the micro-ripples. The polarization, P, of the incident pulses is as marked in each image.

Fig. 4
Fig. 4

SEM images of nickel (200/201) ablated with (a) 30, (b) 35, (c) 40, (d) 45, (e) 50, and (f) 55 pulses at 3.08 J/cm2.

Fig. 5
Fig. 5

(Multimedia online) Single frame excerpts of stop-motion video documenting the growth of (a) – (d) BSG-mounds (Media 1 – 1.634 Mb) and (e-h) ASG-mounds (Media 2 – 1.492 Mb) on Nickel viewed at a 45-degree angle. The number of pulses incident on the sample is 100, 300, 500, 700 for subfigures (a) – (d) and 40, 60, 80, and 300 for (e) – (h). (i) SEM image of ASG-mounds after 100 pulses viewed at a 90 degree angle demonstrating the structures that rise above the original surface.

Fig. 6
Fig. 6

(Multimedia online: Media 3 – 1.479 Mb) SEM images of stepped BSG-mound growth on nickel imaged at 45 degrees after (a) 200, (b) 300, (c) 400, (d) 500, (e) 600, (f) 700, (g) 800, (h) 900, and (i) 1000 pulses. Markers 1 and 2 point to locations where BSG-mounds combine together with increased pulse counts.

Fig. 7
Fig. 7

(Multimedia online: Media 4 – 1.065 Mb, and Media 5 – 1.721 Mb; the videos are views of the same location at two different angles and at a lower magnification of the still image for a clearer view of the development) SEM image of stepped ASG-mound growth on nickel imaged at 45 degrees after (a) 55, (b) 56, (c) 57, (d) 58, (e) 59, (f) 60, (g) 65, (h) 70, and (i) 80 pulses. Marker 1 points to a sphere that elongates and combines with the side wall through fluid flow processes. Marker 2 points to an ASG-mound that grows taller with the formation of hemispherical caps formed through redeposition and then melts and combines with the sidewall at higher pulse counts.

Fig. 8
Fig. 8

(Multimedia online) Top row (Media 6 – 2.170 Mb): SEM images of stepped BSG-mound growth on nickel (200/201) after (a) 190, (b) 280, and (c) 500 pulses. Bottom row: SEM image of stepped ASG-mound growth on nickel after (a) 60, (b) 80, (c) 100 pulses. Marker 1 points to a pit that gets overtaken by BSG-mounds. Markers 2 and 3 point to ASG-mounds that get overtaken by pits.

Fig. 9
Fig. 9

Diagram of the formation of (a) BSG-mounds and (b) ASG-mounds through all three phases of development.

Tables (1)

Tables Icon

Table 1 Summary of shot by shot growth of BSG-mounds and ASG-mounds.

Metrics