Abstract

In this paper we present a novel approach to convert AM signal into FM signal in semiconductor lasers via off resonance optical pumping and report on experimental results obtained with a commercial DFB laser. Aside of demonstrating discrete and fast frequency modulation, we achieve pure frequency modulation through combination with electrical modulation suppressing the associated amplitude modulation, which is detrimental to application such as spectroscopy and communication.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Thévenaz, D. Alasia, S. Le Floch, and J. Troger, “Generation of high-quality signals for optical sensing using DFB lasers injection locking,” in Second European Workshop on Optical Fiber Sensors, 5502, 556–559, (2004).
    [CrossRef]
  2. M. Pantouvaki and C. P. Liu, “Monolithically Integrated QCSE-tuned InGaAsP MQW ridge waveguide DBR laser,” IEEE International Conference on Indium Phosphide and Related Materials Conference Proceedings72–74. (IEEE, 2006).
    [CrossRef]
  3. M. Pantouvaki, C.C. Renaud, P. Cannard, M.J. Robertson, R. Gwilliam, and A.J. Seeds, “Fast tunable InGaAsP DBR laser using quantum-confined stark-effect-induced refractive index change,” IEEE J. Sel. Top. Quant.13(5), 1112–1121 (2007).
  4. G. Chen, R. Martini, S.- Park, C. G. Bethea, I.-C. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, “Optically induced fast wavelength modulation in a quantum cascade laser,” Appl. Phys. Lett.97(1), 011102 (2010).
    [CrossRef]
  5. T. Keating, X. Jin, S. L. Chuang, and K. Hess, “Temperature dependence of electrical and optical modulation responses of quantum-well lasers,” IEEE J. Quantum Electron.35(10), 1526–1534 (1999).
    [CrossRef]
  6. C. H. Henry; “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Elect.18(2), 259–264 (1982).
  7. B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron.26(1), 113–122 (1990).
    [CrossRef]
  8. J. K. Sheu, G. C. Chi, Y. K. Su, C. C. Liu, C. M. Chang, W. C. Hung, and M. J. Jou, “Luminescence of an InGaN/GaN multiple quantum well light-emitting diode,” Solid-State Electron.44(6), 1055–1058 (2000).
    [CrossRef]
  9. D. Sands, Diode Lasers, (Taylor & Francis, 2004).
  10. M. Kondow, T. Kitatani, K. Nakahara, and T. Tanaka, “Temperature dependence of lasing wavelength in a GaInNAs laser diode,” IEEE Photonic Tech. L.12(7), 777–779 (2000).
    [CrossRef]
  11. H. C. Casey and F. Stem, “Concentration-dependent absorption and spontaneous emission of heavily doped GaAs,” J. Appl. Phys.47(2), 631–643 (1976).
    [CrossRef]
  12. S. Hansmann, “Transfer matrix analysis of the spectral properties of complex distributed feedback laser structures,” IEEE J. Quantum Electron.28(11), 2589–2595 (1992).
    [CrossRef]
  13. T. Makino and J. Glinski, “Transfer matrix analysis of the amplified spontaneous emission of DFB semiconductor laser amplifiers,” IEEE J. Quantum Electron.24(8), 1507–1518 (1988).
    [CrossRef]

2010 (1)

G. Chen, R. Martini, S.- Park, C. G. Bethea, I.-C. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, “Optically induced fast wavelength modulation in a quantum cascade laser,” Appl. Phys. Lett.97(1), 011102 (2010).
[CrossRef]

2007 (1)

M. Pantouvaki, C.C. Renaud, P. Cannard, M.J. Robertson, R. Gwilliam, and A.J. Seeds, “Fast tunable InGaAsP DBR laser using quantum-confined stark-effect-induced refractive index change,” IEEE J. Sel. Top. Quant.13(5), 1112–1121 (2007).

2000 (2)

J. K. Sheu, G. C. Chi, Y. K. Su, C. C. Liu, C. M. Chang, W. C. Hung, and M. J. Jou, “Luminescence of an InGaN/GaN multiple quantum well light-emitting diode,” Solid-State Electron.44(6), 1055–1058 (2000).
[CrossRef]

M. Kondow, T. Kitatani, K. Nakahara, and T. Tanaka, “Temperature dependence of lasing wavelength in a GaInNAs laser diode,” IEEE Photonic Tech. L.12(7), 777–779 (2000).
[CrossRef]

1999 (1)

T. Keating, X. Jin, S. L. Chuang, and K. Hess, “Temperature dependence of electrical and optical modulation responses of quantum-well lasers,” IEEE J. Quantum Electron.35(10), 1526–1534 (1999).
[CrossRef]

1992 (1)

S. Hansmann, “Transfer matrix analysis of the spectral properties of complex distributed feedback laser structures,” IEEE J. Quantum Electron.28(11), 2589–2595 (1992).
[CrossRef]

1990 (1)

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron.26(1), 113–122 (1990).
[CrossRef]

1988 (1)

T. Makino and J. Glinski, “Transfer matrix analysis of the amplified spontaneous emission of DFB semiconductor laser amplifiers,” IEEE J. Quantum Electron.24(8), 1507–1518 (1988).
[CrossRef]

1982 (1)

C. H. Henry; “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Elect.18(2), 259–264 (1982).

1976 (1)

H. C. Casey and F. Stem, “Concentration-dependent absorption and spontaneous emission of heavily doped GaAs,” J. Appl. Phys.47(2), 631–643 (1976).
[CrossRef]

Alasia, D.

L. Thévenaz, D. Alasia, S. Le Floch, and J. Troger, “Generation of high-quality signals for optical sensing using DFB lasers injection locking,” in Second European Workshop on Optical Fiber Sensors, 5502, 556–559, (2004).
[CrossRef]

Bennett, B. R.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron.26(1), 113–122 (1990).
[CrossRef]

Bethea, C. G.

G. Chen, R. Martini, S.- Park, C. G. Bethea, I.-C. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, “Optically induced fast wavelength modulation in a quantum cascade laser,” Appl. Phys. Lett.97(1), 011102 (2010).
[CrossRef]

Cannard, P.

M. Pantouvaki, C.C. Renaud, P. Cannard, M.J. Robertson, R. Gwilliam, and A.J. Seeds, “Fast tunable InGaAsP DBR laser using quantum-confined stark-effect-induced refractive index change,” IEEE J. Sel. Top. Quant.13(5), 1112–1121 (2007).

Casey, H. C.

H. C. Casey and F. Stem, “Concentration-dependent absorption and spontaneous emission of heavily doped GaAs,” J. Appl. Phys.47(2), 631–643 (1976).
[CrossRef]

Chang, C. M.

J. K. Sheu, G. C. Chi, Y. K. Su, C. C. Liu, C. M. Chang, W. C. Hung, and M. J. Jou, “Luminescence of an InGaN/GaN multiple quantum well light-emitting diode,” Solid-State Electron.44(6), 1055–1058 (2000).
[CrossRef]

Chen, G.

G. Chen, R. Martini, S.- Park, C. G. Bethea, I.-C. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, “Optically induced fast wavelength modulation in a quantum cascade laser,” Appl. Phys. Lett.97(1), 011102 (2010).
[CrossRef]

Chen, I.-C. A.

G. Chen, R. Martini, S.- Park, C. G. Bethea, I.-C. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, “Optically induced fast wavelength modulation in a quantum cascade laser,” Appl. Phys. Lett.97(1), 011102 (2010).
[CrossRef]

Chi, G. C.

J. K. Sheu, G. C. Chi, Y. K. Su, C. C. Liu, C. M. Chang, W. C. Hung, and M. J. Jou, “Luminescence of an InGaN/GaN multiple quantum well light-emitting diode,” Solid-State Electron.44(6), 1055–1058 (2000).
[CrossRef]

Chuang, S. L.

T. Keating, X. Jin, S. L. Chuang, and K. Hess, “Temperature dependence of electrical and optical modulation responses of quantum-well lasers,” IEEE J. Quantum Electron.35(10), 1526–1534 (1999).
[CrossRef]

Del Alamo, J. A.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron.26(1), 113–122 (1990).
[CrossRef]

Dudek, R.

G. Chen, R. Martini, S.- Park, C. G. Bethea, I.-C. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, “Optically induced fast wavelength modulation in a quantum cascade laser,” Appl. Phys. Lett.97(1), 011102 (2010).
[CrossRef]

Glinski, J.

T. Makino and J. Glinski, “Transfer matrix analysis of the amplified spontaneous emission of DFB semiconductor laser amplifiers,” IEEE J. Quantum Electron.24(8), 1507–1518 (1988).
[CrossRef]

Grant, P. D.

G. Chen, R. Martini, S.- Park, C. G. Bethea, I.-C. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, “Optically induced fast wavelength modulation in a quantum cascade laser,” Appl. Phys. Lett.97(1), 011102 (2010).
[CrossRef]

Gwilliam, R.

M. Pantouvaki, C.C. Renaud, P. Cannard, M.J. Robertson, R. Gwilliam, and A.J. Seeds, “Fast tunable InGaAsP DBR laser using quantum-confined stark-effect-induced refractive index change,” IEEE J. Sel. Top. Quant.13(5), 1112–1121 (2007).

Hansmann, S.

S. Hansmann, “Transfer matrix analysis of the spectral properties of complex distributed feedback laser structures,” IEEE J. Quantum Electron.28(11), 2589–2595 (1992).
[CrossRef]

Henry, C. H.

C. H. Henry; “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Elect.18(2), 259–264 (1982).

Hess, K.

T. Keating, X. Jin, S. L. Chuang, and K. Hess, “Temperature dependence of electrical and optical modulation responses of quantum-well lasers,” IEEE J. Quantum Electron.35(10), 1526–1534 (1999).
[CrossRef]

Hung, W. C.

J. K. Sheu, G. C. Chi, Y. K. Su, C. C. Liu, C. M. Chang, W. C. Hung, and M. J. Jou, “Luminescence of an InGaN/GaN multiple quantum well light-emitting diode,” Solid-State Electron.44(6), 1055–1058 (2000).
[CrossRef]

Jin, X.

T. Keating, X. Jin, S. L. Chuang, and K. Hess, “Temperature dependence of electrical and optical modulation responses of quantum-well lasers,” IEEE J. Quantum Electron.35(10), 1526–1534 (1999).
[CrossRef]

Jou, M. J.

J. K. Sheu, G. C. Chi, Y. K. Su, C. C. Liu, C. M. Chang, W. C. Hung, and M. J. Jou, “Luminescence of an InGaN/GaN multiple quantum well light-emitting diode,” Solid-State Electron.44(6), 1055–1058 (2000).
[CrossRef]

Keating, T.

T. Keating, X. Jin, S. L. Chuang, and K. Hess, “Temperature dependence of electrical and optical modulation responses of quantum-well lasers,” IEEE J. Quantum Electron.35(10), 1526–1534 (1999).
[CrossRef]

Kitatani, T.

M. Kondow, T. Kitatani, K. Nakahara, and T. Tanaka, “Temperature dependence of lasing wavelength in a GaInNAs laser diode,” IEEE Photonic Tech. L.12(7), 777–779 (2000).
[CrossRef]

Kondow, M.

M. Kondow, T. Kitatani, K. Nakahara, and T. Tanaka, “Temperature dependence of lasing wavelength in a GaInNAs laser diode,” IEEE Photonic Tech. L.12(7), 777–779 (2000).
[CrossRef]

Le Floch, S.

L. Thévenaz, D. Alasia, S. Le Floch, and J. Troger, “Generation of high-quality signals for optical sensing using DFB lasers injection locking,” in Second European Workshop on Optical Fiber Sensors, 5502, 556–559, (2004).
[CrossRef]

Liu, C. C.

J. K. Sheu, G. C. Chi, Y. K. Su, C. C. Liu, C. M. Chang, W. C. Hung, and M. J. Jou, “Luminescence of an InGaN/GaN multiple quantum well light-emitting diode,” Solid-State Electron.44(6), 1055–1058 (2000).
[CrossRef]

Liu, C. P.

M. Pantouvaki and C. P. Liu, “Monolithically Integrated QCSE-tuned InGaAsP MQW ridge waveguide DBR laser,” IEEE International Conference on Indium Phosphide and Related Materials Conference Proceedings72–74. (IEEE, 2006).
[CrossRef]

Liu, H. C.

G. Chen, R. Martini, S.- Park, C. G. Bethea, I.-C. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, “Optically induced fast wavelength modulation in a quantum cascade laser,” Appl. Phys. Lett.97(1), 011102 (2010).
[CrossRef]

Makino, T.

T. Makino and J. Glinski, “Transfer matrix analysis of the amplified spontaneous emission of DFB semiconductor laser amplifiers,” IEEE J. Quantum Electron.24(8), 1507–1518 (1988).
[CrossRef]

Martini, R.

G. Chen, R. Martini, S.- Park, C. G. Bethea, I.-C. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, “Optically induced fast wavelength modulation in a quantum cascade laser,” Appl. Phys. Lett.97(1), 011102 (2010).
[CrossRef]

Nakahara, K.

M. Kondow, T. Kitatani, K. Nakahara, and T. Tanaka, “Temperature dependence of lasing wavelength in a GaInNAs laser diode,” IEEE Photonic Tech. L.12(7), 777–779 (2000).
[CrossRef]

Pantouvaki, M.

M. Pantouvaki, C.C. Renaud, P. Cannard, M.J. Robertson, R. Gwilliam, and A.J. Seeds, “Fast tunable InGaAsP DBR laser using quantum-confined stark-effect-induced refractive index change,” IEEE J. Sel. Top. Quant.13(5), 1112–1121 (2007).

M. Pantouvaki and C. P. Liu, “Monolithically Integrated QCSE-tuned InGaAsP MQW ridge waveguide DBR laser,” IEEE International Conference on Indium Phosphide and Related Materials Conference Proceedings72–74. (IEEE, 2006).
[CrossRef]

Park, S.-

G. Chen, R. Martini, S.- Park, C. G. Bethea, I.-C. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, “Optically induced fast wavelength modulation in a quantum cascade laser,” Appl. Phys. Lett.97(1), 011102 (2010).
[CrossRef]

Renaud, C.C.

M. Pantouvaki, C.C. Renaud, P. Cannard, M.J. Robertson, R. Gwilliam, and A.J. Seeds, “Fast tunable InGaAsP DBR laser using quantum-confined stark-effect-induced refractive index change,” IEEE J. Sel. Top. Quant.13(5), 1112–1121 (2007).

Robertson, M.J.

M. Pantouvaki, C.C. Renaud, P. Cannard, M.J. Robertson, R. Gwilliam, and A.J. Seeds, “Fast tunable InGaAsP DBR laser using quantum-confined stark-effect-induced refractive index change,” IEEE J. Sel. Top. Quant.13(5), 1112–1121 (2007).

Seeds, A.J.

M. Pantouvaki, C.C. Renaud, P. Cannard, M.J. Robertson, R. Gwilliam, and A.J. Seeds, “Fast tunable InGaAsP DBR laser using quantum-confined stark-effect-induced refractive index change,” IEEE J. Sel. Top. Quant.13(5), 1112–1121 (2007).

Sheu, J. K.

J. K. Sheu, G. C. Chi, Y. K. Su, C. C. Liu, C. M. Chang, W. C. Hung, and M. J. Jou, “Luminescence of an InGaN/GaN multiple quantum well light-emitting diode,” Solid-State Electron.44(6), 1055–1058 (2000).
[CrossRef]

Soref, R. A.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron.26(1), 113–122 (1990).
[CrossRef]

Stem, F.

H. C. Casey and F. Stem, “Concentration-dependent absorption and spontaneous emission of heavily doped GaAs,” J. Appl. Phys.47(2), 631–643 (1976).
[CrossRef]

Su, Y. K.

J. K. Sheu, G. C. Chi, Y. K. Su, C. C. Liu, C. M. Chang, W. C. Hung, and M. J. Jou, “Luminescence of an InGaN/GaN multiple quantum well light-emitting diode,” Solid-State Electron.44(6), 1055–1058 (2000).
[CrossRef]

Tanaka, T.

M. Kondow, T. Kitatani, K. Nakahara, and T. Tanaka, “Temperature dependence of lasing wavelength in a GaInNAs laser diode,” IEEE Photonic Tech. L.12(7), 777–779 (2000).
[CrossRef]

Thévenaz, L.

L. Thévenaz, D. Alasia, S. Le Floch, and J. Troger, “Generation of high-quality signals for optical sensing using DFB lasers injection locking,” in Second European Workshop on Optical Fiber Sensors, 5502, 556–559, (2004).
[CrossRef]

Troger, J.

L. Thévenaz, D. Alasia, S. Le Floch, and J. Troger, “Generation of high-quality signals for optical sensing using DFB lasers injection locking,” in Second European Workshop on Optical Fiber Sensors, 5502, 556–559, (2004).
[CrossRef]

Appl. Phys. Lett. (1)

G. Chen, R. Martini, S.- Park, C. G. Bethea, I.-C. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, “Optically induced fast wavelength modulation in a quantum cascade laser,” Appl. Phys. Lett.97(1), 011102 (2010).
[CrossRef]

IEEE J. Quantum Elect. (1)

C. H. Henry; “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Elect.18(2), 259–264 (1982).

IEEE J. Quantum Electron. (4)

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron.26(1), 113–122 (1990).
[CrossRef]

T. Keating, X. Jin, S. L. Chuang, and K. Hess, “Temperature dependence of electrical and optical modulation responses of quantum-well lasers,” IEEE J. Quantum Electron.35(10), 1526–1534 (1999).
[CrossRef]

S. Hansmann, “Transfer matrix analysis of the spectral properties of complex distributed feedback laser structures,” IEEE J. Quantum Electron.28(11), 2589–2595 (1992).
[CrossRef]

T. Makino and J. Glinski, “Transfer matrix analysis of the amplified spontaneous emission of DFB semiconductor laser amplifiers,” IEEE J. Quantum Electron.24(8), 1507–1518 (1988).
[CrossRef]

IEEE J. Sel. Top. Quant. (1)

M. Pantouvaki, C.C. Renaud, P. Cannard, M.J. Robertson, R. Gwilliam, and A.J. Seeds, “Fast tunable InGaAsP DBR laser using quantum-confined stark-effect-induced refractive index change,” IEEE J. Sel. Top. Quant.13(5), 1112–1121 (2007).

IEEE Photonic Tech. L. (1)

M. Kondow, T. Kitatani, K. Nakahara, and T. Tanaka, “Temperature dependence of lasing wavelength in a GaInNAs laser diode,” IEEE Photonic Tech. L.12(7), 777–779 (2000).
[CrossRef]

J. Appl. Phys. (1)

H. C. Casey and F. Stem, “Concentration-dependent absorption and spontaneous emission of heavily doped GaAs,” J. Appl. Phys.47(2), 631–643 (1976).
[CrossRef]

Solid-State Electron. (1)

J. K. Sheu, G. C. Chi, Y. K. Su, C. C. Liu, C. M. Chang, W. C. Hung, and M. J. Jou, “Luminescence of an InGaN/GaN multiple quantum well light-emitting diode,” Solid-State Electron.44(6), 1055–1058 (2000).
[CrossRef]

Other (3)

D. Sands, Diode Lasers, (Taylor & Francis, 2004).

L. Thévenaz, D. Alasia, S. Le Floch, and J. Troger, “Generation of high-quality signals for optical sensing using DFB lasers injection locking,” in Second European Workshop on Optical Fiber Sensors, 5502, 556–559, (2004).
[CrossRef]

M. Pantouvaki and C. P. Liu, “Monolithically Integrated QCSE-tuned InGaAsP MQW ridge waveguide DBR laser,” IEEE International Conference on Indium Phosphide and Related Materials Conference Proceedings72–74. (IEEE, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Power (red) and emission wavelength (blue) of a DFB laser plotted against drive current below and above threshold. Above threshold, slope efficiency is 11.81µW/mA, and wavelength drift is 6.82 pm/mA.

Fig. 2
Fig. 2

Experimental setup. The emission from the a secondary “pump” laser is focused on to the front facet of a DFB laser (“signal”), whose emission power and spectrum is monitored.

Fig. 3
Fig. 3

Spontaneous emission influenced by optical injection. Left (a-d): Emission spectrum of 1550 nm DFB laser driven below threshold (1.5 mA drive current) for increasing optical pumping intensities. Right (e): Intensity of the observed peaks plotted against the optical pumping intensity identifying the switching behavior.

Fig. 4
Fig. 4

Bistability of DFB mode under optical pumping. Emission wavelength (red) and power (blue) of the signal laser plotted vs. optical pump power, the switch between the two modes happens at 5.16 mW.

Fig. 5
Fig. 5

Optically induced mode switching measured with photo detector. The top graph shows the emission of signal laser without filter, the lower graph shows the emission of the signal laser after a band pass filter aligned with mode A. The dashed blue line shows estimated switch point.

Fig. 6
Fig. 6

Pure FM modulation generated with combined optical and electrical modulation. Frame (a) illustrates the modulation to be transmitted; frame (b) and (c) show the signal laser emission if the non-resonant optical and electrical modulations are used to enhance (b) or compensate each other – which lead to compensation of amplitude modulation (c). Frame (d) and (e) show emission from (c) with an additional filter tuned either to mode A (d) or mode B (e) – illustrating the presence of FM without AM.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δn=( e 2 λ 2 8 π 2 c 2 ε 0 n )( N m e + P m h ),

Metrics