Abstract

A near-diffraction-limited, low-haze and tunable liquid crystal (LC) lens is presented. Building on an understanding of the key factors that have limited the performance of lenses based on liquid crystals, we show a simple design whose optical quality is similar to a high quality glass lens. It uses ‘floating’ electrodes to provide a smooth, controllable applied potential profile across the aperture to manage the phase profile.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
    [CrossRef] [PubMed]
  2. S. T. Kowel, D. S. Cleverly, and P. G. Kornreich, “Focusing by electrical modulation of refraction in a liquid crystal cell,” Appl. Opt.23(2), 278–289 (1984).
    [CrossRef] [PubMed]
  3. G. Li, P. Valley, P. Ayras, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett.90(11), 111105 (2007).
    [CrossRef]
  4. H. Ren and S. T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express14(23), 11292–11298 (2006).
    [CrossRef] [PubMed]
  5. Y. Li, Y. Liu, Q. Li, and S. T. Wu, “Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film,” Appl. Opt.51(14), 2568–2572 (2012).
    [CrossRef] [PubMed]
  6. C. T. Lee, Y. Li, H. Y. Lin, and S. T. Wu, “Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal,” Opt. Express19(18), 17402–17407 (2011).
    [CrossRef] [PubMed]
  7. L. Li, L. Shi, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Liquid crystal lenses: liquid crystals promise compact lenses with variable focus,” Laser Focus World (2010). http://www.laserfocusworld.com/articles/2010/12/liquid-crystals-promise-compact-lenses-with-variable-focus.html .
  8. A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett.23(13), 992–994 (1998).
    [CrossRef] [PubMed]
  9. L. Li, L. Shi, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Modeling and design of a tunable refractive lens based on liquid crystals,” Proc. SPIE7944, 79440S-79440S-8 (2011).
  10. H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative-positive tunable liquid-crystal microlens array by printing,” Opt. Express17(6), 4317–4323 (2009).
    [CrossRef] [PubMed]
  11. H. C. Lin and Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express20(3), 2045–2052 (2012).
    [CrossRef] [PubMed]
  12. Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express19(5), 4714–4721 (2011).
    [CrossRef] [PubMed]
  13. S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Opt. Rev.6(6), 471–485 (1999).
    [CrossRef]
  14. B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun.250(4-6), 266–273 (2005).
    [CrossRef]
  15. M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt.43(35), 6407–6412 (2004).
    [CrossRef] [PubMed]
  16. M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt.51(31), 7630–7635 (2012).
    [CrossRef] [PubMed]
  17. N. Fraval and J. L. de la Tocnaye, “Low aberrations symmetrical adaptive modal liquid crystal lens with short focal lengths,” Appl. Opt.49(15), 2778–2783 (2010).
    [CrossRef] [PubMed]
  18. P. Valley, N. Savidis, J. Schwiegerling, M. R. Dodge, G. Peyman, and N. Peyghambarian, “Adjustable hybrid diffractive/refractive achromatic lens,” Opt. Express19(8), 7468–7479 (2011).
    [CrossRef] [PubMed]
  19. K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express18(13), 13981–13992 (2010).
    [CrossRef] [PubMed]
  20. N. A. Riza and M. C. Dejule, “Three-terminal adaptive nematic liquid-crystal lens device,” Opt. Lett.19(14), 1013–1015 (1994).
    [CrossRef] [PubMed]
  21. V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized liquid-crystal lens,” J. Appl. Phys.97(10), 103101 (2005).
    [CrossRef]
  22. T. Galstian, V. Presniakov, K. Asatryan, and A. Tork, “Electricallly variable focus polymer-stabilized liquid crystal lens having non-homogenous polymerization of a nematic liquid crystal/monomer mixture,” US Patent 7667818 (2010).
  23. K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express18(13), 13981–13992 (2010).
    [CrossRef] [PubMed]
  24. L. Li, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Overview of factors affecting lens performance for 3D displays,” SID Symposium Digest of Technical Papers, 43, 379–382(2012).
  25. L. Li, D. Bryant, T. V. Heugten, and P. J. Bos, “Physical limitations and fundamental factors affecting performance of liquid crystal tunable lenses with concentric electrode rings,” Appl. Opt.52, 1978–1986 (2013).
  26. H. P. Herzig, Micro-optics: Elements, Systems and Applications (Taylor&Francis, 1997).
  27. L. Li, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Near-diffraction-limited tunable liquid crystal lens with simplified design,” Opt. Eng.52(3), 035007 (2013).
  28. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999).
  29. E. Hecht, Optics, 4th ed. (Addison Wesley, 2001).
  30. G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE PRESS, 2001).

2013

L. Li, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Near-diffraction-limited tunable liquid crystal lens with simplified design,” Opt. Eng.52(3), 035007 (2013).

L. Li, D. Bryant, T. V. Heugten, and P. J. Bos, “Physical limitations and fundamental factors affecting performance of liquid crystal tunable lenses with concentric electrode rings,” Appl. Opt.52, 1978–1986 (2013).

2012

2011

2010

2009

2007

G. Li, P. Valley, P. Ayras, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett.90(11), 111105 (2007).
[CrossRef]

2006

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

H. Ren and S. T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express14(23), 11292–11298 (2006).
[CrossRef] [PubMed]

2005

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun.250(4-6), 266–273 (2005).
[CrossRef]

V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized liquid-crystal lens,” J. Appl. Phys.97(10), 103101 (2005).
[CrossRef]

2004

1999

S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Opt. Rev.6(6), 471–485 (1999).
[CrossRef]

1998

1994

1984

Asatryan, K.

Ayras, P.

G. Li, P. Valley, P. Ayras, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett.90(11), 111105 (2007).
[CrossRef]

Ayräs, P.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Bagramyan, A.

Bos, P. J.

L. Li, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Near-diffraction-limited tunable liquid crystal lens with simplified design,” Opt. Eng.52(3), 035007 (2013).

L. Li, D. Bryant, T. V. Heugten, and P. J. Bos, “Physical limitations and fundamental factors affecting performance of liquid crystal tunable lenses with concentric electrode rings,” Appl. Opt.52, 1978–1986 (2013).

L. Li, L. Shi, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Modeling and design of a tunable refractive lens based on liquid crystals,” Proc. SPIE7944, 79440S-79440S-8 (2011).

Bryant, D.

L. Li, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Near-diffraction-limited tunable liquid crystal lens with simplified design,” Opt. Eng.52(3), 035007 (2013).

L. Li, D. Bryant, T. V. Heugten, and P. J. Bos, “Physical limitations and fundamental factors affecting performance of liquid crystal tunable lenses with concentric electrode rings,” Appl. Opt.52, 1978–1986 (2013).

L. Li, L. Shi, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Modeling and design of a tunable refractive lens based on liquid crystals,” Proc. SPIE7944, 79440S-79440S-8 (2011).

Chen, M. S.

Cleverly, D. S.

Dai, H. T.

de la Tocnaye, J. L.

Dejule, M. C.

Dodge, M. R.

Duston, D.

L. Li, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Near-diffraction-limited tunable liquid crystal lens with simplified design,” Opt. Eng.52(3), 035007 (2013).

L. Li, L. Shi, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Modeling and design of a tunable refractive lens based on liquid crystals,” Proc. SPIE7944, 79440S-79440S-8 (2011).

Fraval, N.

Galstian, T.

Galstian, T. V.

V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized liquid-crystal lens,” J. Appl. Phys.97(10), 103101 (2005).
[CrossRef]

Giridhar, M. S.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Guralnik, I. R.

Haddock, J. N.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Heugten, T. V.

L. Li, D. Bryant, T. V. Heugten, and P. J. Bos, “Physical limitations and fundamental factors affecting performance of liquid crystal tunable lenses with concentric electrode rings,” Appl. Opt.52, 1978–1986 (2013).

L. Li, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Near-diffraction-limited tunable liquid crystal lens with simplified design,” Opt. Eng.52(3), 035007 (2013).

L. Li, L. Shi, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Modeling and design of a tunable refractive lens based on liquid crystals,” Proc. SPIE7944, 79440S-79440S-8 (2011).

Honkanen, S.

G. Li, P. Valley, P. Ayras, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett.90(11), 111105 (2007).
[CrossRef]

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Kippelen, B.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Kornreich, P. G.

Kowel, S. T.

Lee, C. T.

Li, G.

G. Li, P. Valley, P. Ayras, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett.90(11), 111105 (2007).
[CrossRef]

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Li, L.

L. Li, D. Bryant, T. V. Heugten, and P. J. Bos, “Physical limitations and fundamental factors affecting performance of liquid crystal tunable lenses with concentric electrode rings,” Appl. Opt.52, 1978–1986 (2013).

L. Li, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Near-diffraction-limited tunable liquid crystal lens with simplified design,” Opt. Eng.52(3), 035007 (2013).

L. Li, L. Shi, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Modeling and design of a tunable refractive lens based on liquid crystals,” Proc. SPIE7944, 79440S-79440S-8 (2011).

Li, Q.

Li, Y.

Lin, H. C.

Lin, H. Y.

Lin, Y. H.

Liu, Y.

Liu, Y. J.

Loktev, M. Yu.

Luo, D.

Mathine, D. L.

G. Li, P. Valley, P. Ayras, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett.90(11), 111105 (2007).
[CrossRef]

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Meredith, G. R.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Naumov, A. F.

Peyghambarian, N.

P. Valley, N. Savidis, J. Schwiegerling, M. R. Dodge, G. Peyman, and N. Peyghambarian, “Adjustable hybrid diffractive/refractive achromatic lens,” Opt. Express19(8), 7468–7479 (2011).
[CrossRef] [PubMed]

G. Li, P. Valley, P. Ayras, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett.90(11), 111105 (2007).
[CrossRef]

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Peyman, G.

Presnyakov, V.

Presnyakov, V. V.

V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized liquid-crystal lens,” J. Appl. Phys.97(10), 103101 (2005).
[CrossRef]

Ren, H.

Riza, N. A.

Sato, S.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt.51(31), 7630–7635 (2012).
[CrossRef] [PubMed]

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun.250(4-6), 266–273 (2005).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt.43(35), 6407–6412 (2004).
[CrossRef] [PubMed]

S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Opt. Rev.6(6), 471–485 (1999).
[CrossRef]

Savidis, N.

Schwiegerling, J.

P. Valley, N. Savidis, J. Schwiegerling, M. R. Dodge, G. Peyman, and N. Peyghambarian, “Adjustable hybrid diffractive/refractive achromatic lens,” Opt. Express19(8), 7468–7479 (2011).
[CrossRef] [PubMed]

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Shi, L.

L. Li, L. Shi, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Modeling and design of a tunable refractive lens based on liquid crystals,” Proc. SPIE7944, 79440S-79440S-8 (2011).

Sun, X. W.

Takahashi, S.

Tork, A.

Uchida, M.

Valley, P.

P. Valley, N. Savidis, J. Schwiegerling, M. R. Dodge, G. Peyman, and N. Peyghambarian, “Adjustable hybrid diffractive/refractive achromatic lens,” Opt. Express19(8), 7468–7479 (2011).
[CrossRef] [PubMed]

G. Li, P. Valley, P. Ayras, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett.90(11), 111105 (2007).
[CrossRef]

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Vdovin, G.

Wang, B.

Williby, G.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Wu, S. T.

Yanase, S.

Ye, M.

Zohrabyan, A.

Appl. Opt.

Appl. Phys. Lett.

G. Li, P. Valley, P. Ayras, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett.90(11), 111105 (2007).
[CrossRef]

J. Appl. Phys.

V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized liquid-crystal lens,” J. Appl. Phys.97(10), 103101 (2005).
[CrossRef]

Opt. Commun.

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun.250(4-6), 266–273 (2005).
[CrossRef]

Opt. Eng.

L. Li, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Near-diffraction-limited tunable liquid crystal lens with simplified design,” Opt. Eng.52(3), 035007 (2013).

Opt. Express

H. Ren and S. T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express14(23), 11292–11298 (2006).
[CrossRef] [PubMed]

H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative-positive tunable liquid-crystal microlens array by printing,” Opt. Express17(6), 4317–4323 (2009).
[CrossRef] [PubMed]

K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express18(13), 13981–13992 (2010).
[CrossRef] [PubMed]

K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express18(13), 13981–13992 (2010).
[CrossRef] [PubMed]

Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express19(5), 4714–4721 (2011).
[CrossRef] [PubMed]

P. Valley, N. Savidis, J. Schwiegerling, M. R. Dodge, G. Peyman, and N. Peyghambarian, “Adjustable hybrid diffractive/refractive achromatic lens,” Opt. Express19(8), 7468–7479 (2011).
[CrossRef] [PubMed]

C. T. Lee, Y. Li, H. Y. Lin, and S. T. Wu, “Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal,” Opt. Express19(18), 17402–17407 (2011).
[CrossRef] [PubMed]

H. C. Lin and Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express20(3), 2045–2052 (2012).
[CrossRef] [PubMed]

Opt. Lett.

Opt. Rev.

S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Opt. Rev.6(6), 471–485 (1999).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Proc. SPIE

L. Li, L. Shi, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Modeling and design of a tunable refractive lens based on liquid crystals,” Proc. SPIE7944, 79440S-79440S-8 (2011).

Other

L. Li, L. Shi, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Liquid crystal lenses: liquid crystals promise compact lenses with variable focus,” Laser Focus World (2010). http://www.laserfocusworld.com/articles/2010/12/liquid-crystals-promise-compact-lenses-with-variable-focus.html .

T. Galstian, V. Presniakov, K. Asatryan, and A. Tork, “Electricallly variable focus polymer-stabilized liquid crystal lens having non-homogenous polymerization of a nematic liquid crystal/monomer mixture,” US Patent 7667818 (2010).

H. P. Herzig, Micro-optics: Elements, Systems and Applications (Taylor&Francis, 1997).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999).

E. Hecht, Optics, 4th ed. (Addison Wesley, 2001).

G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE PRESS, 2001).

L. Li, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Overview of factors affecting lens performance for 3D displays,” SID Symposium Digest of Technical Papers, 43, 379–382(2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Numerically calculated MTF for the performance of LC lens with floating electrode, compared to an ideal lens of same power.

Fig. 2
Fig. 2

Side view diagram of the patterned substrate and cell construction.

Fig. 3
Fig. 3

(a) Interferogram of the actual LC lens; (b) Measured OPD of the actual LC lens; (c) Measured phase profile 1D along radial axis, compared with ideal lens profile.

Fig. 4
Fig. 4

(c) Measured OPD 2D in 3D view with clear and smooth phase steps in outermost area of the LC lens with floating electrodes; (d) Measured OPD 2D in 3D view for the same area of LC lens without floating electrodes, very clear phase bumps are shown; (e) Measured phase profile 1D and side view of OPD 2D for LC lens with floating electrodes (x axis is the pixel numbers, representing about 60µm in length in lens actual area, y axis is the phase in unit of number of waves); (f) Measured phase profile 1D and side view of OPD 2D of the same area of the LC lens without the floating electrodes.

Fig. 5
Fig. 5

Maximum exposure of the light distribution at focal plane for (a) glass lens f = 400 mm; (b) LC lens f = 400 mm without floating electrodes; (c) LC lens f = 400 mm with floating electrodes.

Fig. 6
Fig. 6

(a) Calculated MTF from measured light distribution in the focal plane with typical normalization (area under measured PSF curve) for the glass lens, LC lens without floating electrodes, and LC lens with floating electrodes; (b) Calculated MTF from measured light distribution in the focal plane with modified normalization for the glass lens (mid curve), LC lens without floating electrodes (bottom curve), and LC lens with floating electrodes (top curve).

Fig. 7
Fig. 7

Normal exposure (8 sec) of images through (a) glass lens f = 400 mm; (b) LC lens without floating electrodes; (c) LC lens with floating electrodes; (d) when the LC lens is power off.

Fig. 8
Fig. 8

“Over” exposure (30 sec) of images through (a) glass lens f = 400 mm; (b) LC lens without floating electrodes; (c) LC lens with floating electrodes.

Fig. 9
Fig. 9

(a) Measured image modulation contrast for glass lens f = 400 mm, LC lens without floating electrodes, and LC lens with floating electrodes (grayscale and green channel); (b) close-up at low frequencies.

Fig. 10
Fig. 10

Normal exposure (2 sec) of print images through (a) glass lens f = 400 mm; (b) LC lens without floating electrodes; (c) LC lens with floating electrodes; (d) when the LC lens is power off.

Tables (1)

Tables Icon

Table 1 Voltages applied on each addressable ring electrode.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

OPD(r) r 2 2f
r n = 2λfn f s ,n=1,2,,N

Metrics