Abstract

A setup of ultrafast transient infrared IR spectrometer is described in this paper that employed Schwarzschild objectives to focus the probe beam to a diffraction limited spot. Thus measurements were performed with very high spatial resolution in the mid-IR spectral region. Furthermore, modulating the polarization of the probe light enabled detecting transient dichroism of the sample. These capabilities of the setup were applied to study transient absorption of Photosystem II core complex and to image an organized film of methylene blue chloride dye. Moreover, a study of noise sources in a pump probe measurement is presented. The predicted noise level of the current setup was 8.25 μOD in 104 acquisitions and compared very well with the experimental observation of 9.6 μOD.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Ellingson, J. B. Asbury, S. Ferrere, H. N. Ghosh, J. R. Sprague, T. Lian, and A. J. Nozik, “Dynamics of electron injection in nanocrystalline titanium dioxide films sensitized with [Ru (4, 4’-dicarboxy-2, 2'-bipyridine) 2 (NCS) 2] by infrared transient absorption,” J. Phys. Chem. B102(34), 6455–6458 (1998).
    [CrossRef]
  2. J. Asbury, R. Ellingson, H. N. Ghosh, S. Ferrere, A. J. Nozik, and T. Lian, “Femtosecond IR study of excited-state relaxation and electron-injection dynamics of Ru (dcbpy) 2 (NCS) 2 in solution and on nanocrystalline TiO2 and Al2O3 thin films,” J. Phys. Chem. B103(16), 3110–3119 (1999).
    [CrossRef]
  3. J. J. van Thor, G. Y. Georgiev, M. Towrie, and J. T. Sage, “Ultrafast and low barrier motions in the photoreactions of the green fluorescent protein,” J. Biol. Chem.280(39), 33652–33659 (2005).
    [CrossRef] [PubMed]
  4. N. P. Pawlowicz, M.-L. Groot, I. H. M. van Stokkum, J. Breton, and R. van Grondelle, “Charge separation and energy transfer in the photosystem II core complex studied by femtosecond midinfrared spectroscopy,” Biophys. J.93(8), 2732–2742 (2007).
    [CrossRef] [PubMed]
  5. P. Dumas and L. Miller, “The use of synchrotron infrared microspectroscopy in biological and biomedical investigations,” Vib. Spectrosc.32(1), 3–21 (2003).
    [CrossRef]
  6. G. Carr, “Resolution limits for infrared microspectroscopy explored with synchrotron radiation,” Rev. Sci. Instrum.72(3), 1613–1619 (2001).
    [CrossRef]
  7. H. A. Bechtel, M. C. Martin, T. E. May, and P. Lerch, “Improved spatial resolution for reflection mode infrared microscopy,” Rev. Sci. Instrum.80(12), 126106 (2009).
    [CrossRef] [PubMed]
  8. L. M. Miller and R. J. Smith, “Synchrotrons versus globars, point-detectors versus focal plane arrays: Selecting the best source and detector for specific infrared microspectroscopy and imaging applications,” Vib. Spectrosc.38(1-2), 237–240 (2005).
    [CrossRef]
  9. A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron.38(6), 582–591 (2002).
    [CrossRef]
  10. J. Manne, O. Sukhorukov, W. Jäger, and J. Tulip, “Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath,” Appl. Opt.45(36), 9230–9237 (2006).
    [CrossRef] [PubMed]
  11. M. Weida and B. Yee, “Quantum cascade laser-based replacement for FTIR microscopy,” in SPIE BiOS (2011), p. 79021C–79021C.
  12. O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, F. L. Terry, M. Neelakandan, and A. Chan, “Supercontinuum generation from ~19 to 45 μmin ZBLAN fiber with high average power generation beyond 38 μm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B28(10), 2486–2498 (2011).
    [CrossRef]
  13. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express20(5), 4887–4892 (2012).
    [CrossRef] [PubMed]
  14. P. Hamm, R. A. Kaindl, and J. Stenger, “Noise suppression in femtosecond mid-infrared light sources,” Opt. Lett.25(24), 1798–1800 (2000).
    [CrossRef] [PubMed]
  15. G. M. Greetham, P. Burgos, Q. Cao, I. P. Clark, P. S. Codd, R. C. Farrow, M. W. George, M. Kogimtzis, P. Matousek, A. W. Parker, M. R. Pollard, D. A. Robinson, Z. J. Xin, and M. Towrie, “ULTRA: A unique instrument for time-resolved spectroscopy,” Appl. Spectrosc.64(12), 1311–1319 (2010).
    [CrossRef] [PubMed]
  16. M. Towrie, D. C. Grills, J. Dyer, J. A. Weinstein, P. Matousek, R. Barton, P. D. Bailey, N. Subramaniam, W. M. Kwok, C. Ma, D. Phillips, A. W. Parker, and M. W. George, “Development of a broadband picosecond infrared spectrometer and its incorporation into an existing ultrafast time-resolved resonance Raman, UV/visible, and fluorescence spectroscopic apparatus,” Appl. Spectrosc.57(4), 367–380 (2003).
    [CrossRef] [PubMed]
  17. R. P. S. M. Lobo, J. D. LaVeigne, D. H. Reitze, D. B. Tanner, and G. L. Carr, “Subnanosecond, time-resolved, broadband infrared spectroscopy using synchrotron radiation,” Rev. Sci. Instrum.73(1), 1–10 (2002).
    [CrossRef]
  18. L. Carroll, P. Friedli, P. Lerch, J. Schneider, D. Treyer, S. Hunziker, S. Stutz, and H. Sigg, “Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump,” Rev. Sci. Instrum.82(6), 063101 (2011).
    [CrossRef] [PubMed]
  19. B. Wybourne, “Optimum optical density for shot noise limited spectrophotometers,” J. Opt. Soc. Am.50(1), 84–85 (1960).
    [CrossRef]
  20. R. Cole, “Optimum optical density in spectrophotometry,” J. Opt. Soc. Am.41(1), 38–40 (1951).
    [CrossRef]
  21. L. D. Rothman, S. R. Crouch, and J. D. Ingle, “Theoretical and experimental investigation of factors affecting precision in molecular absorption spectrophotometry,” Anal. Chem.47(8), 1226–1233 (1975).
    [CrossRef]
  22. H. Mark and J. Workman, Chemometrics in Spectroscopy (Academic Press, 2007).
  23. G. Moore and K. Koch, “Phasing of tandem crystals for nonlinear optical frequency conversion,” Opt. Commun.124(3-4), 292–294 (1996).
    [CrossRef]
  24. C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum.79(1), 013107 (2008).
    [CrossRef] [PubMed]
  25. A. L. Dobryakov, S. A. Kovalenko, A. Weigel, J. L. Pérez-Lustres, J. Lange, A. Müller, and N. P. Ernsting, “Femtosecond pump/supercontinuum-probe spectroscopy: optimized setup and signal analysis for single-shot spectral referencing,” Rev. Sci. Instrum.81(11), 113106 (2010).
    [CrossRef] [PubMed]
  26. A. G. P. Julius and S. Bendat, Random Data: Analysis and Measurement Procedures (Wiley, 2011).
  27. D. Polli, L. Lüer, and G. Cerullo, “High-time-resolution pump-probe system with broadband detection for the study of time-domain vibrational dynamics,” Rev. Sci. Instrum.78(10), 103108 (2007).
    [CrossRef] [PubMed]
  28. P. M. T. Broersen, “Estimation of the accuracy of mean and variance of correlated data,” IEEE Trans. Instrum. Meas.47(5), 1085–1091 (1998).
    [CrossRef]
  29. L. J. G. W. van Wilderen, C. N. Lincoln, and J. J. van Thor, “Modelling multi-pulse population dynamics from ultrafast spectroscopy,” PLoS ONE6(3), e17373 (2011).
    [CrossRef] [PubMed]
  30. L. Wong, C. Hu, R. Paradise, Z. Zhu, A. Shtukenberg, and B. Kahr, “Relationship between tribology and optics in thin films of mechanically oriented nanocrystals,” J. Am. Chem. Soc.134(29), 12245–12251 (2012).
    [CrossRef] [PubMed]
  31. E. Sáez and R. Corn, “In situ polarization modulation—Fourier transform infrared spectroelectrochemistry of phenazine and phenothiazine dye films at polycrystalline gold electrodes,” Electrochim. Acta38(12), 1619–1625 (1993).
    [CrossRef]
  32. O. V. Ovchinnikov, S. V. Chernykh, M. S. Smirnov, D. V. Alpatova, R. P. Vorob’eva, N. Latyshev, B. Evlev, N. Utekhin, and N. Lukin, “Analysis of interaction between the organic dye methylene blue and the surface of AgCl(I) microcrystals,” J. Appl. Spectrosc.74(6), 809–816 (2007).
    [CrossRef]

2012 (2)

L. Wong, C. Hu, R. Paradise, Z. Zhu, A. Shtukenberg, and B. Kahr, “Relationship between tribology and optics in thin films of mechanically oriented nanocrystals,” J. Am. Chem. Soc.134(29), 12245–12251 (2012).
[CrossRef] [PubMed]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express20(5), 4887–4892 (2012).
[CrossRef] [PubMed]

2011 (3)

O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, F. L. Terry, M. Neelakandan, and A. Chan, “Supercontinuum generation from ~19 to 45 μmin ZBLAN fiber with high average power generation beyond 38 μm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B28(10), 2486–2498 (2011).
[CrossRef]

L. Carroll, P. Friedli, P. Lerch, J. Schneider, D. Treyer, S. Hunziker, S. Stutz, and H. Sigg, “Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump,” Rev. Sci. Instrum.82(6), 063101 (2011).
[CrossRef] [PubMed]

L. J. G. W. van Wilderen, C. N. Lincoln, and J. J. van Thor, “Modelling multi-pulse population dynamics from ultrafast spectroscopy,” PLoS ONE6(3), e17373 (2011).
[CrossRef] [PubMed]

2010 (2)

A. L. Dobryakov, S. A. Kovalenko, A. Weigel, J. L. Pérez-Lustres, J. Lange, A. Müller, and N. P. Ernsting, “Femtosecond pump/supercontinuum-probe spectroscopy: optimized setup and signal analysis for single-shot spectral referencing,” Rev. Sci. Instrum.81(11), 113106 (2010).
[CrossRef] [PubMed]

G. M. Greetham, P. Burgos, Q. Cao, I. P. Clark, P. S. Codd, R. C. Farrow, M. W. George, M. Kogimtzis, P. Matousek, A. W. Parker, M. R. Pollard, D. A. Robinson, Z. J. Xin, and M. Towrie, “ULTRA: A unique instrument for time-resolved spectroscopy,” Appl. Spectrosc.64(12), 1311–1319 (2010).
[CrossRef] [PubMed]

2009 (1)

H. A. Bechtel, M. C. Martin, T. E. May, and P. Lerch, “Improved spatial resolution for reflection mode infrared microscopy,” Rev. Sci. Instrum.80(12), 126106 (2009).
[CrossRef] [PubMed]

2008 (1)

C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum.79(1), 013107 (2008).
[CrossRef] [PubMed]

2007 (3)

D. Polli, L. Lüer, and G. Cerullo, “High-time-resolution pump-probe system with broadband detection for the study of time-domain vibrational dynamics,” Rev. Sci. Instrum.78(10), 103108 (2007).
[CrossRef] [PubMed]

N. P. Pawlowicz, M.-L. Groot, I. H. M. van Stokkum, J. Breton, and R. van Grondelle, “Charge separation and energy transfer in the photosystem II core complex studied by femtosecond midinfrared spectroscopy,” Biophys. J.93(8), 2732–2742 (2007).
[CrossRef] [PubMed]

O. V. Ovchinnikov, S. V. Chernykh, M. S. Smirnov, D. V. Alpatova, R. P. Vorob’eva, N. Latyshev, B. Evlev, N. Utekhin, and N. Lukin, “Analysis of interaction between the organic dye methylene blue and the surface of AgCl(I) microcrystals,” J. Appl. Spectrosc.74(6), 809–816 (2007).
[CrossRef]

2006 (1)

2005 (2)

L. M. Miller and R. J. Smith, “Synchrotrons versus globars, point-detectors versus focal plane arrays: Selecting the best source and detector for specific infrared microspectroscopy and imaging applications,” Vib. Spectrosc.38(1-2), 237–240 (2005).
[CrossRef]

J. J. van Thor, G. Y. Georgiev, M. Towrie, and J. T. Sage, “Ultrafast and low barrier motions in the photoreactions of the green fluorescent protein,” J. Biol. Chem.280(39), 33652–33659 (2005).
[CrossRef] [PubMed]

2003 (2)

2002 (2)

R. P. S. M. Lobo, J. D. LaVeigne, D. H. Reitze, D. B. Tanner, and G. L. Carr, “Subnanosecond, time-resolved, broadband infrared spectroscopy using synchrotron radiation,” Rev. Sci. Instrum.73(1), 1–10 (2002).
[CrossRef]

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron.38(6), 582–591 (2002).
[CrossRef]

2001 (1)

G. Carr, “Resolution limits for infrared microspectroscopy explored with synchrotron radiation,” Rev. Sci. Instrum.72(3), 1613–1619 (2001).
[CrossRef]

2000 (1)

1999 (1)

J. Asbury, R. Ellingson, H. N. Ghosh, S. Ferrere, A. J. Nozik, and T. Lian, “Femtosecond IR study of excited-state relaxation and electron-injection dynamics of Ru (dcbpy) 2 (NCS) 2 in solution and on nanocrystalline TiO2 and Al2O3 thin films,” J. Phys. Chem. B103(16), 3110–3119 (1999).
[CrossRef]

1998 (2)

R. J. Ellingson, J. B. Asbury, S. Ferrere, H. N. Ghosh, J. R. Sprague, T. Lian, and A. J. Nozik, “Dynamics of electron injection in nanocrystalline titanium dioxide films sensitized with [Ru (4, 4’-dicarboxy-2, 2'-bipyridine) 2 (NCS) 2] by infrared transient absorption,” J. Phys. Chem. B102(34), 6455–6458 (1998).
[CrossRef]

P. M. T. Broersen, “Estimation of the accuracy of mean and variance of correlated data,” IEEE Trans. Instrum. Meas.47(5), 1085–1091 (1998).
[CrossRef]

1996 (1)

G. Moore and K. Koch, “Phasing of tandem crystals for nonlinear optical frequency conversion,” Opt. Commun.124(3-4), 292–294 (1996).
[CrossRef]

1993 (1)

E. Sáez and R. Corn, “In situ polarization modulation—Fourier transform infrared spectroelectrochemistry of phenazine and phenothiazine dye films at polycrystalline gold electrodes,” Electrochim. Acta38(12), 1619–1625 (1993).
[CrossRef]

1975 (1)

L. D. Rothman, S. R. Crouch, and J. D. Ingle, “Theoretical and experimental investigation of factors affecting precision in molecular absorption spectrophotometry,” Anal. Chem.47(8), 1226–1233 (1975).
[CrossRef]

1960 (1)

1951 (1)

Agger, C.

Alexander, V. V.

Alpatova, D. V.

O. V. Ovchinnikov, S. V. Chernykh, M. S. Smirnov, D. V. Alpatova, R. P. Vorob’eva, N. Latyshev, B. Evlev, N. Utekhin, and N. Lukin, “Analysis of interaction between the organic dye methylene blue and the surface of AgCl(I) microcrystals,” J. Appl. Spectrosc.74(6), 809–816 (2007).
[CrossRef]

Asbury, J.

J. Asbury, R. Ellingson, H. N. Ghosh, S. Ferrere, A. J. Nozik, and T. Lian, “Femtosecond IR study of excited-state relaxation and electron-injection dynamics of Ru (dcbpy) 2 (NCS) 2 in solution and on nanocrystalline TiO2 and Al2O3 thin films,” J. Phys. Chem. B103(16), 3110–3119 (1999).
[CrossRef]

Asbury, J. B.

R. J. Ellingson, J. B. Asbury, S. Ferrere, H. N. Ghosh, J. R. Sprague, T. Lian, and A. J. Nozik, “Dynamics of electron injection in nanocrystalline titanium dioxide films sensitized with [Ru (4, 4’-dicarboxy-2, 2'-bipyridine) 2 (NCS) 2] by infrared transient absorption,” J. Phys. Chem. B102(34), 6455–6458 (1998).
[CrossRef]

Bailey, P. D.

Bang, O.

Barton, R.

Bechtel, H. A.

H. A. Bechtel, M. C. Martin, T. E. May, and P. Lerch, “Improved spatial resolution for reflection mode infrared microscopy,” Rev. Sci. Instrum.80(12), 126106 (2009).
[CrossRef] [PubMed]

Breton, J.

N. P. Pawlowicz, M.-L. Groot, I. H. M. van Stokkum, J. Breton, and R. van Grondelle, “Charge separation and energy transfer in the photosystem II core complex studied by femtosecond midinfrared spectroscopy,” Biophys. J.93(8), 2732–2742 (2007).
[CrossRef] [PubMed]

Broersen, P. M. T.

P. M. T. Broersen, “Estimation of the accuracy of mean and variance of correlated data,” IEEE Trans. Instrum. Meas.47(5), 1085–1091 (1998).
[CrossRef]

Burgos, P.

Cao, Q.

Carr, G.

G. Carr, “Resolution limits for infrared microspectroscopy explored with synchrotron radiation,” Rev. Sci. Instrum.72(3), 1613–1619 (2001).
[CrossRef]

Carr, G. L.

R. P. S. M. Lobo, J. D. LaVeigne, D. H. Reitze, D. B. Tanner, and G. L. Carr, “Subnanosecond, time-resolved, broadband infrared spectroscopy using synchrotron radiation,” Rev. Sci. Instrum.73(1), 1–10 (2002).
[CrossRef]

Carroll, L.

L. Carroll, P. Friedli, P. Lerch, J. Schneider, D. Treyer, S. Hunziker, S. Stutz, and H. Sigg, “Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump,” Rev. Sci. Instrum.82(6), 063101 (2011).
[CrossRef] [PubMed]

Cerullo, G.

D. Polli, L. Lüer, and G. Cerullo, “High-time-resolution pump-probe system with broadband detection for the study of time-domain vibrational dynamics,” Rev. Sci. Instrum.78(10), 103108 (2007).
[CrossRef] [PubMed]

Chan, A.

Chernykh, S. V.

O. V. Ovchinnikov, S. V. Chernykh, M. S. Smirnov, D. V. Alpatova, R. P. Vorob’eva, N. Latyshev, B. Evlev, N. Utekhin, and N. Lukin, “Analysis of interaction between the organic dye methylene blue and the surface of AgCl(I) microcrystals,” J. Appl. Spectrosc.74(6), 809–816 (2007).
[CrossRef]

Clark, I. P.

Codd, P. S.

Cole, R.

Corn, R.

E. Sáez and R. Corn, “In situ polarization modulation—Fourier transform infrared spectroelectrochemistry of phenazine and phenothiazine dye films at polycrystalline gold electrodes,” Electrochim. Acta38(12), 1619–1625 (1993).
[CrossRef]

Crouch, S. R.

L. D. Rothman, S. R. Crouch, and J. D. Ingle, “Theoretical and experimental investigation of factors affecting precision in molecular absorption spectrophotometry,” Anal. Chem.47(8), 1226–1233 (1975).
[CrossRef]

Dobryakov, A. L.

A. L. Dobryakov, S. A. Kovalenko, A. Weigel, J. L. Pérez-Lustres, J. Lange, A. Müller, and N. P. Ernsting, “Femtosecond pump/supercontinuum-probe spectroscopy: optimized setup and signal analysis for single-shot spectral referencing,” Rev. Sci. Instrum.81(11), 113106 (2010).
[CrossRef] [PubMed]

Dumas, P.

P. Dumas and L. Miller, “The use of synchrotron infrared microspectroscopy in biological and biomedical investigations,” Vib. Spectrosc.32(1), 3–21 (2003).
[CrossRef]

Dupont, S.

Dyer, J.

Ellingson, R.

J. Asbury, R. Ellingson, H. N. Ghosh, S. Ferrere, A. J. Nozik, and T. Lian, “Femtosecond IR study of excited-state relaxation and electron-injection dynamics of Ru (dcbpy) 2 (NCS) 2 in solution and on nanocrystalline TiO2 and Al2O3 thin films,” J. Phys. Chem. B103(16), 3110–3119 (1999).
[CrossRef]

Ellingson, R. J.

R. J. Ellingson, J. B. Asbury, S. Ferrere, H. N. Ghosh, J. R. Sprague, T. Lian, and A. J. Nozik, “Dynamics of electron injection in nanocrystalline titanium dioxide films sensitized with [Ru (4, 4’-dicarboxy-2, 2'-bipyridine) 2 (NCS) 2] by infrared transient absorption,” J. Phys. Chem. B102(34), 6455–6458 (1998).
[CrossRef]

Ernsting, N. P.

A. L. Dobryakov, S. A. Kovalenko, A. Weigel, J. L. Pérez-Lustres, J. Lange, A. Müller, and N. P. Ernsting, “Femtosecond pump/supercontinuum-probe spectroscopy: optimized setup and signal analysis for single-shot spectral referencing,” Rev. Sci. Instrum.81(11), 113106 (2010).
[CrossRef] [PubMed]

Evlev, B.

O. V. Ovchinnikov, S. V. Chernykh, M. S. Smirnov, D. V. Alpatova, R. P. Vorob’eva, N. Latyshev, B. Evlev, N. Utekhin, and N. Lukin, “Analysis of interaction between the organic dye methylene blue and the surface of AgCl(I) microcrystals,” J. Appl. Spectrosc.74(6), 809–816 (2007).
[CrossRef]

Farrow, R. C.

Ferrere, S.

J. Asbury, R. Ellingson, H. N. Ghosh, S. Ferrere, A. J. Nozik, and T. Lian, “Femtosecond IR study of excited-state relaxation and electron-injection dynamics of Ru (dcbpy) 2 (NCS) 2 in solution and on nanocrystalline TiO2 and Al2O3 thin films,” J. Phys. Chem. B103(16), 3110–3119 (1999).
[CrossRef]

R. J. Ellingson, J. B. Asbury, S. Ferrere, H. N. Ghosh, J. R. Sprague, T. Lian, and A. J. Nozik, “Dynamics of electron injection in nanocrystalline titanium dioxide films sensitized with [Ru (4, 4’-dicarboxy-2, 2'-bipyridine) 2 (NCS) 2] by infrared transient absorption,” J. Phys. Chem. B102(34), 6455–6458 (1998).
[CrossRef]

Freeman, M. J.

Friedli, P.

L. Carroll, P. Friedli, P. Lerch, J. Schneider, D. Treyer, S. Hunziker, S. Stutz, and H. Sigg, “Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump,” Rev. Sci. Instrum.82(6), 063101 (2011).
[CrossRef] [PubMed]

George, M. W.

Georgiev, G. Y.

J. J. van Thor, G. Y. Georgiev, M. Towrie, and J. T. Sage, “Ultrafast and low barrier motions in the photoreactions of the green fluorescent protein,” J. Biol. Chem.280(39), 33652–33659 (2005).
[CrossRef] [PubMed]

Ghosh, H. N.

J. Asbury, R. Ellingson, H. N. Ghosh, S. Ferrere, A. J. Nozik, and T. Lian, “Femtosecond IR study of excited-state relaxation and electron-injection dynamics of Ru (dcbpy) 2 (NCS) 2 in solution and on nanocrystalline TiO2 and Al2O3 thin films,” J. Phys. Chem. B103(16), 3110–3119 (1999).
[CrossRef]

R. J. Ellingson, J. B. Asbury, S. Ferrere, H. N. Ghosh, J. R. Sprague, T. Lian, and A. J. Nozik, “Dynamics of electron injection in nanocrystalline titanium dioxide films sensitized with [Ru (4, 4’-dicarboxy-2, 2'-bipyridine) 2 (NCS) 2] by infrared transient absorption,” J. Phys. Chem. B102(34), 6455–6458 (1998).
[CrossRef]

Greetham, G. M.

Grills, D. C.

Groot, M.-L.

N. P. Pawlowicz, M.-L. Groot, I. H. M. van Stokkum, J. Breton, and R. van Grondelle, “Charge separation and energy transfer in the photosystem II core complex studied by femtosecond midinfrared spectroscopy,” Biophys. J.93(8), 2732–2742 (2007).
[CrossRef] [PubMed]

Hamm, P.

Hu, C.

L. Wong, C. Hu, R. Paradise, Z. Zhu, A. Shtukenberg, and B. Kahr, “Relationship between tribology and optics in thin films of mechanically oriented nanocrystals,” J. Am. Chem. Soc.134(29), 12245–12251 (2012).
[CrossRef] [PubMed]

Hunziker, S.

L. Carroll, P. Friedli, P. Lerch, J. Schneider, D. Treyer, S. Hunziker, S. Stutz, and H. Sigg, “Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump,” Rev. Sci. Instrum.82(6), 063101 (2011).
[CrossRef] [PubMed]

Ingle, J. D.

L. D. Rothman, S. R. Crouch, and J. D. Ingle, “Theoretical and experimental investigation of factors affecting precision in molecular absorption spectrophotometry,” Anal. Chem.47(8), 1226–1233 (1975).
[CrossRef]

Islam, M. N.

Jäger, W.

Kahr, B.

L. Wong, C. Hu, R. Paradise, Z. Zhu, A. Shtukenberg, and B. Kahr, “Relationship between tribology and optics in thin films of mechanically oriented nanocrystals,” J. Am. Chem. Soc.134(29), 12245–12251 (2012).
[CrossRef] [PubMed]

Kaindl, R. A.

Keiding, S. R.

Koch, K.

G. Moore and K. Koch, “Phasing of tandem crystals for nonlinear optical frequency conversion,” Opt. Commun.124(3-4), 292–294 (1996).
[CrossRef]

Kogimtzis, M.

Kosterev, A. A.

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron.38(6), 582–591 (2002).
[CrossRef]

Kovalenko, S. A.

A. L. Dobryakov, S. A. Kovalenko, A. Weigel, J. L. Pérez-Lustres, J. Lange, A. Müller, and N. P. Ernsting, “Femtosecond pump/supercontinuum-probe spectroscopy: optimized setup and signal analysis for single-shot spectral referencing,” Rev. Sci. Instrum.81(11), 113106 (2010).
[CrossRef] [PubMed]

Kulkarni, O. P.

Kumar, M.

Kwok, W. M.

Lange, J.

A. L. Dobryakov, S. A. Kovalenko, A. Weigel, J. L. Pérez-Lustres, J. Lange, A. Müller, and N. P. Ernsting, “Femtosecond pump/supercontinuum-probe spectroscopy: optimized setup and signal analysis for single-shot spectral referencing,” Rev. Sci. Instrum.81(11), 113106 (2010).
[CrossRef] [PubMed]

Latyshev, N.

O. V. Ovchinnikov, S. V. Chernykh, M. S. Smirnov, D. V. Alpatova, R. P. Vorob’eva, N. Latyshev, B. Evlev, N. Utekhin, and N. Lukin, “Analysis of interaction between the organic dye methylene blue and the surface of AgCl(I) microcrystals,” J. Appl. Spectrosc.74(6), 809–816 (2007).
[CrossRef]

LaVeigne, J. D.

R. P. S. M. Lobo, J. D. LaVeigne, D. H. Reitze, D. B. Tanner, and G. L. Carr, “Subnanosecond, time-resolved, broadband infrared spectroscopy using synchrotron radiation,” Rev. Sci. Instrum.73(1), 1–10 (2002).
[CrossRef]

Lerch, P.

L. Carroll, P. Friedli, P. Lerch, J. Schneider, D. Treyer, S. Hunziker, S. Stutz, and H. Sigg, “Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump,” Rev. Sci. Instrum.82(6), 063101 (2011).
[CrossRef] [PubMed]

H. A. Bechtel, M. C. Martin, T. E. May, and P. Lerch, “Improved spatial resolution for reflection mode infrared microscopy,” Rev. Sci. Instrum.80(12), 126106 (2009).
[CrossRef] [PubMed]

Lian, T.

J. Asbury, R. Ellingson, H. N. Ghosh, S. Ferrere, A. J. Nozik, and T. Lian, “Femtosecond IR study of excited-state relaxation and electron-injection dynamics of Ru (dcbpy) 2 (NCS) 2 in solution and on nanocrystalline TiO2 and Al2O3 thin films,” J. Phys. Chem. B103(16), 3110–3119 (1999).
[CrossRef]

R. J. Ellingson, J. B. Asbury, S. Ferrere, H. N. Ghosh, J. R. Sprague, T. Lian, and A. J. Nozik, “Dynamics of electron injection in nanocrystalline titanium dioxide films sensitized with [Ru (4, 4’-dicarboxy-2, 2'-bipyridine) 2 (NCS) 2] by infrared transient absorption,” J. Phys. Chem. B102(34), 6455–6458 (1998).
[CrossRef]

Lincoln, C. N.

L. J. G. W. van Wilderen, C. N. Lincoln, and J. J. van Thor, “Modelling multi-pulse population dynamics from ultrafast spectroscopy,” PLoS ONE6(3), e17373 (2011).
[CrossRef] [PubMed]

Lobo, R. P. S. M.

R. P. S. M. Lobo, J. D. LaVeigne, D. H. Reitze, D. B. Tanner, and G. L. Carr, “Subnanosecond, time-resolved, broadband infrared spectroscopy using synchrotron radiation,” Rev. Sci. Instrum.73(1), 1–10 (2002).
[CrossRef]

Lochbrunner, S.

C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum.79(1), 013107 (2008).
[CrossRef] [PubMed]

Lüer, L.

D. Polli, L. Lüer, and G. Cerullo, “High-time-resolution pump-probe system with broadband detection for the study of time-domain vibrational dynamics,” Rev. Sci. Instrum.78(10), 103108 (2007).
[CrossRef] [PubMed]

Lukin, N.

O. V. Ovchinnikov, S. V. Chernykh, M. S. Smirnov, D. V. Alpatova, R. P. Vorob’eva, N. Latyshev, B. Evlev, N. Utekhin, and N. Lukin, “Analysis of interaction between the organic dye methylene blue and the surface of AgCl(I) microcrystals,” J. Appl. Spectrosc.74(6), 809–816 (2007).
[CrossRef]

Ma, C.

Manne, J.

Martin, M. C.

H. A. Bechtel, M. C. Martin, T. E. May, and P. Lerch, “Improved spatial resolution for reflection mode infrared microscopy,” Rev. Sci. Instrum.80(12), 126106 (2009).
[CrossRef] [PubMed]

Matousek, P.

May, T. E.

H. A. Bechtel, M. C. Martin, T. E. May, and P. Lerch, “Improved spatial resolution for reflection mode infrared microscopy,” Rev. Sci. Instrum.80(12), 126106 (2009).
[CrossRef] [PubMed]

Miller, L.

P. Dumas and L. Miller, “The use of synchrotron infrared microspectroscopy in biological and biomedical investigations,” Vib. Spectrosc.32(1), 3–21 (2003).
[CrossRef]

Miller, L. M.

L. M. Miller and R. J. Smith, “Synchrotrons versus globars, point-detectors versus focal plane arrays: Selecting the best source and detector for specific infrared microspectroscopy and imaging applications,” Vib. Spectrosc.38(1-2), 237–240 (2005).
[CrossRef]

Moore, G.

G. Moore and K. Koch, “Phasing of tandem crystals for nonlinear optical frequency conversion,” Opt. Commun.124(3-4), 292–294 (1996).
[CrossRef]

Müller, A.

A. L. Dobryakov, S. A. Kovalenko, A. Weigel, J. L. Pérez-Lustres, J. Lange, A. Müller, and N. P. Ernsting, “Femtosecond pump/supercontinuum-probe spectroscopy: optimized setup and signal analysis for single-shot spectral referencing,” Rev. Sci. Instrum.81(11), 113106 (2010).
[CrossRef] [PubMed]

Neelakandan, M.

Nesbitt, D. J.

C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum.79(1), 013107 (2008).
[CrossRef] [PubMed]

Nozik, A. J.

J. Asbury, R. Ellingson, H. N. Ghosh, S. Ferrere, A. J. Nozik, and T. Lian, “Femtosecond IR study of excited-state relaxation and electron-injection dynamics of Ru (dcbpy) 2 (NCS) 2 in solution and on nanocrystalline TiO2 and Al2O3 thin films,” J. Phys. Chem. B103(16), 3110–3119 (1999).
[CrossRef]

R. J. Ellingson, J. B. Asbury, S. Ferrere, H. N. Ghosh, J. R. Sprague, T. Lian, and A. J. Nozik, “Dynamics of electron injection in nanocrystalline titanium dioxide films sensitized with [Ru (4, 4’-dicarboxy-2, 2'-bipyridine) 2 (NCS) 2] by infrared transient absorption,” J. Phys. Chem. B102(34), 6455–6458 (1998).
[CrossRef]

Ovchinnikov, O. V.

O. V. Ovchinnikov, S. V. Chernykh, M. S. Smirnov, D. V. Alpatova, R. P. Vorob’eva, N. Latyshev, B. Evlev, N. Utekhin, and N. Lukin, “Analysis of interaction between the organic dye methylene blue and the surface of AgCl(I) microcrystals,” J. Appl. Spectrosc.74(6), 809–816 (2007).
[CrossRef]

Paradise, R.

L. Wong, C. Hu, R. Paradise, Z. Zhu, A. Shtukenberg, and B. Kahr, “Relationship between tribology and optics in thin films of mechanically oriented nanocrystals,” J. Am. Chem. Soc.134(29), 12245–12251 (2012).
[CrossRef] [PubMed]

Parker, A. W.

Pawlowicz, N. P.

N. P. Pawlowicz, M.-L. Groot, I. H. M. van Stokkum, J. Breton, and R. van Grondelle, “Charge separation and energy transfer in the photosystem II core complex studied by femtosecond midinfrared spectroscopy,” Biophys. J.93(8), 2732–2742 (2007).
[CrossRef] [PubMed]

Pérez-Lustres, J. L.

A. L. Dobryakov, S. A. Kovalenko, A. Weigel, J. L. Pérez-Lustres, J. Lange, A. Müller, and N. P. Ernsting, “Femtosecond pump/supercontinuum-probe spectroscopy: optimized setup and signal analysis for single-shot spectral referencing,” Rev. Sci. Instrum.81(11), 113106 (2010).
[CrossRef] [PubMed]

Petersen, C.

Phillips, D.

Pollard, M. R.

Polli, D.

D. Polli, L. Lüer, and G. Cerullo, “High-time-resolution pump-probe system with broadband detection for the study of time-domain vibrational dynamics,” Rev. Sci. Instrum.78(10), 103108 (2007).
[CrossRef] [PubMed]

Reitze, D. H.

R. P. S. M. Lobo, J. D. LaVeigne, D. H. Reitze, D. B. Tanner, and G. L. Carr, “Subnanosecond, time-resolved, broadband infrared spectroscopy using synchrotron radiation,” Rev. Sci. Instrum.73(1), 1–10 (2002).
[CrossRef]

Riedle, E.

C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum.79(1), 013107 (2008).
[CrossRef] [PubMed]

Robinson, D. A.

Rothman, L. D.

L. D. Rothman, S. R. Crouch, and J. D. Ingle, “Theoretical and experimental investigation of factors affecting precision in molecular absorption spectrophotometry,” Anal. Chem.47(8), 1226–1233 (1975).
[CrossRef]

Sáez, E.

E. Sáez and R. Corn, “In situ polarization modulation—Fourier transform infrared spectroelectrochemistry of phenazine and phenothiazine dye films at polycrystalline gold electrodes,” Electrochim. Acta38(12), 1619–1625 (1993).
[CrossRef]

Sage, J. T.

J. J. van Thor, G. Y. Georgiev, M. Towrie, and J. T. Sage, “Ultrafast and low barrier motions in the photoreactions of the green fluorescent protein,” J. Biol. Chem.280(39), 33652–33659 (2005).
[CrossRef] [PubMed]

Schneider, J.

L. Carroll, P. Friedli, P. Lerch, J. Schneider, D. Treyer, S. Hunziker, S. Stutz, and H. Sigg, “Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump,” Rev. Sci. Instrum.82(6), 063101 (2011).
[CrossRef] [PubMed]

Schriever, C.

C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum.79(1), 013107 (2008).
[CrossRef] [PubMed]

Shtukenberg, A.

L. Wong, C. Hu, R. Paradise, Z. Zhu, A. Shtukenberg, and B. Kahr, “Relationship between tribology and optics in thin films of mechanically oriented nanocrystals,” J. Am. Chem. Soc.134(29), 12245–12251 (2012).
[CrossRef] [PubMed]

Sigg, H.

L. Carroll, P. Friedli, P. Lerch, J. Schneider, D. Treyer, S. Hunziker, S. Stutz, and H. Sigg, “Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump,” Rev. Sci. Instrum.82(6), 063101 (2011).
[CrossRef] [PubMed]

Smirnov, M. S.

O. V. Ovchinnikov, S. V. Chernykh, M. S. Smirnov, D. V. Alpatova, R. P. Vorob’eva, N. Latyshev, B. Evlev, N. Utekhin, and N. Lukin, “Analysis of interaction between the organic dye methylene blue and the surface of AgCl(I) microcrystals,” J. Appl. Spectrosc.74(6), 809–816 (2007).
[CrossRef]

Smith, R. J.

L. M. Miller and R. J. Smith, “Synchrotrons versus globars, point-detectors versus focal plane arrays: Selecting the best source and detector for specific infrared microspectroscopy and imaging applications,” Vib. Spectrosc.38(1-2), 237–240 (2005).
[CrossRef]

Sprague, J. R.

R. J. Ellingson, J. B. Asbury, S. Ferrere, H. N. Ghosh, J. R. Sprague, T. Lian, and A. J. Nozik, “Dynamics of electron injection in nanocrystalline titanium dioxide films sensitized with [Ru (4, 4’-dicarboxy-2, 2'-bipyridine) 2 (NCS) 2] by infrared transient absorption,” J. Phys. Chem. B102(34), 6455–6458 (1998).
[CrossRef]

Stenger, J.

Stutz, S.

L. Carroll, P. Friedli, P. Lerch, J. Schneider, D. Treyer, S. Hunziker, S. Stutz, and H. Sigg, “Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump,” Rev. Sci. Instrum.82(6), 063101 (2011).
[CrossRef] [PubMed]

Subramaniam, N.

Sukhorukov, O.

Tanner, D. B.

R. P. S. M. Lobo, J. D. LaVeigne, D. H. Reitze, D. B. Tanner, and G. L. Carr, “Subnanosecond, time-resolved, broadband infrared spectroscopy using synchrotron radiation,” Rev. Sci. Instrum.73(1), 1–10 (2002).
[CrossRef]

Terry, F. L.

Thøgersen, J.

Tittel, F. K.

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron.38(6), 582–591 (2002).
[CrossRef]

Towrie, M.

Treyer, D.

L. Carroll, P. Friedli, P. Lerch, J. Schneider, D. Treyer, S. Hunziker, S. Stutz, and H. Sigg, “Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump,” Rev. Sci. Instrum.82(6), 063101 (2011).
[CrossRef] [PubMed]

Tulip, J.

Utekhin, N.

O. V. Ovchinnikov, S. V. Chernykh, M. S. Smirnov, D. V. Alpatova, R. P. Vorob’eva, N. Latyshev, B. Evlev, N. Utekhin, and N. Lukin, “Analysis of interaction between the organic dye methylene blue and the surface of AgCl(I) microcrystals,” J. Appl. Spectrosc.74(6), 809–816 (2007).
[CrossRef]

van Grondelle, R.

N. P. Pawlowicz, M.-L. Groot, I. H. M. van Stokkum, J. Breton, and R. van Grondelle, “Charge separation and energy transfer in the photosystem II core complex studied by femtosecond midinfrared spectroscopy,” Biophys. J.93(8), 2732–2742 (2007).
[CrossRef] [PubMed]

van Stokkum, I. H. M.

N. P. Pawlowicz, M.-L. Groot, I. H. M. van Stokkum, J. Breton, and R. van Grondelle, “Charge separation and energy transfer in the photosystem II core complex studied by femtosecond midinfrared spectroscopy,” Biophys. J.93(8), 2732–2742 (2007).
[CrossRef] [PubMed]

van Thor, J. J.

L. J. G. W. van Wilderen, C. N. Lincoln, and J. J. van Thor, “Modelling multi-pulse population dynamics from ultrafast spectroscopy,” PLoS ONE6(3), e17373 (2011).
[CrossRef] [PubMed]

J. J. van Thor, G. Y. Georgiev, M. Towrie, and J. T. Sage, “Ultrafast and low barrier motions in the photoreactions of the green fluorescent protein,” J. Biol. Chem.280(39), 33652–33659 (2005).
[CrossRef] [PubMed]

van Wilderen, L. J. G. W.

L. J. G. W. van Wilderen, C. N. Lincoln, and J. J. van Thor, “Modelling multi-pulse population dynamics from ultrafast spectroscopy,” PLoS ONE6(3), e17373 (2011).
[CrossRef] [PubMed]

Vorob’eva, R. P.

O. V. Ovchinnikov, S. V. Chernykh, M. S. Smirnov, D. V. Alpatova, R. P. Vorob’eva, N. Latyshev, B. Evlev, N. Utekhin, and N. Lukin, “Analysis of interaction between the organic dye methylene blue and the surface of AgCl(I) microcrystals,” J. Appl. Spectrosc.74(6), 809–816 (2007).
[CrossRef]

Weigel, A.

A. L. Dobryakov, S. A. Kovalenko, A. Weigel, J. L. Pérez-Lustres, J. Lange, A. Müller, and N. P. Ernsting, “Femtosecond pump/supercontinuum-probe spectroscopy: optimized setup and signal analysis for single-shot spectral referencing,” Rev. Sci. Instrum.81(11), 113106 (2010).
[CrossRef] [PubMed]

Weinstein, J. A.

Wong, L.

L. Wong, C. Hu, R. Paradise, Z. Zhu, A. Shtukenberg, and B. Kahr, “Relationship between tribology and optics in thin films of mechanically oriented nanocrystals,” J. Am. Chem. Soc.134(29), 12245–12251 (2012).
[CrossRef] [PubMed]

Wybourne, B.

Xin, Z. J.

Zhu, Z.

L. Wong, C. Hu, R. Paradise, Z. Zhu, A. Shtukenberg, and B. Kahr, “Relationship between tribology and optics in thin films of mechanically oriented nanocrystals,” J. Am. Chem. Soc.134(29), 12245–12251 (2012).
[CrossRef] [PubMed]

Anal. Chem. (1)

L. D. Rothman, S. R. Crouch, and J. D. Ingle, “Theoretical and experimental investigation of factors affecting precision in molecular absorption spectrophotometry,” Anal. Chem.47(8), 1226–1233 (1975).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (2)

Biophys. J. (1)

N. P. Pawlowicz, M.-L. Groot, I. H. M. van Stokkum, J. Breton, and R. van Grondelle, “Charge separation and energy transfer in the photosystem II core complex studied by femtosecond midinfrared spectroscopy,” Biophys. J.93(8), 2732–2742 (2007).
[CrossRef] [PubMed]

Electrochim. Acta (1)

E. Sáez and R. Corn, “In situ polarization modulation—Fourier transform infrared spectroelectrochemistry of phenazine and phenothiazine dye films at polycrystalline gold electrodes,” Electrochim. Acta38(12), 1619–1625 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron.38(6), 582–591 (2002).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

P. M. T. Broersen, “Estimation of the accuracy of mean and variance of correlated data,” IEEE Trans. Instrum. Meas.47(5), 1085–1091 (1998).
[CrossRef]

J. Am. Chem. Soc. (1)

L. Wong, C. Hu, R. Paradise, Z. Zhu, A. Shtukenberg, and B. Kahr, “Relationship between tribology and optics in thin films of mechanically oriented nanocrystals,” J. Am. Chem. Soc.134(29), 12245–12251 (2012).
[CrossRef] [PubMed]

J. Appl. Spectrosc. (1)

O. V. Ovchinnikov, S. V. Chernykh, M. S. Smirnov, D. V. Alpatova, R. P. Vorob’eva, N. Latyshev, B. Evlev, N. Utekhin, and N. Lukin, “Analysis of interaction between the organic dye methylene blue and the surface of AgCl(I) microcrystals,” J. Appl. Spectrosc.74(6), 809–816 (2007).
[CrossRef]

J. Biol. Chem. (1)

J. J. van Thor, G. Y. Georgiev, M. Towrie, and J. T. Sage, “Ultrafast and low barrier motions in the photoreactions of the green fluorescent protein,” J. Biol. Chem.280(39), 33652–33659 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (2)

R. J. Ellingson, J. B. Asbury, S. Ferrere, H. N. Ghosh, J. R. Sprague, T. Lian, and A. J. Nozik, “Dynamics of electron injection in nanocrystalline titanium dioxide films sensitized with [Ru (4, 4’-dicarboxy-2, 2'-bipyridine) 2 (NCS) 2] by infrared transient absorption,” J. Phys. Chem. B102(34), 6455–6458 (1998).
[CrossRef]

J. Asbury, R. Ellingson, H. N. Ghosh, S. Ferrere, A. J. Nozik, and T. Lian, “Femtosecond IR study of excited-state relaxation and electron-injection dynamics of Ru (dcbpy) 2 (NCS) 2 in solution and on nanocrystalline TiO2 and Al2O3 thin films,” J. Phys. Chem. B103(16), 3110–3119 (1999).
[CrossRef]

Opt. Commun. (1)

G. Moore and K. Koch, “Phasing of tandem crystals for nonlinear optical frequency conversion,” Opt. Commun.124(3-4), 292–294 (1996).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

PLoS ONE (1)

L. J. G. W. van Wilderen, C. N. Lincoln, and J. J. van Thor, “Modelling multi-pulse population dynamics from ultrafast spectroscopy,” PLoS ONE6(3), e17373 (2011).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (7)

D. Polli, L. Lüer, and G. Cerullo, “High-time-resolution pump-probe system with broadband detection for the study of time-domain vibrational dynamics,” Rev. Sci. Instrum.78(10), 103108 (2007).
[CrossRef] [PubMed]

C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum.79(1), 013107 (2008).
[CrossRef] [PubMed]

A. L. Dobryakov, S. A. Kovalenko, A. Weigel, J. L. Pérez-Lustres, J. Lange, A. Müller, and N. P. Ernsting, “Femtosecond pump/supercontinuum-probe spectroscopy: optimized setup and signal analysis for single-shot spectral referencing,” Rev. Sci. Instrum.81(11), 113106 (2010).
[CrossRef] [PubMed]

R. P. S. M. Lobo, J. D. LaVeigne, D. H. Reitze, D. B. Tanner, and G. L. Carr, “Subnanosecond, time-resolved, broadband infrared spectroscopy using synchrotron radiation,” Rev. Sci. Instrum.73(1), 1–10 (2002).
[CrossRef]

L. Carroll, P. Friedli, P. Lerch, J. Schneider, D. Treyer, S. Hunziker, S. Stutz, and H. Sigg, “Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump,” Rev. Sci. Instrum.82(6), 063101 (2011).
[CrossRef] [PubMed]

G. Carr, “Resolution limits for infrared microspectroscopy explored with synchrotron radiation,” Rev. Sci. Instrum.72(3), 1613–1619 (2001).
[CrossRef]

H. A. Bechtel, M. C. Martin, T. E. May, and P. Lerch, “Improved spatial resolution for reflection mode infrared microscopy,” Rev. Sci. Instrum.80(12), 126106 (2009).
[CrossRef] [PubMed]

Vib. Spectrosc. (2)

L. M. Miller and R. J. Smith, “Synchrotrons versus globars, point-detectors versus focal plane arrays: Selecting the best source and detector for specific infrared microspectroscopy and imaging applications,” Vib. Spectrosc.38(1-2), 237–240 (2005).
[CrossRef]

P. Dumas and L. Miller, “The use of synchrotron infrared microspectroscopy in biological and biomedical investigations,” Vib. Spectrosc.32(1), 3–21 (2003).
[CrossRef]

Other (3)

M. Weida and B. Yee, “Quantum cascade laser-based replacement for FTIR microscopy,” in SPIE BiOS (2011), p. 79021C–79021C.

H. Mark and J. Workman, Chemometrics in Spectroscopy (Academic Press, 2007).

A. G. P. Julius and S. Bendat, Random Data: Analysis and Measurement Procedures (Wiley, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Theoretical noise levels for different noise components as a function of signal amplitude. Parameter values were taken from experimental observations: Laser stability k = 0.85%, signal/reference correlation rSR = 0.93, consecutive pulse correlation rQQ = 0.8, dark noise level DN = 2 counts, sample absorbance variation dA = 0.1 mOD, number of averaged shots N = 10000. The sum of dark and laser noise theoretical values is compared to experimental data. The data was obtained by performing scans without a sample. The IR beam intensity was changed between the scans using a wire grid polarizer.

Fig. 2
Fig. 2

General layout of the setup. OPG - optical parametric generator; DFG - difference frequency generator, CH – optical chopper, DL – delay line, AM – active mirror. Optical components of Low Resolution Branch: L1 – lens for visible pump, BS – beam splitter, RMI1, RM2, RM3 – removable mirrors for switching between Low Resolution and High Resolution Branches, OAP – Au coated 90 deg off-axis parabolic mirror, S – sample, L2 – ZnSe lens for IR probe beam. L3, L4 - Spectrometer input lenses. Optical setup of High Resolution Branch is presented in separate Figure.

Fig. 3
Fig. 3

Layout of polarization modulator. BS - beam splitter, CH - chopper, P - periscope, IRP - image rotating periscope, DL- delay line.

Fig. 4
Fig. 4

Beam spot size in a microscope focus as measured by knife-edge method (Wavelength λ = 6μm).

Fig. 5
Fig. 5

Beam paths in microscope with Schwarzschild objectives and additional right angle prism. The lens telescope at the input of the microscope could be use to adjust the input beam parameters and optimize the throughput.

Fig. 6
Fig. 6

Time resolved IR spectra of liquid PSII core complex. Each graph represents evolution associated difference spectra obtained by global analysis of the data. A sequential model with increasing lifetimes was used and resulting time constants are indicated in the legend.

Fig. 7
Fig. 7

TRIR spectra of oriented methylene blue chloride dye. One probe polarization (Pol 1) was parallel to the pump radiation polarization, while the other (Pol 2) – orthogonal. The pump polarization was orthogonal to the dye orientation direction and corresponded to the orientation with higher pump absorption. The inset shows standard deviation of N = 10000 measurements of ΔA at −200 ps delay which corresponds to noise level of the setup. The noise at the centre of the spectrum is 9.6 μOD. It increases to the side of the spectrum as signal amplitude decreases and the dark noise contribution becomes noticeable.

Fig. 8
Fig. 8

Time resolved imaging of the dye thin film edge. Left (a): Visible image of the sample obtained with a CCD camera. Grey line indicates region scanned with TRIR. Right (b): Mapping of the signal amplitude at 1600 cm−1 for two orthogonal polarizations. Dark spots on the image (a) are dye particles of around ten microns in size. As in Fig. 7, Polarization 1 was parallel to the pump radiation polarization, while Polarization 2 – orthogonal. The pump polarization was orthogonal to the dye orientation direction and corresponded to the orientation with higher pump absorption. 1000 shots were acquired at each spot

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ΔA=log T ON T OFF ,
T S R =Q.
SD(ΔA)=SD( log Q ON Q OFF ).
SD (ΔA) 2 = 1 ln 10 2 [ ( SD( Q ON ) Q ON ) 2 + ( SD( Q OFF ) Q OFF ) 2 2 SD( Q ON ) Q ON SD( Q OFF ) Q OFF r QQ ].
( SD(Q) Q ) 2 =[ ( SD(S) S ) 2 + ( SD(R) R ) 2 2 SD(S) S SD(R) R r SR ].
SD (ΔA) 2 = 1 N1 i=1 N ( Δ A i ΔA ¯ ) 2 ,where ΔA ¯ = 1 N i=1 N Δ A i .
SD( S LASER )=kS,
SD( R LASER )=kR.
SD(ΔA)= 2k ln10 N ( 1 r SR )( 1 r QQ ) .
SD(ΔA)= 2 ln10 N DN S ,
SD(ΔA)= 2 ln10 N 1 3 S .
SD(ΔA)= 2 N SD( A SAMPLE ).

Metrics