Abstract

An extremely compact Si phase modulator is proposed and validated, which relies on effective modulation of the real part of modal index of horizontal metal-insulator-Si-insulator-metal plasmonic waveguides by a voltage applied between the metal cover and the Si core. Proof-of-concept devices are fabricated on silicon-on-insulator substrates using standard complementary metal-oxide-semiconductor technology using copper as the metal and thermal silicon dioxide as the insulator. A modulator with a 1-μm-long phase shifter inserted in an asymmetric Si Mach-Zehnder interferometer exhibits 9-dB extinction ratio under a 6-V/10-kHz voltage swing. Numerical simulations suggest that high speed and low driving voltage could be achieved by shortening the distance between the Si core and the n+-contact and by using a high-κ dielectric as the insulator, respectively.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
    [CrossRef]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
    [CrossRef]
  3. K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev.4(4), 562–567 (2010).
    [CrossRef]
  4. A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett.97(4), 041107 (2010).
    [CrossRef]
  5. M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett.8(11), 4048–4052 (2008).
    [CrossRef] [PubMed]
  6. A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express19(9), 8855–8869 (2011).
    [CrossRef] [PubMed]
  7. V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1, 17–22 (2012).
  8. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009).
    [CrossRef] [PubMed]
  9. R. F. Oulton, G. Bartal, D. F. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008).
    [CrossRef]
  10. S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett.98(2), 021107 (2011).
    [CrossRef]
  11. S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011).
    [CrossRef] [PubMed]
  12. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO₂-Si-SiO₂-Cu nanoplasmonic waveguides,” Opt. Express20(6), 5867–5881 (2012).
    [CrossRef] [PubMed]
  13. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(15), 151114 (2011).
    [CrossRef]
  14. R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express16(9), 6507–6514 (2008).
    [CrossRef] [PubMed]
  15. S. Roberts, “Optical properties of copper,” Phys. Rev.118(6), 1509–1518 (1960).
    [CrossRef]
  16. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius,” IEEE Photon. Technol. Lett.23(24), 1896–1898 (2011).
    [CrossRef]
  17. G. T. Reed, Silicon Photonics: The State of the Art (John Wiley & Sons, 2008), chapter 7.
  18. Y. Masuda, Y. Jinbo, and K. Koumoto, “Room temperature CVD of TiO2 thin films and their electronic properties,” Sci. Adv. Mater.1(2), 138–143 (2009).
    [CrossRef]
  19. G. Gultekin and M. N. Inci, “Thermal optical properties of TiO2 films,” Opt. Mater.18, 372–381 (2002).

2012 (2)

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1, 17–22 (2012).

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO₂-Si-SiO₂-Cu nanoplasmonic waveguides,” Opt. Express20(6), 5867–5881 (2012).
[CrossRef] [PubMed]

2011 (5)

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(15), 151114 (2011).
[CrossRef]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius,” IEEE Photon. Technol. Lett.23(24), 1896–1898 (2011).
[CrossRef]

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express19(9), 8855–8869 (2011).
[CrossRef] [PubMed]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett.98(2), 021107 (2011).
[CrossRef]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

2010 (4)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev.4(4), 562–567 (2010).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett.97(4), 041107 (2010).
[CrossRef]

2009 (2)

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

Y. Masuda, Y. Jinbo, and K. Koumoto, “Room temperature CVD of TiO2 thin films and their electronic properties,” Sci. Adv. Mater.1(2), 138–143 (2009).
[CrossRef]

2008 (3)

R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express16(9), 6507–6514 (2008).
[CrossRef] [PubMed]

R. F. Oulton, G. Bartal, D. F. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008).
[CrossRef]

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett.8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

2002 (1)

G. Gultekin and M. N. Inci, “Thermal optical properties of TiO2 films,” Opt. Mater.18, 372–381 (2002).

1960 (1)

S. Roberts, “Optical properties of copper,” Phys. Rev.118(6), 1509–1518 (1960).
[CrossRef]

Atwater, H. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett.8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

Bartal, G.

R. F. Oulton, G. Bartal, D. F. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008).
[CrossRef]

Bhattacharya, K.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett.8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Buchwald, W.

Dicken, M. J.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett.8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

Diest, K.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

Freude, W.

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Gultekin, G.

G. Gultekin and M. N. Inci, “Thermal optical properties of TiO2 films,” Opt. Mater.18, 372–381 (2002).

Hahn, H.

Inci, M. N.

G. Gultekin and M. N. Inci, “Thermal optical properties of TiO2 films,” Opt. Mater.18, 372–381 (2002).

Jinbo, Y.

Y. Masuda, Y. Jinbo, and K. Koumoto, “Room temperature CVD of TiO2 thin films and their electronic properties,” Sci. Adv. Mater.1(2), 138–143 (2009).
[CrossRef]

Koos, C.

Koumoto, K.

Y. Masuda, Y. Jinbo, and K. Koumoto, “Room temperature CVD of TiO2 thin films and their electronic properties,” Sci. Adv. Mater.1(2), 138–143 (2009).
[CrossRef]

Krasavin, A. V.

A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett.97(4), 041107 (2010).
[CrossRef]

Kwong, D. L.

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO₂-Si-SiO₂-Cu nanoplasmonic waveguides,” Opt. Express20(6), 5867–5881 (2012).
[CrossRef] [PubMed]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett.98(2), 021107 (2011).
[CrossRef]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius,” IEEE Photon. Technol. Lett.23(24), 1896–1898 (2011).
[CrossRef]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(15), 151114 (2011).
[CrossRef]

Lanzillotti-Kimura, N. D.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1, 17–22 (2012).

Leufke, P. M.

Leuthold, J.

Lezec, H. J.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett.8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

Lindenmann, N.

Liow, T. Y.

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett.98(2), 021107 (2011).
[CrossRef]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

Lo, G. Q.

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO₂-Si-SiO₂-Cu nanoplasmonic waveguides,” Opt. Express20(6), 5867–5881 (2012).
[CrossRef] [PubMed]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett.98(2), 021107 (2011).
[CrossRef]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(15), 151114 (2011).
[CrossRef]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius,” IEEE Photon. Technol. Lett.23(24), 1896–1898 (2011).
[CrossRef]

Ma, R. M.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1, 17–22 (2012).

MacDonald, K. F.

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev.4(4), 562–567 (2010).
[CrossRef]

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

Masuda, Y.

Y. Masuda, Y. Jinbo, and K. Koumoto, “Room temperature CVD of TiO2 thin films and their electronic properties,” Sci. Adv. Mater.1(2), 138–143 (2009).
[CrossRef]

Melikyan, A.

Oulton, R. F.

R. F. Oulton, G. Bartal, D. F. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008).
[CrossRef]

Pacifici, D.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett.8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

Peale, R. E.

Pile, D. F.

R. F. Oulton, G. Bartal, D. F. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008).
[CrossRef]

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

Roberts, S.

S. Roberts, “Optical properties of copper,” Phys. Rev.118(6), 1509–1518 (1960).
[CrossRef]

Schimmel, T.

Soref, R.

Sorger, V. J.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1, 17–22 (2012).

Sweatlock, L. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett.8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

Ulrich, S.

Vincze, P.

Walheim, S.

Ye, J.

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett.97(4), 041107 (2010).
[CrossRef]

Zhang, X.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1, 17–22 (2012).

R. F. Oulton, G. Bartal, D. F. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008).
[CrossRef]

Zheludev, N. I.

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev.4(4), 562–567 (2010).
[CrossRef]

Zhu, S. Y.

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO₂-Si-SiO₂-Cu nanoplasmonic waveguides,” Opt. Express20(6), 5867–5881 (2012).
[CrossRef] [PubMed]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(15), 151114 (2011).
[CrossRef]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett.98(2), 021107 (2011).
[CrossRef]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius,” IEEE Photon. Technol. Lett.23(24), 1896–1898 (2011).
[CrossRef]

Appl. Phys. Lett. (3)

A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett.97(4), 041107 (2010).
[CrossRef]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett.98(2), 021107 (2011).
[CrossRef]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(15), 151114 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius,” IEEE Photon. Technol. Lett.23(24), 1896–1898 (2011).
[CrossRef]

Laser Photon. Rev. (1)

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev.4(4), 562–567 (2010).
[CrossRef]

Nano Lett. (2)

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett.8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

Nanophotonics (1)

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1, 17–22 (2012).

Nat. Photonics (2)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

New J. Phys. (1)

R. F. Oulton, G. Bartal, D. F. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008).
[CrossRef]

Opt. Express (4)

Opt. Mater. (1)

G. Gultekin and M. N. Inci, “Thermal optical properties of TiO2 films,” Opt. Mater.18, 372–381 (2002).

Phys. Rev. (1)

S. Roberts, “Optical properties of copper,” Phys. Rev.118(6), 1509–1518 (1960).
[CrossRef]

Sci. Adv. Mater. (1)

Y. Masuda, Y. Jinbo, and K. Koumoto, “Room temperature CVD of TiO2 thin films and their electronic properties,” Sci. Adv. Mater.1(2), 138–143 (2009).
[CrossRef]

Other (1)

G. T. Reed, Silicon Photonics: The State of the Art (John Wiley & Sons, 2008), chapter 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Schematic of the proposed horizontal Cu-insulator-Si-insulator-Cu plasmonic waveguide integrated on SOI platform, a voltage can be applied between the Cu cover and the Si core to modify the free carrier distribution in the Si core, (b) Electron distributions in a metal-insulator-Si (n-type, 5 × 1018 cm−3) capacitor in the conditions of accumulation, flat-band, and depletion. As a first approximation, an accumulation layer (AcL) is defined in the accumulation condition, which has tAcL = 1 nm and NAcL proportional to the applied voltage.

Fig. 2
Fig. 2

(a) The calculated electric field (Ex) distribution in a plasmonic waveguide with 50-nm Si core and 2-nm SiO2 gate dielectric, (b) The normalized Ex distributions at the middle of the height in the conditions of depletion and accumulation. One sees that the field in the 1-nm AcL is enhanced greatly.

Fig. 3
Fig. 3

The calculated modification of the real part of modal index (left axis) and the propagation loss (right axis) in the horizontal Cu-SiO2-Si-SiO2-Cu plasmonic waveguides as a function of NAcL of the 1-nm-thick AcL: (a) The SiO2 thickness ranges from 1 to 10 nm when the Si core width keeps 50 nm, (b) The Si core width ranges from 10 to 100 nm when the SiO2 thickness keeps 2 nm.

Fig. 4
Fig. 4

Calculated transmission spectra for an asymmetric Si MZI with ΔL = 1550 μm and one arm inserted by a plasmonic phase modulator with tox = 2 nm, WP = 20 nm, and LP = 3 μm in the conditions of depletion and accumulation with NAcL = 6 × 1020 cm−3.

Fig. 5
Fig. 5

(a) Schematic layout of the plasmonic modulator, the tapered coupler length LC is 1 μm and the plasmonic waveguide length LP ranges from 1 to 10 μm, (b) Picture of the fabricated plasmonic modulator showing two Al electrodes, (c) An asymmetric Si MZI with the plasmonic modulator inserted in its shorter arm, (d) A single Si waveguide with the plasmonic modulator inserted to behave as an EA modulator.

Fig. 6
Fig. 6

(a) XTEM image of the final device, (b) Enlarged XTEM image around the Si core of the plasmonic waveguide, (c) The corresponding electric field (|Ex|) profile at 1550 nm obtained using EME method, the calculated neff is 2.626 and α is 0.881 dB/μm, close to the measured value of ~0.58 dB/μm.

Fig. 7
Fig. 7

(a) Output power measured on the straight plasmonic waveguides, normalized by that of the reference Si waveguide without the plasmonic structure, propagation loss and coupling loss are extracted from the linearly fitting, (b) I-V characteristics of the devices with LP = 1 and 2 μm, the breakdown voltage is ~6-7 V.

Fig. 8
Fig. 8

Transmission spectra measured on an EA modulator with 3-μm LP under voltage ranging from 0 to 8 V, normalized by the spectrum measured on a reference Si waveguide without the plasmonic structure.

Fig. 9
Fig. 9

Transmission spectra measured on a MZI modulator with 1-μm LP device under voltage ranging from 0 to 6 V.

Fig. 10
Fig. 10

Normalized output power versus voltage for MZI modulators with different LPs at some certain wavelengths. They provide much larger modulation efficiency than the corresponding EA modulator at the price of narrower optical bandwidth.

Fig. 11
Fig. 11

Ac responses of a 1-μm-LP MZI modulator under 0–6 V voltage swing with frequency of 10 kHz and 10 MHz. The relatively low speed of the present modulator is attributed to the long distance between the Si-core and the n+-contact, thus a significant improvement could be expected by the structural optimization.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P out =( τ 1 2 + τ 2 2 +2 τ 1 τ 2 cos( Φ ) )/4
Φ= 2π n eff (Si) λ ΔL 2π n eff λ L P

Metrics