Abstract

In this paper we report a method to overcome the limitations of gain-saturation and two-photon absorption faced by developers of high power single mode InP-based lasers and semiconductor optical amplifiers (SOA) including those based on wide-waveguide or slab-coupled optical waveguide laser (SCOWL) technology. The method is based on Y-coupling design of the laser cavity. The reduction in gain-saturation and two-photon absorption in the merged beam laser structures (MBL) are obtained by reducing the intensity of electromagnetic field in the laser cavity. Standard ridge-waveguide lasers and MBLs were fabricated, tested and compared. Despite a slightly higher threshold current, the reduced gain-saturation in MBLs results in higher output power. The MBLs also produced a single spatial mode, as well as a strongly dominating single spectral mode which is the inherent feature of MBL-type cavity.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. F. Welch, B. Chan, W. Streifer, and D. R. Scifres, “High-power, 8 W cw, single-quantum-well laser diode array,” Electron. Lett.24(2), 113–115 (1988).
    [CrossRef]
  2. D. Botez, L. J. Mawst, and G. Peterson, “Resonant leaky-wave coupling in linear arrays of antiguides,” Electron. Lett.24(21), 1328–1330 (1988).
    [CrossRef]
  3. A. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, and J. C. Connolly, “High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers,” Appl. Phys. Lett.73(9), 1182–1184 (1998).
    [CrossRef]
  4. B. Sumpf, H. Wenzel, and G. Erbert, “High-power, high-brightness semiconductor tapered diode lasers for the red and near infrared spectral range,” Proc. of SPIE 7616, 76161L (2010).
  5. D. Garbuzov, L. Xu, S. R. Forrest, R. Menna, R. Martinelli, and J. C. Connolly, “1.5 µm wavelength, SCH-MQW InGaAsP/InP broadened-waveguide laser diodes with low internal loss and high output power,” Electron. Lett.32(18), 1717–1719 (1996).
    [CrossRef]
  6. J. J. Plant, P. W. Juodawlkis, R. K. Huang, J. P. Donnelly, L. J. Missaggia, and K. G. Ray, “1.5-µm InGaAsP-InP slab-coupled optical waveguide lasers,” IEEE Photon. Technol. Lett.17(4), 735–737 (2005).
    [CrossRef]
  7. S. Adachi, “Free-carrier effects on optical properties,” in Physical Properties of III–V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP, (John Wiley & Sons, USA, 1992).
  8. E. A. J. Marcatili, “Slab-coupled waveguides,” http://www.alcatel-lucent.com/bstj/vol53-1974/articles/bstj53-4-645.pdf
  9. M. Lysevych, H. H. Tan, F. Karouta, and C. Jagadish, “Single-step RIE fabrication process of low loss InP waveguide using CH4 / H2 chemistry,” J. Electrochem. Soc.158(3), H281–H284 (2011).
    [CrossRef]
  10. “BeamPROP user guide,” RSOFT Design Group, Inc.
  11. M. Schilling, W. Idler, D. Baums, G. Laube, K. Wunstel, and O. Hildebrand, “Multifunctional photonic switching operation of 1500 nm Y-coupled cavity laser (YCCL) with 28 nm tuning capability,” IEEE Photon. Technol. Lett.3(12), 1054–1057 (1991).
    [CrossRef]

2011

M. Lysevych, H. H. Tan, F. Karouta, and C. Jagadish, “Single-step RIE fabrication process of low loss InP waveguide using CH4 / H2 chemistry,” J. Electrochem. Soc.158(3), H281–H284 (2011).
[CrossRef]

2005

J. J. Plant, P. W. Juodawlkis, R. K. Huang, J. P. Donnelly, L. J. Missaggia, and K. G. Ray, “1.5-µm InGaAsP-InP slab-coupled optical waveguide lasers,” IEEE Photon. Technol. Lett.17(4), 735–737 (2005).
[CrossRef]

1998

A. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, and J. C. Connolly, “High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers,” Appl. Phys. Lett.73(9), 1182–1184 (1998).
[CrossRef]

1996

D. Garbuzov, L. Xu, S. R. Forrest, R. Menna, R. Martinelli, and J. C. Connolly, “1.5 µm wavelength, SCH-MQW InGaAsP/InP broadened-waveguide laser diodes with low internal loss and high output power,” Electron. Lett.32(18), 1717–1719 (1996).
[CrossRef]

1991

M. Schilling, W. Idler, D. Baums, G. Laube, K. Wunstel, and O. Hildebrand, “Multifunctional photonic switching operation of 1500 nm Y-coupled cavity laser (YCCL) with 28 nm tuning capability,” IEEE Photon. Technol. Lett.3(12), 1054–1057 (1991).
[CrossRef]

1988

D. F. Welch, B. Chan, W. Streifer, and D. R. Scifres, “High-power, 8 W cw, single-quantum-well laser diode array,” Electron. Lett.24(2), 113–115 (1988).
[CrossRef]

D. Botez, L. J. Mawst, and G. Peterson, “Resonant leaky-wave coupling in linear arrays of antiguides,” Electron. Lett.24(21), 1328–1330 (1988).
[CrossRef]

Al-Muhanna, A.

A. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, and J. C. Connolly, “High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers,” Appl. Phys. Lett.73(9), 1182–1184 (1998).
[CrossRef]

Baums, D.

M. Schilling, W. Idler, D. Baums, G. Laube, K. Wunstel, and O. Hildebrand, “Multifunctional photonic switching operation of 1500 nm Y-coupled cavity laser (YCCL) with 28 nm tuning capability,” IEEE Photon. Technol. Lett.3(12), 1054–1057 (1991).
[CrossRef]

Botez, D.

A. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, and J. C. Connolly, “High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers,” Appl. Phys. Lett.73(9), 1182–1184 (1998).
[CrossRef]

D. Botez, L. J. Mawst, and G. Peterson, “Resonant leaky-wave coupling in linear arrays of antiguides,” Electron. Lett.24(21), 1328–1330 (1988).
[CrossRef]

Chan, B.

D. F. Welch, B. Chan, W. Streifer, and D. R. Scifres, “High-power, 8 W cw, single-quantum-well laser diode array,” Electron. Lett.24(2), 113–115 (1988).
[CrossRef]

Connolly, J. C.

A. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, and J. C. Connolly, “High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers,” Appl. Phys. Lett.73(9), 1182–1184 (1998).
[CrossRef]

D. Garbuzov, L. Xu, S. R. Forrest, R. Menna, R. Martinelli, and J. C. Connolly, “1.5 µm wavelength, SCH-MQW InGaAsP/InP broadened-waveguide laser diodes with low internal loss and high output power,” Electron. Lett.32(18), 1717–1719 (1996).
[CrossRef]

Donnelly, J. P.

J. J. Plant, P. W. Juodawlkis, R. K. Huang, J. P. Donnelly, L. J. Missaggia, and K. G. Ray, “1.5-µm InGaAsP-InP slab-coupled optical waveguide lasers,” IEEE Photon. Technol. Lett.17(4), 735–737 (2005).
[CrossRef]

Forrest, S. R.

D. Garbuzov, L. Xu, S. R. Forrest, R. Menna, R. Martinelli, and J. C. Connolly, “1.5 µm wavelength, SCH-MQW InGaAsP/InP broadened-waveguide laser diodes with low internal loss and high output power,” Electron. Lett.32(18), 1717–1719 (1996).
[CrossRef]

Garbuzov, D.

D. Garbuzov, L. Xu, S. R. Forrest, R. Menna, R. Martinelli, and J. C. Connolly, “1.5 µm wavelength, SCH-MQW InGaAsP/InP broadened-waveguide laser diodes with low internal loss and high output power,” Electron. Lett.32(18), 1717–1719 (1996).
[CrossRef]

Garbuzov, D. Z.

A. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, and J. C. Connolly, “High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers,” Appl. Phys. Lett.73(9), 1182–1184 (1998).
[CrossRef]

Hildebrand, O.

M. Schilling, W. Idler, D. Baums, G. Laube, K. Wunstel, and O. Hildebrand, “Multifunctional photonic switching operation of 1500 nm Y-coupled cavity laser (YCCL) with 28 nm tuning capability,” IEEE Photon. Technol. Lett.3(12), 1054–1057 (1991).
[CrossRef]

Huang, R. K.

J. J. Plant, P. W. Juodawlkis, R. K. Huang, J. P. Donnelly, L. J. Missaggia, and K. G. Ray, “1.5-µm InGaAsP-InP slab-coupled optical waveguide lasers,” IEEE Photon. Technol. Lett.17(4), 735–737 (2005).
[CrossRef]

Idler, W.

M. Schilling, W. Idler, D. Baums, G. Laube, K. Wunstel, and O. Hildebrand, “Multifunctional photonic switching operation of 1500 nm Y-coupled cavity laser (YCCL) with 28 nm tuning capability,” IEEE Photon. Technol. Lett.3(12), 1054–1057 (1991).
[CrossRef]

Jagadish, C.

M. Lysevych, H. H. Tan, F. Karouta, and C. Jagadish, “Single-step RIE fabrication process of low loss InP waveguide using CH4 / H2 chemistry,” J. Electrochem. Soc.158(3), H281–H284 (2011).
[CrossRef]

Juodawlkis, P. W.

J. J. Plant, P. W. Juodawlkis, R. K. Huang, J. P. Donnelly, L. J. Missaggia, and K. G. Ray, “1.5-µm InGaAsP-InP slab-coupled optical waveguide lasers,” IEEE Photon. Technol. Lett.17(4), 735–737 (2005).
[CrossRef]

Karouta, F.

M. Lysevych, H. H. Tan, F. Karouta, and C. Jagadish, “Single-step RIE fabrication process of low loss InP waveguide using CH4 / H2 chemistry,” J. Electrochem. Soc.158(3), H281–H284 (2011).
[CrossRef]

Laube, G.

M. Schilling, W. Idler, D. Baums, G. Laube, K. Wunstel, and O. Hildebrand, “Multifunctional photonic switching operation of 1500 nm Y-coupled cavity laser (YCCL) with 28 nm tuning capability,” IEEE Photon. Technol. Lett.3(12), 1054–1057 (1991).
[CrossRef]

Lysevych, M.

M. Lysevych, H. H. Tan, F. Karouta, and C. Jagadish, “Single-step RIE fabrication process of low loss InP waveguide using CH4 / H2 chemistry,” J. Electrochem. Soc.158(3), H281–H284 (2011).
[CrossRef]

Martinelli, R.

D. Garbuzov, L. Xu, S. R. Forrest, R. Menna, R. Martinelli, and J. C. Connolly, “1.5 µm wavelength, SCH-MQW InGaAsP/InP broadened-waveguide laser diodes with low internal loss and high output power,” Electron. Lett.32(18), 1717–1719 (1996).
[CrossRef]

Martinelli, R. U.

A. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, and J. C. Connolly, “High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers,” Appl. Phys. Lett.73(9), 1182–1184 (1998).
[CrossRef]

Mawst, L. J.

A. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, and J. C. Connolly, “High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers,” Appl. Phys. Lett.73(9), 1182–1184 (1998).
[CrossRef]

D. Botez, L. J. Mawst, and G. Peterson, “Resonant leaky-wave coupling in linear arrays of antiguides,” Electron. Lett.24(21), 1328–1330 (1988).
[CrossRef]

Menna, R.

D. Garbuzov, L. Xu, S. R. Forrest, R. Menna, R. Martinelli, and J. C. Connolly, “1.5 µm wavelength, SCH-MQW InGaAsP/InP broadened-waveguide laser diodes with low internal loss and high output power,” Electron. Lett.32(18), 1717–1719 (1996).
[CrossRef]

Missaggia, L. J.

J. J. Plant, P. W. Juodawlkis, R. K. Huang, J. P. Donnelly, L. J. Missaggia, and K. G. Ray, “1.5-µm InGaAsP-InP slab-coupled optical waveguide lasers,” IEEE Photon. Technol. Lett.17(4), 735–737 (2005).
[CrossRef]

Peterson, G.

D. Botez, L. J. Mawst, and G. Peterson, “Resonant leaky-wave coupling in linear arrays of antiguides,” Electron. Lett.24(21), 1328–1330 (1988).
[CrossRef]

Plant, J. J.

J. J. Plant, P. W. Juodawlkis, R. K. Huang, J. P. Donnelly, L. J. Missaggia, and K. G. Ray, “1.5-µm InGaAsP-InP slab-coupled optical waveguide lasers,” IEEE Photon. Technol. Lett.17(4), 735–737 (2005).
[CrossRef]

Ray, K. G.

J. J. Plant, P. W. Juodawlkis, R. K. Huang, J. P. Donnelly, L. J. Missaggia, and K. G. Ray, “1.5-µm InGaAsP-InP slab-coupled optical waveguide lasers,” IEEE Photon. Technol. Lett.17(4), 735–737 (2005).
[CrossRef]

Schilling, M.

M. Schilling, W. Idler, D. Baums, G. Laube, K. Wunstel, and O. Hildebrand, “Multifunctional photonic switching operation of 1500 nm Y-coupled cavity laser (YCCL) with 28 nm tuning capability,” IEEE Photon. Technol. Lett.3(12), 1054–1057 (1991).
[CrossRef]

Scifres, D. R.

D. F. Welch, B. Chan, W. Streifer, and D. R. Scifres, “High-power, 8 W cw, single-quantum-well laser diode array,” Electron. Lett.24(2), 113–115 (1988).
[CrossRef]

Streifer, W.

D. F. Welch, B. Chan, W. Streifer, and D. R. Scifres, “High-power, 8 W cw, single-quantum-well laser diode array,” Electron. Lett.24(2), 113–115 (1988).
[CrossRef]

Tan, H. H.

M. Lysevych, H. H. Tan, F. Karouta, and C. Jagadish, “Single-step RIE fabrication process of low loss InP waveguide using CH4 / H2 chemistry,” J. Electrochem. Soc.158(3), H281–H284 (2011).
[CrossRef]

Welch, D. F.

D. F. Welch, B. Chan, W. Streifer, and D. R. Scifres, “High-power, 8 W cw, single-quantum-well laser diode array,” Electron. Lett.24(2), 113–115 (1988).
[CrossRef]

Wunstel, K.

M. Schilling, W. Idler, D. Baums, G. Laube, K. Wunstel, and O. Hildebrand, “Multifunctional photonic switching operation of 1500 nm Y-coupled cavity laser (YCCL) with 28 nm tuning capability,” IEEE Photon. Technol. Lett.3(12), 1054–1057 (1991).
[CrossRef]

Xu, L.

D. Garbuzov, L. Xu, S. R. Forrest, R. Menna, R. Martinelli, and J. C. Connolly, “1.5 µm wavelength, SCH-MQW InGaAsP/InP broadened-waveguide laser diodes with low internal loss and high output power,” Electron. Lett.32(18), 1717–1719 (1996).
[CrossRef]

Appl. Phys. Lett.

A. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, and J. C. Connolly, “High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers,” Appl. Phys. Lett.73(9), 1182–1184 (1998).
[CrossRef]

Electron. Lett.

D. F. Welch, B. Chan, W. Streifer, and D. R. Scifres, “High-power, 8 W cw, single-quantum-well laser diode array,” Electron. Lett.24(2), 113–115 (1988).
[CrossRef]

D. Botez, L. J. Mawst, and G. Peterson, “Resonant leaky-wave coupling in linear arrays of antiguides,” Electron. Lett.24(21), 1328–1330 (1988).
[CrossRef]

D. Garbuzov, L. Xu, S. R. Forrest, R. Menna, R. Martinelli, and J. C. Connolly, “1.5 µm wavelength, SCH-MQW InGaAsP/InP broadened-waveguide laser diodes with low internal loss and high output power,” Electron. Lett.32(18), 1717–1719 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

J. J. Plant, P. W. Juodawlkis, R. K. Huang, J. P. Donnelly, L. J. Missaggia, and K. G. Ray, “1.5-µm InGaAsP-InP slab-coupled optical waveguide lasers,” IEEE Photon. Technol. Lett.17(4), 735–737 (2005).
[CrossRef]

M. Schilling, W. Idler, D. Baums, G. Laube, K. Wunstel, and O. Hildebrand, “Multifunctional photonic switching operation of 1500 nm Y-coupled cavity laser (YCCL) with 28 nm tuning capability,” IEEE Photon. Technol. Lett.3(12), 1054–1057 (1991).
[CrossRef]

J. Electrochem. Soc.

M. Lysevych, H. H. Tan, F. Karouta, and C. Jagadish, “Single-step RIE fabrication process of low loss InP waveguide using CH4 / H2 chemistry,” J. Electrochem. Soc.158(3), H281–H284 (2011).
[CrossRef]

Other

“BeamPROP user guide,” RSOFT Design Group, Inc.

S. Adachi, “Free-carrier effects on optical properties,” in Physical Properties of III–V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP, (John Wiley & Sons, USA, 1992).

E. A. J. Marcatili, “Slab-coupled waveguides,” http://www.alcatel-lucent.com/bstj/vol53-1974/articles/bstj53-4-645.pdf

B. Sumpf, H. Wenzel, and G. Erbert, “High-power, high-brightness semiconductor tapered diode lasers for the red and near infrared spectral range,” Proc. of SPIE 7616, 76161L (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Solid line is an example of gain-saturation (g/g0) as a function of electromagnetic field intensity (P) of a standard ridge waveguide laser. Dashed line is an example of gain-saturation of a laser with doubled cross-section area of the mode.

Fig. 2
Fig. 2

Color-coded result of BeamPROP (RSoft) numerical modelling of the electromagnetic field propagation in MBL. The mode launched at the beginning (0,0) of the waveguide evenly splits at the first Y-junction and then merges at another Y-junction. At the end (0,3000) of the waveguide the mode nearly reaches unity.

Fig. 3
Fig. 3

Dependence of electromagnetic field transmission through MBL-type waveguide as a function of the distance between the branches (BeamPROP numerical modelling).

Fig. 4
Fig. 4

Dependence of electromagnetic field transmission through the MBL as a function of the SiNx insulating layer refractive index. (BeamPROP numerical modelling).

Fig. 5
Fig. 5

Dependence of electromagnetic field transmission through the MBL as a function of ridge etching depth. (BeamPROP numerical modelling).Vertical bar represents the cladding and the waveguide layer interface.

Fig. 6
Fig. 6

Light – current (L-I) curves of MBL (solid line) and standard ridge waveguide laser (dash-dot line). The output light was collected from a single facet. The devices’ facets are “as-cleaved”.

Fig. 7
Fig. 7

Slope efficiency vs. output power for the MBL (solid line) and standard ridge waveguide laser (dashed line). The sharp drop at the end of the curves is due to instabilities of the current source and happened for all devices.

Fig. 8
Fig. 8

Near-field image of the MBL (CW operation).

Fig. 9
Fig. 9

Spectrum of the MBL at injection current of 1000 mA (CW operation).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

dP dz =β P 0 2
g= g 0 1+ P P sat

Metrics