Abstract

We propose and experimentally demonstrate a hierarchical modulation scheme to improve power margin for orthogonal frequency division multiple access-passive optical networks (OFDMA-PONs). In a PON system, under the same launched optical power, optical network units (ONUs) have different power margins due to unequal distribution fiber lengths. The power margin of the PON system is determined by the ONU with the lowest power margin. In our proposed scheme, ONUs with long and short distribution fibers are grouped together, and downstream signals for the paired ONUs are mapped onto the same OFDM subcarriers using hierarchical modulation. In a pair of ONUs, part of the power margin of the ONU with short distribution fiber is re-allocated to the ONU with long distribution fiber. Therefore, the power margin of the ONU with the longest distribution fiber can be increased, leading to the power margin improvement of the PON system. Experimental results show that the hierarchical modulation scheme improves the power margin by 2.7 dB for an OFDMA-PON system, which can be used to support more users or extend transmission distance.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol.22(11), 2582–2591 (2004).
    [CrossRef]
  2. C. H. Lee, W. V. Sorin, and B. Y. Kim, “Fiber to the home using a PON infrastructure,” J. Lightwave Technol.24(12), 4568–4583 (2006).
    [CrossRef]
  3. P. P. Iannone and K. C. Reichmann, “Optical access beyond 10 Gb/s PON,” in Proc. ECOC2010, paper Tu.3.B.1.
    [CrossRef]
  4. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol.28(4), 484–493 (2010).
    [CrossRef]
  5. N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol.30(4), 384–398 (2012).
    [CrossRef]
  6. J. Tang, “First experimental demonstration of real-time optical OFDMA PONs with colorless ONUs and adaptive DBA,” in Proc. OFC2012, paper OW4B.
  7. ITU-T G. 987.1, Series G: Transmission systems and media, digital systems and networks. Digital sections and digital line system - Optical line systems for local and access networks. (2010).
  8. H. K. Lee, J. H. Moon, S. G. Mun, K. M. Choi, and C. H. Lee, “Decision threshold control method for the optical receiver of a WDM-PON,” J. Opt. Commun. Netw.2(6), 381–388 (2010).
    [CrossRef]
  9. F. J. Effenberger, H. Mukai, S. Park, and T. Pfeiffer, “Next-generation PON—Part II: candidate systems for next-generation PON,” IEEE Commun. Mag.47(11), 50–57 (2009).
    [CrossRef]
  10. H. Jiang and P. A. Wilford, “A hierarchical modulation for upgrading digital broadcast systems,” IEEE Trans. Broadcast51(2), 223–229 (2005).
    [CrossRef]
  11. D. K. Kwon, W. J. Kim, K. H. Suh, H. Lim, and H. N. Kim, “A higher data-rate T-DMB system based on a hierarchical A-DPSK Modulation,” IEEE Trans. Broadcast55(1), 42–50 (2009).
    [CrossRef]
  12. C. Hausl and J. Hagenauer, “Relay communication with hierarchical modulation,” IEEE Commun. Lett.11(1), 64–66 (2007).
    [CrossRef]
  13. H. Jiang, P. A. Wilford, and S. A. Wilkus, “Providing local content in a hybrid single frequency network using hierarchical modulation,” IEEE Trans. Broadcast56(4), 532–540 (2010).
    [CrossRef]
  14. D. Qian, J. Hu, J. Yu, P. N. Ji, L. Xu, T. Wang, M. Cvijetic, and T. Kusano, “Experimental demonstration of a novel OFDM-A based 10Gb/s PON architecture,” in Proc. ECOC2007, paper 5.4.1.
  15. A. Chowdhury, H. C. Chien, M. F. Huang, J. Yu, and G. K. Chang, “Rayleigh backscattering noise-eliminated 115-km long-reach bidirectional centralized WDM-PON with 10-Gb/s DPSK downstream and re-modulated 2.5-Gb/s OCS-SCM upstream signal,” IEEE Photon. Technol. Lett.20(24), 2081–2083 (2008).
    [CrossRef]
  16. X. Zheng, J. L. Wei, and J. M. Tang, “Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over SMF IMDD links for access and metropolitan area networks,” Opt. Express16(25), 20427–20440 (2008).
    [CrossRef] [PubMed]
  17. X. Q. Jin, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Real-time demonstration of 128-QAM-encoded optical OFDM transmission with a 5.25bit/s/Hz spectral efficiency in simple IMDD systems utilizing directly modulated DFB lasers,” Opt. Express17(22), 20484–20493 (2009).
    [CrossRef] [PubMed]
  18. R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express18(6), 5541–5555 (2010).
    [CrossRef] [PubMed]
  19. B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightwave Technol.26(1), 196–203 (2008).
    [CrossRef]
  20. Z. Xu, Y. K. Yeo, X. Cheng, and E. Kurniawan, “20-Gb/s injection locked FP-LD in a wavelength-division-multiplexing OFDM-PON,” in Proc. OFC2012, paper OW4B.3.
  21. J. Yu, M. Huang, D. Qian, L. Chen, and G. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
    [CrossRef]
  22. X. Liu and F. Buchali, “Improved nonlinear tolerance of 112-Gb/s PDM-OFDM in dispersion-uncompensated transmission with efficient channel estimation,” in Proc. ECOC2008, paper Mo.3.E.2.

2012 (1)

2010 (4)

2009 (3)

F. J. Effenberger, H. Mukai, S. Park, and T. Pfeiffer, “Next-generation PON—Part II: candidate systems for next-generation PON,” IEEE Commun. Mag.47(11), 50–57 (2009).
[CrossRef]

D. K. Kwon, W. J. Kim, K. H. Suh, H. Lim, and H. N. Kim, “A higher data-rate T-DMB system based on a hierarchical A-DPSK Modulation,” IEEE Trans. Broadcast55(1), 42–50 (2009).
[CrossRef]

X. Q. Jin, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Real-time demonstration of 128-QAM-encoded optical OFDM transmission with a 5.25bit/s/Hz spectral efficiency in simple IMDD systems utilizing directly modulated DFB lasers,” Opt. Express17(22), 20484–20493 (2009).
[CrossRef] [PubMed]

2008 (4)

B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightwave Technol.26(1), 196–203 (2008).
[CrossRef]

X. Zheng, J. L. Wei, and J. M. Tang, “Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over SMF IMDD links for access and metropolitan area networks,” Opt. Express16(25), 20427–20440 (2008).
[CrossRef] [PubMed]

A. Chowdhury, H. C. Chien, M. F. Huang, J. Yu, and G. K. Chang, “Rayleigh backscattering noise-eliminated 115-km long-reach bidirectional centralized WDM-PON with 10-Gb/s DPSK downstream and re-modulated 2.5-Gb/s OCS-SCM upstream signal,” IEEE Photon. Technol. Lett.20(24), 2081–2083 (2008).
[CrossRef]

J. Yu, M. Huang, D. Qian, L. Chen, and G. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

2007 (1)

C. Hausl and J. Hagenauer, “Relay communication with hierarchical modulation,” IEEE Commun. Lett.11(1), 64–66 (2007).
[CrossRef]

2006 (1)

2005 (1)

H. Jiang and P. A. Wilford, “A hierarchical modulation for upgrading digital broadcast systems,” IEEE Trans. Broadcast51(2), 223–229 (2005).
[CrossRef]

2004 (1)

Ahn, J. G.

Armstrong, J.

Chang, G.

J. Yu, M. Huang, D. Qian, L. Chen, and G. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Chang, G. K.

A. Chowdhury, H. C. Chien, M. F. Huang, J. Yu, and G. K. Chang, “Rayleigh backscattering noise-eliminated 115-km long-reach bidirectional centralized WDM-PON with 10-Gb/s DPSK downstream and re-modulated 2.5-Gb/s OCS-SCM upstream signal,” IEEE Photon. Technol. Lett.20(24), 2081–2083 (2008).
[CrossRef]

Chen, L.

J. Yu, M. Huang, D. Qian, L. Chen, and G. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Chien, H. C.

A. Chowdhury, H. C. Chien, M. F. Huang, J. Yu, and G. K. Chang, “Rayleigh backscattering noise-eliminated 115-km long-reach bidirectional centralized WDM-PON with 10-Gb/s DPSK downstream and re-modulated 2.5-Gb/s OCS-SCM upstream signal,” IEEE Photon. Technol. Lett.20(24), 2081–2083 (2008).
[CrossRef]

Choi, K. M.

Chowdhury, A.

A. Chowdhury, H. C. Chien, M. F. Huang, J. Yu, and G. K. Chang, “Rayleigh backscattering noise-eliminated 115-km long-reach bidirectional centralized WDM-PON with 10-Gb/s DPSK downstream and re-modulated 2.5-Gb/s OCS-SCM upstream signal,” IEEE Photon. Technol. Lett.20(24), 2081–2083 (2008).
[CrossRef]

Cvijetic, M.

D. Qian, J. Hu, J. Yu, P. N. Ji, L. Xu, T. Wang, M. Cvijetic, and T. Kusano, “Experimental demonstration of a novel OFDM-A based 10Gb/s PON architecture,” in Proc. ECOC2007, paper 5.4.1.

Cvijetic, N.

Effenberger, F. J.

F. J. Effenberger, H. Mukai, S. Park, and T. Pfeiffer, “Next-generation PON—Part II: candidate systems for next-generation PON,” IEEE Commun. Mag.47(11), 50–57 (2009).
[CrossRef]

Giacoumidis, E.

Giddings, R. P.

Hagenauer, J.

C. Hausl and J. Hagenauer, “Relay communication with hierarchical modulation,” IEEE Commun. Lett.11(1), 64–66 (2007).
[CrossRef]

Hausl, C.

C. Hausl and J. Hagenauer, “Relay communication with hierarchical modulation,” IEEE Commun. Lett.11(1), 64–66 (2007).
[CrossRef]

Hu, J.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol.28(4), 484–493 (2010).
[CrossRef]

D. Qian, J. Hu, J. Yu, P. N. Ji, L. Xu, T. Wang, M. Cvijetic, and T. Kusano, “Experimental demonstration of a novel OFDM-A based 10Gb/s PON architecture,” in Proc. ECOC2007, paper 5.4.1.

Huang, M.

J. Yu, M. Huang, D. Qian, L. Chen, and G. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Huang, M. F.

A. Chowdhury, H. C. Chien, M. F. Huang, J. Yu, and G. K. Chang, “Rayleigh backscattering noise-eliminated 115-km long-reach bidirectional centralized WDM-PON with 10-Gb/s DPSK downstream and re-modulated 2.5-Gb/s OCS-SCM upstream signal,” IEEE Photon. Technol. Lett.20(24), 2081–2083 (2008).
[CrossRef]

Hugues-Salas, E.

Jeong, K. T.

Ji, P. N.

D. Qian, J. Hu, J. Yu, P. N. Ji, L. Xu, T. Wang, M. Cvijetic, and T. Kusano, “Experimental demonstration of a novel OFDM-A based 10Gb/s PON architecture,” in Proc. ECOC2007, paper 5.4.1.

Jiang, H.

H. Jiang, P. A. Wilford, and S. A. Wilkus, “Providing local content in a hybrid single frequency network using hierarchical modulation,” IEEE Trans. Broadcast56(4), 532–540 (2010).
[CrossRef]

H. Jiang and P. A. Wilford, “A hierarchical modulation for upgrading digital broadcast systems,” IEEE Trans. Broadcast51(2), 223–229 (2005).
[CrossRef]

Jin, X. Q.

Kim, B. Y.

Kim, H. N.

D. K. Kwon, W. J. Kim, K. H. Suh, H. Lim, and H. N. Kim, “A higher data-rate T-DMB system based on a hierarchical A-DPSK Modulation,” IEEE Trans. Broadcast55(1), 42–50 (2009).
[CrossRef]

Kim, W. J.

D. K. Kwon, W. J. Kim, K. H. Suh, H. Lim, and H. N. Kim, “A higher data-rate T-DMB system based on a hierarchical A-DPSK Modulation,” IEEE Trans. Broadcast55(1), 42–50 (2009).
[CrossRef]

Kusano, T.

D. Qian, J. Hu, J. Yu, P. N. Ji, L. Xu, T. Wang, M. Cvijetic, and T. Kusano, “Experimental demonstration of a novel OFDM-A based 10Gb/s PON architecture,” in Proc. ECOC2007, paper 5.4.1.

Kwon, D. K.

D. K. Kwon, W. J. Kim, K. H. Suh, H. Lim, and H. N. Kim, “A higher data-rate T-DMB system based on a hierarchical A-DPSK Modulation,” IEEE Trans. Broadcast55(1), 42–50 (2009).
[CrossRef]

Lee, C. H.

Lee, H. K.

Lim, H.

D. K. Kwon, W. J. Kim, K. H. Suh, H. Lim, and H. N. Kim, “A higher data-rate T-DMB system based on a hierarchical A-DPSK Modulation,” IEEE Trans. Broadcast55(1), 42–50 (2009).
[CrossRef]

Lowery, A. J.

Moon, J. H.

Mukai, H.

F. J. Effenberger, H. Mukai, S. Park, and T. Pfeiffer, “Next-generation PON—Part II: candidate systems for next-generation PON,” IEEE Commun. Mag.47(11), 50–57 (2009).
[CrossRef]

Mun, S. G.

Park, H. J.

Park, S.

F. J. Effenberger, H. Mukai, S. Park, and T. Pfeiffer, “Next-generation PON—Part II: candidate systems for next-generation PON,” IEEE Commun. Mag.47(11), 50–57 (2009).
[CrossRef]

Park, S. J.

Pfeiffer, T.

F. J. Effenberger, H. Mukai, S. Park, and T. Pfeiffer, “Next-generation PON—Part II: candidate systems for next-generation PON,” IEEE Commun. Mag.47(11), 50–57 (2009).
[CrossRef]

Qian, D.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol.28(4), 484–493 (2010).
[CrossRef]

J. Yu, M. Huang, D. Qian, L. Chen, and G. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

D. Qian, J. Hu, J. Yu, P. N. Ji, L. Xu, T. Wang, M. Cvijetic, and T. Kusano, “Experimental demonstration of a novel OFDM-A based 10Gb/s PON architecture,” in Proc. ECOC2007, paper 5.4.1.

Schmidt, B. J. C.

Song, K. H.

Sorin, W. V.

Suh, K. H.

D. K. Kwon, W. J. Kim, K. H. Suh, H. Lim, and H. N. Kim, “A higher data-rate T-DMB system based on a hierarchical A-DPSK Modulation,” IEEE Trans. Broadcast55(1), 42–50 (2009).
[CrossRef]

Tang, J. M.

Wang, T.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol.28(4), 484–493 (2010).
[CrossRef]

D. Qian, J. Hu, J. Yu, P. N. Ji, L. Xu, T. Wang, M. Cvijetic, and T. Kusano, “Experimental demonstration of a novel OFDM-A based 10Gb/s PON architecture,” in Proc. ECOC2007, paper 5.4.1.

Wei, J. L.

Wilford, P. A.

H. Jiang, P. A. Wilford, and S. A. Wilkus, “Providing local content in a hybrid single frequency network using hierarchical modulation,” IEEE Trans. Broadcast56(4), 532–540 (2010).
[CrossRef]

H. Jiang and P. A. Wilford, “A hierarchical modulation for upgrading digital broadcast systems,” IEEE Trans. Broadcast51(2), 223–229 (2005).
[CrossRef]

Wilkus, S. A.

H. Jiang, P. A. Wilford, and S. A. Wilkus, “Providing local content in a hybrid single frequency network using hierarchical modulation,” IEEE Trans. Broadcast56(4), 532–540 (2010).
[CrossRef]

Xu, L.

D. Qian, J. Hu, J. Yu, P. N. Ji, L. Xu, T. Wang, M. Cvijetic, and T. Kusano, “Experimental demonstration of a novel OFDM-A based 10Gb/s PON architecture,” in Proc. ECOC2007, paper 5.4.1.

Yu, J.

J. Yu, M. Huang, D. Qian, L. Chen, and G. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

A. Chowdhury, H. C. Chien, M. F. Huang, J. Yu, and G. K. Chang, “Rayleigh backscattering noise-eliminated 115-km long-reach bidirectional centralized WDM-PON with 10-Gb/s DPSK downstream and re-modulated 2.5-Gb/s OCS-SCM upstream signal,” IEEE Photon. Technol. Lett.20(24), 2081–2083 (2008).
[CrossRef]

D. Qian, J. Hu, J. Yu, P. N. Ji, L. Xu, T. Wang, M. Cvijetic, and T. Kusano, “Experimental demonstration of a novel OFDM-A based 10Gb/s PON architecture,” in Proc. ECOC2007, paper 5.4.1.

Zheng, X.

IEEE Commun. Lett. (1)

C. Hausl and J. Hagenauer, “Relay communication with hierarchical modulation,” IEEE Commun. Lett.11(1), 64–66 (2007).
[CrossRef]

IEEE Commun. Mag. (1)

F. J. Effenberger, H. Mukai, S. Park, and T. Pfeiffer, “Next-generation PON—Part II: candidate systems for next-generation PON,” IEEE Commun. Mag.47(11), 50–57 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Chowdhury, H. C. Chien, M. F. Huang, J. Yu, and G. K. Chang, “Rayleigh backscattering noise-eliminated 115-km long-reach bidirectional centralized WDM-PON with 10-Gb/s DPSK downstream and re-modulated 2.5-Gb/s OCS-SCM upstream signal,” IEEE Photon. Technol. Lett.20(24), 2081–2083 (2008).
[CrossRef]

J. Yu, M. Huang, D. Qian, L. Chen, and G. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

IEEE Trans. Broadcast (3)

H. Jiang and P. A. Wilford, “A hierarchical modulation for upgrading digital broadcast systems,” IEEE Trans. Broadcast51(2), 223–229 (2005).
[CrossRef]

D. K. Kwon, W. J. Kim, K. H. Suh, H. Lim, and H. N. Kim, “A higher data-rate T-DMB system based on a hierarchical A-DPSK Modulation,” IEEE Trans. Broadcast55(1), 42–50 (2009).
[CrossRef]

H. Jiang, P. A. Wilford, and S. A. Wilkus, “Providing local content in a hybrid single frequency network using hierarchical modulation,” IEEE Trans. Broadcast56(4), 532–540 (2010).
[CrossRef]

J. Lightwave Technol. (5)

J. Opt. Commun. Netw. (1)

Opt. Express (3)

Other (6)

X. Liu and F. Buchali, “Improved nonlinear tolerance of 112-Gb/s PDM-OFDM in dispersion-uncompensated transmission with efficient channel estimation,” in Proc. ECOC2008, paper Mo.3.E.2.

D. Qian, J. Hu, J. Yu, P. N. Ji, L. Xu, T. Wang, M. Cvijetic, and T. Kusano, “Experimental demonstration of a novel OFDM-A based 10Gb/s PON architecture,” in Proc. ECOC2007, paper 5.4.1.

P. P. Iannone and K. C. Reichmann, “Optical access beyond 10 Gb/s PON,” in Proc. ECOC2010, paper Tu.3.B.1.
[CrossRef]

J. Tang, “First experimental demonstration of real-time optical OFDMA PONs with colorless ONUs and adaptive DBA,” in Proc. OFC2012, paper OW4B.

ITU-T G. 987.1, Series G: Transmission systems and media, digital systems and networks. Digital sections and digital line system - Optical line systems for local and access networks. (2010).

Z. Xu, Y. K. Yeo, X. Cheng, and E. Kurniawan, “20-Gb/s injection locked FP-LD in a wavelength-division-multiplexing OFDM-PON,” in Proc. OFC2012, paper OW4B.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Principle of hierarchical QPSK / 16-QAM mapping.

Fig. 2
Fig. 2

Schematic diagrams of resource allocations and power margins of the OFDMA-PON system using conventional 16-QAM mapping (a, b) and proposed hierarchical 16-QAM mapping (c, d).

Fig. 3
Fig. 3

Schematic diagram of the proposed OFDMA-PON using hierarchical modulation.

Fig. 4
Fig. 4

Experimental setup of the proposed OFDMA-PON system based on hierarchical modulation.

Fig. 5
Fig. 5

Recovered constellations and sensitivity differences between the two layers with different hierarchical parameter α.

Fig. 6
Fig. 6

Power margins and BER performances of conventional 16-QAM mapping and hierarchical 16-QAM mapping with α = 3.

Metrics