Abstract

Plasmonic wave packet propagation is monitored in dielectric-loaded surface plasmon polariton waveguides realized from para-hexaphenylene nanofibers deposited onto a 60 nm thick gold film. Using interferometric time resolved two-photon photoemission electron microscopy we are able to determine phase and group velocity of the surface plasmon polariton (SPP) waveguiding mode (0.967c and 0.85c at λLaser = 812nm) as well as the effective propagation length (39 μm) along the fiber-gold interface. We furthermore observe that the propagation properties of the SPP waveguiding mode are governed by the cross section of the waveguide.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef] [PubMed]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [CrossRef]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–93 (2006).
    [CrossRef] [PubMed]
  4. N. J. Halas, “Plasmonics: an emerging field fostered by Nano Letters,” Nano Lett. 10, 3816–3822 (2010).
    [CrossRef] [PubMed]
  5. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Physics Today 61, 44 (2008).
    [CrossRef]
  6. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–32 (2009).
    [CrossRef] [PubMed]
  7. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–11 (2006).
    [CrossRef] [PubMed]
  8. A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–5 (2008).
    [CrossRef] [PubMed]
  9. A. Krasavin and A. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
    [CrossRef]
  10. J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
    [CrossRef]
  11. N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metaldielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 ?m,” IEEE J. Quantum. Electron. 43, 479–485 (2007).
    [CrossRef]
  12. J. Gosciniak, T. Holmgaard, and S. I. Bozhevolnyi, “Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides,” J. Lightwave Technol. 29, 1473–1481 (2011).
    [CrossRef]
  13. T. Holmgaard and S. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
    [CrossRef]
  14. R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10, 4851–4857 (2010).
    [CrossRef]
  15. J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
    [CrossRef]
  16. T. Holmgaard, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, P. Bolger, and A. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78 (2008).
    [CrossRef]
  17. T. Holmgaard, Z. Chen, S. I. I. Bozhevolnyi, A. Dereux, N. B. All, and L. Markey, “Dielectric-loaded plasmonic waveguide-ring resonators,” Opt. Express 17, 2968–2975 (2009).
    [CrossRef] [PubMed]
  18. K. H. Al-Shamery, H. G. Rubahn, and H. Sitter, eds., Organic Nanostructures for Next Generation Devices (Springer-Verlag, 2008).
    [CrossRef]
  19. I. P. Radko, J. Fiutowski, L. Tavares, H.-G. Rubahn, and S. I. Bozhevolnyi, “Organic nanofiber-loaded surface plasmon-polariton waveguides,” Opt. Express 19, 15155 (2011).
    [CrossRef] [PubMed]
  20. F. Balzer, V. Bordo, A. Simonsen, and H.-G. Rubahn, “Optical waveguiding in individual nanometer-scale organic fibers,” Phys. Rev. B 67, 115408 (2003).
    [CrossRef]
  21. F. Quochi, F. Cordella, A. Mura, G. Bongiovanni, F. Balzer, and H.-G. Rubahn, “One-dimensional random lasing in a single organic nanofiber,” J. Phys. Chem. B 109, 21690–3 (2005).
    [CrossRef]
  22. F. Quochi, F. Cordella, R. Orru, J. E. Communal, P. Verzeroli, A. Mura, G. Bongiovanni, A. Andreev, H. Sitter, and N. S. Sariciftci, “Random laser action in self-organized para-sexiphenyl nanofibers grown by hot-wall epitaxy,” Appl. Phys. Lett. 84, 4454 (2004).
    [CrossRef]
  23. J. Beermann, S. I. Bozhevolnyi, V. G. Bordo, and H.-G. Rubahn, “Two-photon mapping of local molecular orientations in hexaphenyl nanofibers,” Opt. Commun. 237, 423–429 (2004).
    [CrossRef]
  24. T. Leißner, K. Thilsing-Hansen, C. Lemke, S. Jauernik, J. Kjelstrup-Hansen, M. Bauer, and H.-G. Rubahn, “Surface plasmon polariton emission prompted by organic nanofibers on thin gold films,” Plasmonics 7, 253–260 (2012).
    [CrossRef]
  25. F. Balzer, J. Beermann, S. I. Bozhevolnyi, A. C. Simonsen, and H.-G. Rubahn, “Optically active organic microrings,” Nano Lett. 3, 1311–1314 (2003).
    [CrossRef]
  26. M. Schiek, F. Balzer, K. Al-Shamery, A. Lützen, and H.-G. Rubahn, “Light-emitting organic nanoaggregates from functionalized p-quaterphenylenes,” Soft Matter 4, 277 (2008).
    [CrossRef]
  27. F.-J. Meyer zu Heringdorf, L. Chelaru, S. Möllenbeck, D. Thien, and M. Horn-von Hoegen, “Femtosecond photoemission microscopy,” Surf. Sci. 601, 4700–4705 (2007).
    [CrossRef]
  28. A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film.” Nano Lett. 5, 1123–7 (2005).
    [CrossRef] [PubMed]
  29. A. Kubo, N. Pontius, and H. Petek, “Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface,” Nano Lett. 7, 470–5 (2007).
    [CrossRef] [PubMed]
  30. M. Bauer, C. Wiemann, J. Lange, D. Bayer, M. Rohmer, and M. Aeschlimann, “Phase propagation of localized surface plasmons probed by time-resolved photoemission electron microscopy,” Appl. Phys. A: Mater. Sci. Process. 88, 473–480 (2007).
    [CrossRef]
  31. W. Swiech, G. Fecher, C. Ziethen, O. Schmidt, G. Schönhense, K. Grzelakowski, C. M. Schneider, R. Frömter, H. Oepen, and J. Kirschner, “Recent progress in photoemission microscopy with emphasis on chemical and magnetic sensitivity,” J. Electron Spectrosc. Relat. Phenom. 84, 171–188 (1997).
    [CrossRef]
  32. M. U. Wehner, M. H. Ulm, and M. Wegener, “Scanning interferometer stabilized by use of Pancharatnam’s phase,” Opt. Lett. 22, 1455–1457 (1997).
    [CrossRef]
  33. M. Müller, Y. Gonzalez-Garcia, C. Pakula, V. Zaporojtchenko, T. Strunskus, F. Faupel, R. Herges, D. Zargarani, and O. Magnussen, “In situ atomic force microscopy studies of reversible light-induced switching of surface roughness and adhesion in azobenzene-containing PMMA films,” Appl. Surf. Sci. 257, 7719–7726 (2011).
    [CrossRef]
  34. F. Balzer and H.-G. Rubahn, “Dipole-assisted self-assembly of light-emitting p-nP needles on mica,” Appl. Phys. Lett. 79, 3860 (2001).
    [CrossRef]
  35. L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers,” Small 7, 2460–2463 (2011).
  36. K. Thilsing-Hansen and H.-G. Rubahn, “Storage and transfer of organic nanofibers,” European Patent EP2111655 (2008).
  37. T. Tamulevi?ius, A. Šileikait, S. Tamulevi?ius, M. Madsen, and H.-G. Rubahn, “Scanning electron microscopy of semiconducting nanowires at low voltages,” Mater Sci-Medzg 15, 86–90 (2009).
  38. H. Petek and S. Ogawa, “Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals,” Prog. Surf. Sci. 56, 239–310 (1997).
    [CrossRef]
  39. L. I. Chelaru and F.-J. Meyer zu Heringdorf, “In situ monitoring of surface plasmons in single-crystalline Ag-nanowires,” Surf. Sci. 601, 4541–4545 (2007).
    [CrossRef]
  40. C. Lemke, T. Leißner, S. Jauernik, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, and M. Bauer, “Mapping surface plasmon polariton propagation via counter-propagating light pulses,” Opt. Express 20, 12877 (2012).
    [CrossRef] [PubMed]
  41. M. Schiek, A. Lützen, R. Koch, K. Al-Shamery, F. Balzer, R. Frese, and H. G. Rubahn, “Nanofibers from functionalized para-phenylene molecules,” Appl. Phys. Lett. 86, 153107 (2005).
    [CrossRef]

2012

T. Leißner, K. Thilsing-Hansen, C. Lemke, S. Jauernik, J. Kjelstrup-Hansen, M. Bauer, and H.-G. Rubahn, “Surface plasmon polariton emission prompted by organic nanofibers on thin gold films,” Plasmonics 7, 253–260 (2012).
[CrossRef]

C. Lemke, T. Leißner, S. Jauernik, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, and M. Bauer, “Mapping surface plasmon polariton propagation via counter-propagating light pulses,” Opt. Express 20, 12877 (2012).
[CrossRef] [PubMed]

2011

I. P. Radko, J. Fiutowski, L. Tavares, H.-G. Rubahn, and S. I. Bozhevolnyi, “Organic nanofiber-loaded surface plasmon-polariton waveguides,” Opt. Express 19, 15155 (2011).
[CrossRef] [PubMed]

M. Müller, Y. Gonzalez-Garcia, C. Pakula, V. Zaporojtchenko, T. Strunskus, F. Faupel, R. Herges, D. Zargarani, and O. Magnussen, “In situ atomic force microscopy studies of reversible light-induced switching of surface roughness and adhesion in azobenzene-containing PMMA films,” Appl. Surf. Sci. 257, 7719–7726 (2011).
[CrossRef]

L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers,” Small 7, 2460–2463 (2011).

J. Gosciniak, T. Holmgaard, and S. I. Bozhevolnyi, “Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides,” J. Lightwave Technol. 29, 1473–1481 (2011).
[CrossRef]

2010

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10, 4851–4857 (2010).
[CrossRef]

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

N. J. Halas, “Plasmonics: an emerging field fostered by Nano Letters,” Nano Lett. 10, 3816–3822 (2010).
[CrossRef] [PubMed]

2009

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–32 (2009).
[CrossRef] [PubMed]

T. Tamulevi?ius, A. Šileikait, S. Tamulevi?ius, M. Madsen, and H.-G. Rubahn, “Scanning electron microscopy of semiconducting nanowires at low voltages,” Mater Sci-Medzg 15, 86–90 (2009).

T. Holmgaard, Z. Chen, S. I. I. Bozhevolnyi, A. Dereux, N. B. All, and L. Markey, “Dielectric-loaded plasmonic waveguide-ring resonators,” Opt. Express 17, 2968–2975 (2009).
[CrossRef] [PubMed]

2008

K. Thilsing-Hansen and H.-G. Rubahn, “Storage and transfer of organic nanofibers,” European Patent EP2111655 (2008).

M. Schiek, F. Balzer, K. Al-Shamery, A. Lützen, and H.-G. Rubahn, “Light-emitting organic nanoaggregates from functionalized p-quaterphenylenes,” Soft Matter 4, 277 (2008).
[CrossRef]

T. Holmgaard, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, P. Bolger, and A. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78 (2008).
[CrossRef]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Physics Today 61, 44 (2008).
[CrossRef]

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–5 (2008).
[CrossRef] [PubMed]

A. Krasavin and A. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
[CrossRef]

J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[CrossRef]

2007

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metaldielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 ?m,” IEEE J. Quantum. Electron. 43, 479–485 (2007).
[CrossRef]

T. Holmgaard and S. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[CrossRef]

F.-J. Meyer zu Heringdorf, L. Chelaru, S. Möllenbeck, D. Thien, and M. Horn-von Hoegen, “Femtosecond photoemission microscopy,” Surf. Sci. 601, 4700–4705 (2007).
[CrossRef]

A. Kubo, N. Pontius, and H. Petek, “Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface,” Nano Lett. 7, 470–5 (2007).
[CrossRef] [PubMed]

M. Bauer, C. Wiemann, J. Lange, D. Bayer, M. Rohmer, and M. Aeschlimann, “Phase propagation of localized surface plasmons probed by time-resolved photoemission electron microscopy,” Appl. Phys. A: Mater. Sci. Process. 88, 473–480 (2007).
[CrossRef]

L. I. Chelaru and F.-J. Meyer zu Heringdorf, “In situ monitoring of surface plasmons in single-crystalline Ag-nanowires,” Surf. Sci. 601, 4541–4545 (2007).
[CrossRef]

2006

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–11 (2006).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–93 (2006).
[CrossRef] [PubMed]

2005

M. Schiek, A. Lützen, R. Koch, K. Al-Shamery, F. Balzer, R. Frese, and H. G. Rubahn, “Nanofibers from functionalized para-phenylene molecules,” Appl. Phys. Lett. 86, 153107 (2005).
[CrossRef]

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film.” Nano Lett. 5, 1123–7 (2005).
[CrossRef] [PubMed]

F. Quochi, F. Cordella, A. Mura, G. Bongiovanni, F. Balzer, and H.-G. Rubahn, “One-dimensional random lasing in a single organic nanofiber,” J. Phys. Chem. B 109, 21690–3 (2005).
[CrossRef]

2004

F. Quochi, F. Cordella, R. Orru, J. E. Communal, P. Verzeroli, A. Mura, G. Bongiovanni, A. Andreev, H. Sitter, and N. S. Sariciftci, “Random laser action in self-organized para-sexiphenyl nanofibers grown by hot-wall epitaxy,” Appl. Phys. Lett. 84, 4454 (2004).
[CrossRef]

J. Beermann, S. I. Bozhevolnyi, V. G. Bordo, and H.-G. Rubahn, “Two-photon mapping of local molecular orientations in hexaphenyl nanofibers,” Opt. Commun. 237, 423–429 (2004).
[CrossRef]

2003

F. Balzer, J. Beermann, S. I. Bozhevolnyi, A. C. Simonsen, and H.-G. Rubahn, “Optically active organic microrings,” Nano Lett. 3, 1311–1314 (2003).
[CrossRef]

F. Balzer, V. Bordo, A. Simonsen, and H.-G. Rubahn, “Optical waveguiding in individual nanometer-scale organic fibers,” Phys. Rev. B 67, 115408 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

2001

F. Balzer and H.-G. Rubahn, “Dipole-assisted self-assembly of light-emitting p-nP needles on mica,” Appl. Phys. Lett. 79, 3860 (2001).
[CrossRef]

1997

M. U. Wehner, M. H. Ulm, and M. Wegener, “Scanning interferometer stabilized by use of Pancharatnam’s phase,” Opt. Lett. 22, 1455–1457 (1997).
[CrossRef]

H. Petek and S. Ogawa, “Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals,” Prog. Surf. Sci. 56, 239–310 (1997).
[CrossRef]

W. Swiech, G. Fecher, C. Ziethen, O. Schmidt, G. Schönhense, K. Grzelakowski, C. M. Schneider, R. Frömter, H. Oepen, and J. Kirschner, “Recent progress in photoemission microscopy with emphasis on chemical and magnetic sensitivity,” J. Electron Spectrosc. Relat. Phenom. 84, 171–188 (1997).
[CrossRef]

Aeschlimann, M.

M. Bauer, C. Wiemann, J. Lange, D. Bayer, M. Rohmer, and M. Aeschlimann, “Phase propagation of localized surface plasmons probed by time-resolved photoemission electron microscopy,” Appl. Phys. A: Mater. Sci. Process. 88, 473–480 (2007).
[CrossRef]

All, N. B.

Al-Shamery, K.

M. Schiek, F. Balzer, K. Al-Shamery, A. Lützen, and H.-G. Rubahn, “Light-emitting organic nanoaggregates from functionalized p-quaterphenylenes,” Soft Matter 4, 277 (2008).
[CrossRef]

M. Schiek, A. Lützen, R. Koch, K. Al-Shamery, F. Balzer, R. Frese, and H. G. Rubahn, “Nanofibers from functionalized para-phenylene molecules,” Appl. Phys. Lett. 86, 153107 (2005).
[CrossRef]

Andreev, A.

F. Quochi, F. Cordella, R. Orru, J. E. Communal, P. Verzeroli, A. Mura, G. Bongiovanni, A. Andreev, H. Sitter, and N. S. Sariciftci, “Random laser action in self-organized para-sexiphenyl nanofibers grown by hot-wall epitaxy,” Appl. Phys. Lett. 84, 4454 (2004).
[CrossRef]

Atwater, H. A.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10, 4851–4857 (2010).
[CrossRef]

Balzer, F.

M. Schiek, F. Balzer, K. Al-Shamery, A. Lützen, and H.-G. Rubahn, “Light-emitting organic nanoaggregates from functionalized p-quaterphenylenes,” Soft Matter 4, 277 (2008).
[CrossRef]

M. Schiek, A. Lützen, R. Koch, K. Al-Shamery, F. Balzer, R. Frese, and H. G. Rubahn, “Nanofibers from functionalized para-phenylene molecules,” Appl. Phys. Lett. 86, 153107 (2005).
[CrossRef]

F. Quochi, F. Cordella, A. Mura, G. Bongiovanni, F. Balzer, and H.-G. Rubahn, “One-dimensional random lasing in a single organic nanofiber,” J. Phys. Chem. B 109, 21690–3 (2005).
[CrossRef]

F. Balzer, J. Beermann, S. I. Bozhevolnyi, A. C. Simonsen, and H.-G. Rubahn, “Optically active organic microrings,” Nano Lett. 3, 1311–1314 (2003).
[CrossRef]

F. Balzer, V. Bordo, A. Simonsen, and H.-G. Rubahn, “Optical waveguiding in individual nanometer-scale organic fibers,” Phys. Rev. B 67, 115408 (2003).
[CrossRef]

F. Balzer and H.-G. Rubahn, “Dipole-assisted self-assembly of light-emitting p-nP needles on mica,” Appl. Phys. Lett. 79, 3860 (2001).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–32 (2009).
[CrossRef] [PubMed]

Bauer, M.

C. Lemke, T. Leißner, S. Jauernik, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, and M. Bauer, “Mapping surface plasmon polariton propagation via counter-propagating light pulses,” Opt. Express 20, 12877 (2012).
[CrossRef] [PubMed]

T. Leißner, K. Thilsing-Hansen, C. Lemke, S. Jauernik, J. Kjelstrup-Hansen, M. Bauer, and H.-G. Rubahn, “Surface plasmon polariton emission prompted by organic nanofibers on thin gold films,” Plasmonics 7, 253–260 (2012).
[CrossRef]

M. Bauer, C. Wiemann, J. Lange, D. Bayer, M. Rohmer, and M. Aeschlimann, “Phase propagation of localized surface plasmons probed by time-resolved photoemission electron microscopy,” Appl. Phys. A: Mater. Sci. Process. 88, 473–480 (2007).
[CrossRef]

Bayer, D.

M. Bauer, C. Wiemann, J. Lange, D. Bayer, M. Rohmer, and M. Aeschlimann, “Phase propagation of localized surface plasmons probed by time-resolved photoemission electron microscopy,” Appl. Phys. A: Mater. Sci. Process. 88, 473–480 (2007).
[CrossRef]

Beermann, J.

J. Beermann, S. I. Bozhevolnyi, V. G. Bordo, and H.-G. Rubahn, “Two-photon mapping of local molecular orientations in hexaphenyl nanofibers,” Opt. Commun. 237, 423–429 (2004).
[CrossRef]

F. Balzer, J. Beermann, S. I. Bozhevolnyi, A. C. Simonsen, and H.-G. Rubahn, “Optically active organic microrings,” Nano Lett. 3, 1311–1314 (2003).
[CrossRef]

Bolger, P.

T. Holmgaard, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, P. Bolger, and A. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78 (2008).
[CrossRef]

Bongiovanni, G.

F. Quochi, F. Cordella, A. Mura, G. Bongiovanni, F. Balzer, and H.-G. Rubahn, “One-dimensional random lasing in a single organic nanofiber,” J. Phys. Chem. B 109, 21690–3 (2005).
[CrossRef]

F. Quochi, F. Cordella, R. Orru, J. E. Communal, P. Verzeroli, A. Mura, G. Bongiovanni, A. Andreev, H. Sitter, and N. S. Sariciftci, “Random laser action in self-organized para-sexiphenyl nanofibers grown by hot-wall epitaxy,” Appl. Phys. Lett. 84, 4454 (2004).
[CrossRef]

Bordo, V.

F. Balzer, V. Bordo, A. Simonsen, and H.-G. Rubahn, “Optical waveguiding in individual nanometer-scale organic fibers,” Phys. Rev. B 67, 115408 (2003).
[CrossRef]

Bordo, V. G.

J. Beermann, S. I. Bozhevolnyi, V. G. Bordo, and H.-G. Rubahn, “Two-photon mapping of local molecular orientations in hexaphenyl nanofibers,” Opt. Commun. 237, 423–429 (2004).
[CrossRef]

Bouhelier, A.

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[CrossRef]

Bozhevolnyi, S.

T. Holmgaard, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, P. Bolger, and A. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78 (2008).
[CrossRef]

T. Holmgaard and S. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[CrossRef]

Bozhevolnyi, S. I.

I. P. Radko, J. Fiutowski, L. Tavares, H.-G. Rubahn, and S. I. Bozhevolnyi, “Organic nanofiber-loaded surface plasmon-polariton waveguides,” Opt. Express 19, 15155 (2011).
[CrossRef] [PubMed]

J. Gosciniak, T. Holmgaard, and S. I. Bozhevolnyi, “Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides,” J. Lightwave Technol. 29, 1473–1481 (2011).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Physics Today 61, 44 (2008).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–11 (2006).
[CrossRef] [PubMed]

J. Beermann, S. I. Bozhevolnyi, V. G. Bordo, and H.-G. Rubahn, “Two-photon mapping of local molecular orientations in hexaphenyl nanofibers,” Opt. Commun. 237, 423–429 (2004).
[CrossRef]

F. Balzer, J. Beermann, S. I. Bozhevolnyi, A. C. Simonsen, and H.-G. Rubahn, “Optically active organic microrings,” Nano Lett. 3, 1311–1314 (2003).
[CrossRef]

Bozhevolnyi, S. I. I.

Briggs, R. M.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10, 4851–4857 (2010).
[CrossRef]

Brongersma, M. L.

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metaldielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 ?m,” IEEE J. Quantum. Electron. 43, 479–485 (2007).
[CrossRef]

Burgos, S. P.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10, 4851–4857 (2010).
[CrossRef]

Chelaru, L.

F.-J. Meyer zu Heringdorf, L. Chelaru, S. Möllenbeck, D. Thien, and M. Horn-von Hoegen, “Femtosecond photoemission microscopy,” Surf. Sci. 601, 4700–4705 (2007).
[CrossRef]

Chelaru, L. I.

L. I. Chelaru and F.-J. Meyer zu Heringdorf, “In situ monitoring of surface plasmons in single-crystalline Ag-nanowires,” Surf. Sci. 601, 4541–4545 (2007).
[CrossRef]

Chen, A.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–5 (2008).
[CrossRef] [PubMed]

Chen, Z.

Communal, J. E.

F. Quochi, F. Cordella, R. Orru, J. E. Communal, P. Verzeroli, A. Mura, G. Bongiovanni, A. Andreev, H. Sitter, and N. S. Sariciftci, “Random laser action in self-organized para-sexiphenyl nanofibers grown by hot-wall epitaxy,” Appl. Phys. Lett. 84, 4454 (2004).
[CrossRef]

Cordella, F.

F. Quochi, F. Cordella, A. Mura, G. Bongiovanni, F. Balzer, and H.-G. Rubahn, “One-dimensional random lasing in a single organic nanofiber,” J. Phys. Chem. B 109, 21690–3 (2005).
[CrossRef]

F. Quochi, F. Cordella, R. Orru, J. E. Communal, P. Verzeroli, A. Mura, G. Bongiovanni, A. Andreev, H. Sitter, and N. S. Sariciftci, “Random laser action in self-organized para-sexiphenyl nanofibers grown by hot-wall epitaxy,” Appl. Phys. Lett. 84, 4454 (2004).
[CrossRef]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–32 (2009).
[CrossRef] [PubMed]

Dal Negro, L.

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metaldielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 ?m,” IEEE J. Quantum. Electron. 43, 479–485 (2007).
[CrossRef]

Dalton, L.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–5 (2008).
[CrossRef] [PubMed]

Dereux, A.

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. I. Bozhevolnyi, A. Dereux, N. B. All, and L. Markey, “Dielectric-loaded plasmonic waveguide-ring resonators,” Opt. Express 17, 2968–2975 (2009).
[CrossRef] [PubMed]

T. Holmgaard, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, P. Bolger, and A. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78 (2008).
[CrossRef]

J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

des Francs, G.

J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[CrossRef]

des Francs, G. C.

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–11 (2006).
[CrossRef] [PubMed]

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Physics Today 61, 44 (2008).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–11 (2006).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Faupel, F.

M. Müller, Y. Gonzalez-Garcia, C. Pakula, V. Zaporojtchenko, T. Strunskus, F. Faupel, R. Herges, D. Zargarani, and O. Magnussen, “In situ atomic force microscopy studies of reversible light-induced switching of surface roughness and adhesion in azobenzene-containing PMMA films,” Appl. Surf. Sci. 257, 7719–7726 (2011).
[CrossRef]

Fecher, G.

W. Swiech, G. Fecher, C. Ziethen, O. Schmidt, G. Schönhense, K. Grzelakowski, C. M. Schneider, R. Frömter, H. Oepen, and J. Kirschner, “Recent progress in photoemission microscopy with emphasis on chemical and magnetic sensitivity,” J. Electron Spectrosc. Relat. Phenom. 84, 171–188 (1997).
[CrossRef]

Feigenbaum, E.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10, 4851–4857 (2010).
[CrossRef]

Feng, N.-N.

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metaldielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 ?m,” IEEE J. Quantum. Electron. 43, 479–485 (2007).
[CrossRef]

Fiutowski, J.

Frese, R.

M. Schiek, A. Lützen, R. Koch, K. Al-Shamery, F. Balzer, R. Frese, and H. G. Rubahn, “Nanofibers from functionalized para-phenylene molecules,” Appl. Phys. Lett. 86, 153107 (2005).
[CrossRef]

Frömter, R.

W. Swiech, G. Fecher, C. Ziethen, O. Schmidt, G. Schönhense, K. Grzelakowski, C. M. Schneider, R. Frömter, H. Oepen, and J. Kirschner, “Recent progress in photoemission microscopy with emphasis on chemical and magnetic sensitivity,” J. Electron Spectrosc. Relat. Phenom. 84, 171–188 (1997).
[CrossRef]

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Physics Today 61, 44 (2008).
[CrossRef]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–32 (2009).
[CrossRef] [PubMed]

González, M.

J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[CrossRef]

Gonzalez-Garcia, Y.

M. Müller, Y. Gonzalez-Garcia, C. Pakula, V. Zaporojtchenko, T. Strunskus, F. Faupel, R. Herges, D. Zargarani, and O. Magnussen, “In situ atomic force microscopy studies of reversible light-induced switching of surface roughness and adhesion in azobenzene-containing PMMA films,” Appl. Surf. Sci. 257, 7719–7726 (2011).
[CrossRef]

Gosciniak, J.

J. Gosciniak, T. Holmgaard, and S. I. Bozhevolnyi, “Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides,” J. Lightwave Technol. 29, 1473–1481 (2011).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Grandidier, J.

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10, 4851–4857 (2010).
[CrossRef]

J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[CrossRef]

Grzelakowski, K.

W. Swiech, G. Fecher, C. Ziethen, O. Schmidt, G. Schönhense, K. Grzelakowski, C. M. Schneider, R. Frömter, H. Oepen, and J. Kirschner, “Recent progress in photoemission microscopy with emphasis on chemical and magnetic sensitivity,” J. Electron Spectrosc. Relat. Phenom. 84, 171–188 (1997).
[CrossRef]

Halas, N. J.

N. J. Halas, “Plasmonics: an emerging field fostered by Nano Letters,” Nano Lett. 10, 3816–3822 (2010).
[CrossRef] [PubMed]

Herges, R.

M. Müller, Y. Gonzalez-Garcia, C. Pakula, V. Zaporojtchenko, T. Strunskus, F. Faupel, R. Herges, D. Zargarani, and O. Magnussen, “In situ atomic force microscopy studies of reversible light-induced switching of surface roughness and adhesion in azobenzene-containing PMMA films,” Appl. Surf. Sci. 257, 7719–7726 (2011).
[CrossRef]

Holmgaard, T.

J. Gosciniak, T. Holmgaard, and S. I. Bozhevolnyi, “Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides,” J. Lightwave Technol. 29, 1473–1481 (2011).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. I. Bozhevolnyi, A. Dereux, N. B. All, and L. Markey, “Dielectric-loaded plasmonic waveguide-ring resonators,” Opt. Express 17, 2968–2975 (2009).
[CrossRef] [PubMed]

T. Holmgaard, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, P. Bolger, and A. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78 (2008).
[CrossRef]

T. Holmgaard and S. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[CrossRef]

Horn-von Hoegen, M.

F.-J. Meyer zu Heringdorf, L. Chelaru, S. Möllenbeck, D. Thien, and M. Horn-von Hoegen, “Femtosecond photoemission microscopy,” Surf. Sci. 601, 4700–4705 (2007).
[CrossRef]

Jauernik, S.

C. Lemke, T. Leißner, S. Jauernik, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, and M. Bauer, “Mapping surface plasmon polariton propagation via counter-propagating light pulses,” Opt. Express 20, 12877 (2012).
[CrossRef] [PubMed]

T. Leißner, K. Thilsing-Hansen, C. Lemke, S. Jauernik, J. Kjelstrup-Hansen, M. Bauer, and H.-G. Rubahn, “Surface plasmon polariton emission prompted by organic nanofibers on thin gold films,” Plasmonics 7, 253–260 (2012).
[CrossRef]

Jung, Y. S.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film.” Nano Lett. 5, 1123–7 (2005).
[CrossRef] [PubMed]

Kim, H. K.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film.” Nano Lett. 5, 1123–7 (2005).
[CrossRef] [PubMed]

Kirschner, J.

W. Swiech, G. Fecher, C. Ziethen, O. Schmidt, G. Schönhense, K. Grzelakowski, C. M. Schneider, R. Frömter, H. Oepen, and J. Kirschner, “Recent progress in photoemission microscopy with emphasis on chemical and magnetic sensitivity,” J. Electron Spectrosc. Relat. Phenom. 84, 171–188 (1997).
[CrossRef]

Kjelstrup-Hansen, J.

T. Leißner, K. Thilsing-Hansen, C. Lemke, S. Jauernik, J. Kjelstrup-Hansen, M. Bauer, and H.-G. Rubahn, “Surface plasmon polariton emission prompted by organic nanofibers on thin gold films,” Plasmonics 7, 253–260 (2012).
[CrossRef]

C. Lemke, T. Leißner, S. Jauernik, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, and M. Bauer, “Mapping surface plasmon polariton propagation via counter-propagating light pulses,” Opt. Express 20, 12877 (2012).
[CrossRef] [PubMed]

L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers,” Small 7, 2460–2463 (2011).

Klick, A.

Koch, R.

M. Schiek, A. Lützen, R. Koch, K. Al-Shamery, F. Balzer, R. Frese, and H. G. Rubahn, “Nanofibers from functionalized para-phenylene molecules,” Appl. Phys. Lett. 86, 153107 (2005).
[CrossRef]

Krasavin, A.

A. Krasavin and A. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
[CrossRef]

T. Holmgaard, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, P. Bolger, and A. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78 (2008).
[CrossRef]

Kubo, A.

A. Kubo, N. Pontius, and H. Petek, “Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface,” Nano Lett. 7, 470–5 (2007).
[CrossRef] [PubMed]

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film.” Nano Lett. 5, 1123–7 (2005).
[CrossRef] [PubMed]

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–11 (2006).
[CrossRef] [PubMed]

Lange, J.

M. Bauer, C. Wiemann, J. Lange, D. Bayer, M. Rohmer, and M. Aeschlimann, “Phase propagation of localized surface plasmons probed by time-resolved photoemission electron microscopy,” Appl. Phys. A: Mater. Sci. Process. 88, 473–480 (2007).
[CrossRef]

Leißner, T.

C. Lemke, T. Leißner, S. Jauernik, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, and M. Bauer, “Mapping surface plasmon polariton propagation via counter-propagating light pulses,” Opt. Express 20, 12877 (2012).
[CrossRef] [PubMed]

T. Leißner, K. Thilsing-Hansen, C. Lemke, S. Jauernik, J. Kjelstrup-Hansen, M. Bauer, and H.-G. Rubahn, “Surface plasmon polariton emission prompted by organic nanofibers on thin gold films,” Plasmonics 7, 253–260 (2012).
[CrossRef]

Lemke, C.

T. Leißner, K. Thilsing-Hansen, C. Lemke, S. Jauernik, J. Kjelstrup-Hansen, M. Bauer, and H.-G. Rubahn, “Surface plasmon polariton emission prompted by organic nanofibers on thin gold films,” Plasmonics 7, 253–260 (2012).
[CrossRef]

C. Lemke, T. Leißner, S. Jauernik, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, and M. Bauer, “Mapping surface plasmon polariton propagation via counter-propagating light pulses,” Opt. Express 20, 12877 (2012).
[CrossRef] [PubMed]

Lützen, A.

M. Schiek, F. Balzer, K. Al-Shamery, A. Lützen, and H.-G. Rubahn, “Light-emitting organic nanoaggregates from functionalized p-quaterphenylenes,” Soft Matter 4, 277 (2008).
[CrossRef]

M. Schiek, A. Lützen, R. Koch, K. Al-Shamery, F. Balzer, R. Frese, and H. G. Rubahn, “Nanofibers from functionalized para-phenylene molecules,” Appl. Phys. Lett. 86, 153107 (2005).
[CrossRef]

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–32 (2009).
[CrossRef] [PubMed]

Madsen, M.

T. Tamulevi?ius, A. Šileikait, S. Tamulevi?ius, M. Madsen, and H.-G. Rubahn, “Scanning electron microscopy of semiconducting nanowires at low voltages,” Mater Sci-Medzg 15, 86–90 (2009).

Magnussen, O.

M. Müller, Y. Gonzalez-Garcia, C. Pakula, V. Zaporojtchenko, T. Strunskus, F. Faupel, R. Herges, D. Zargarani, and O. Magnussen, “In situ atomic force microscopy studies of reversible light-induced switching of surface roughness and adhesion in azobenzene-containing PMMA films,” Appl. Surf. Sci. 257, 7719–7726 (2011).
[CrossRef]

Markey, L.

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. I. Bozhevolnyi, A. Dereux, N. B. All, and L. Markey, “Dielectric-loaded plasmonic waveguide-ring resonators,” Opt. Express 17, 2968–2975 (2009).
[CrossRef] [PubMed]

T. Holmgaard, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, P. Bolger, and A. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78 (2008).
[CrossRef]

J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[CrossRef]

Massenot, S.

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[CrossRef]

Meyer zu Heringdorf, F.-J.

L. I. Chelaru and F.-J. Meyer zu Heringdorf, “In situ monitoring of surface plasmons in single-crystalline Ag-nanowires,” Surf. Sci. 601, 4541–4545 (2007).
[CrossRef]

F.-J. Meyer zu Heringdorf, L. Chelaru, S. Möllenbeck, D. Thien, and M. Horn-von Hoegen, “Femtosecond photoemission microscopy,” Surf. Sci. 601, 4700–4705 (2007).
[CrossRef]

Möllenbeck, S.

F.-J. Meyer zu Heringdorf, L. Chelaru, S. Möllenbeck, D. Thien, and M. Horn-von Hoegen, “Femtosecond photoemission microscopy,” Surf. Sci. 601, 4700–4705 (2007).
[CrossRef]

Müller, M.

M. Müller, Y. Gonzalez-Garcia, C. Pakula, V. Zaporojtchenko, T. Strunskus, F. Faupel, R. Herges, D. Zargarani, and O. Magnussen, “In situ atomic force microscopy studies of reversible light-induced switching of surface roughness and adhesion in azobenzene-containing PMMA films,” Appl. Surf. Sci. 257, 7719–7726 (2011).
[CrossRef]

Mura, A.

F. Quochi, F. Cordella, A. Mura, G. Bongiovanni, F. Balzer, and H.-G. Rubahn, “One-dimensional random lasing in a single organic nanofiber,” J. Phys. Chem. B 109, 21690–3 (2005).
[CrossRef]

F. Quochi, F. Cordella, R. Orru, J. E. Communal, P. Verzeroli, A. Mura, G. Bongiovanni, A. Andreev, H. Sitter, and N. S. Sariciftci, “Random laser action in self-organized para-sexiphenyl nanofibers grown by hot-wall epitaxy,” Appl. Phys. Lett. 84, 4454 (2004).
[CrossRef]

Oepen, H.

W. Swiech, G. Fecher, C. Ziethen, O. Schmidt, G. Schönhense, K. Grzelakowski, C. M. Schneider, R. Frömter, H. Oepen, and J. Kirschner, “Recent progress in photoemission microscopy with emphasis on chemical and magnetic sensitivity,” J. Electron Spectrosc. Relat. Phenom. 84, 171–188 (1997).
[CrossRef]

Ogawa, S.

H. Petek and S. Ogawa, “Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals,” Prog. Surf. Sci. 56, 239–310 (1997).
[CrossRef]

Onda, K.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film.” Nano Lett. 5, 1123–7 (2005).
[CrossRef] [PubMed]

Orru, R.

F. Quochi, F. Cordella, R. Orru, J. E. Communal, P. Verzeroli, A. Mura, G. Bongiovanni, A. Andreev, H. Sitter, and N. S. Sariciftci, “Random laser action in self-organized para-sexiphenyl nanofibers grown by hot-wall epitaxy,” Appl. Phys. Lett. 84, 4454 (2004).
[CrossRef]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–32 (2009).
[CrossRef] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–93 (2006).
[CrossRef] [PubMed]

Pakula, C.

M. Müller, Y. Gonzalez-Garcia, C. Pakula, V. Zaporojtchenko, T. Strunskus, F. Faupel, R. Herges, D. Zargarani, and O. Magnussen, “In situ atomic force microscopy studies of reversible light-induced switching of surface roughness and adhesion in azobenzene-containing PMMA films,” Appl. Surf. Sci. 257, 7719–7726 (2011).
[CrossRef]

Petek, H.

A. Kubo, N. Pontius, and H. Petek, “Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface,” Nano Lett. 7, 470–5 (2007).
[CrossRef] [PubMed]

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film.” Nano Lett. 5, 1123–7 (2005).
[CrossRef] [PubMed]

H. Petek and S. Ogawa, “Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals,” Prog. Surf. Sci. 56, 239–310 (1997).
[CrossRef]

Pontius, N.

A. Kubo, N. Pontius, and H. Petek, “Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface,” Nano Lett. 7, 470–5 (2007).
[CrossRef] [PubMed]

Pyayt, A. L.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–5 (2008).
[CrossRef] [PubMed]

Quidant, R.

J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[CrossRef]

Quochi, F.

F. Quochi, F. Cordella, A. Mura, G. Bongiovanni, F. Balzer, and H.-G. Rubahn, “One-dimensional random lasing in a single organic nanofiber,” J. Phys. Chem. B 109, 21690–3 (2005).
[CrossRef]

F. Quochi, F. Cordella, R. Orru, J. E. Communal, P. Verzeroli, A. Mura, G. Bongiovanni, A. Andreev, H. Sitter, and N. S. Sariciftci, “Random laser action in self-organized para-sexiphenyl nanofibers grown by hot-wall epitaxy,” Appl. Phys. Lett. 84, 4454 (2004).
[CrossRef]

Radko, I. P.

Renger, J.

J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[CrossRef]

Rohmer, M.

M. Bauer, C. Wiemann, J. Lange, D. Bayer, M. Rohmer, and M. Aeschlimann, “Phase propagation of localized surface plasmons probed by time-resolved photoemission electron microscopy,” Appl. Phys. A: Mater. Sci. Process. 88, 473–480 (2007).
[CrossRef]

Rubahn, H. G.

M. Schiek, A. Lützen, R. Koch, K. Al-Shamery, F. Balzer, R. Frese, and H. G. Rubahn, “Nanofibers from functionalized para-phenylene molecules,” Appl. Phys. Lett. 86, 153107 (2005).
[CrossRef]

Rubahn, H.-G.

C. Lemke, T. Leißner, S. Jauernik, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, and M. Bauer, “Mapping surface plasmon polariton propagation via counter-propagating light pulses,” Opt. Express 20, 12877 (2012).
[CrossRef] [PubMed]

T. Leißner, K. Thilsing-Hansen, C. Lemke, S. Jauernik, J. Kjelstrup-Hansen, M. Bauer, and H.-G. Rubahn, “Surface plasmon polariton emission prompted by organic nanofibers on thin gold films,” Plasmonics 7, 253–260 (2012).
[CrossRef]

L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers,” Small 7, 2460–2463 (2011).

I. P. Radko, J. Fiutowski, L. Tavares, H.-G. Rubahn, and S. I. Bozhevolnyi, “Organic nanofiber-loaded surface plasmon-polariton waveguides,” Opt. Express 19, 15155 (2011).
[CrossRef] [PubMed]

T. Tamulevi?ius, A. Šileikait, S. Tamulevi?ius, M. Madsen, and H.-G. Rubahn, “Scanning electron microscopy of semiconducting nanowires at low voltages,” Mater Sci-Medzg 15, 86–90 (2009).

M. Schiek, F. Balzer, K. Al-Shamery, A. Lützen, and H.-G. Rubahn, “Light-emitting organic nanoaggregates from functionalized p-quaterphenylenes,” Soft Matter 4, 277 (2008).
[CrossRef]

K. Thilsing-Hansen and H.-G. Rubahn, “Storage and transfer of organic nanofibers,” European Patent EP2111655 (2008).

F. Quochi, F. Cordella, A. Mura, G. Bongiovanni, F. Balzer, and H.-G. Rubahn, “One-dimensional random lasing in a single organic nanofiber,” J. Phys. Chem. B 109, 21690–3 (2005).
[CrossRef]

J. Beermann, S. I. Bozhevolnyi, V. G. Bordo, and H.-G. Rubahn, “Two-photon mapping of local molecular orientations in hexaphenyl nanofibers,” Opt. Commun. 237, 423–429 (2004).
[CrossRef]

F. Balzer, J. Beermann, S. I. Bozhevolnyi, A. C. Simonsen, and H.-G. Rubahn, “Optically active organic microrings,” Nano Lett. 3, 1311–1314 (2003).
[CrossRef]

F. Balzer, V. Bordo, A. Simonsen, and H.-G. Rubahn, “Optical waveguiding in individual nanometer-scale organic fibers,” Phys. Rev. B 67, 115408 (2003).
[CrossRef]

F. Balzer and H.-G. Rubahn, “Dipole-assisted self-assembly of light-emitting p-nP needles on mica,” Appl. Phys. Lett. 79, 3860 (2001).
[CrossRef]

Sariciftci, N. S.

F. Quochi, F. Cordella, R. Orru, J. E. Communal, P. Verzeroli, A. Mura, G. Bongiovanni, A. Andreev, H. Sitter, and N. S. Sariciftci, “Random laser action in self-organized para-sexiphenyl nanofibers grown by hot-wall epitaxy,” Appl. Phys. Lett. 84, 4454 (2004).
[CrossRef]

Schiek, M.

M. Schiek, F. Balzer, K. Al-Shamery, A. Lützen, and H.-G. Rubahn, “Light-emitting organic nanoaggregates from functionalized p-quaterphenylenes,” Soft Matter 4, 277 (2008).
[CrossRef]

M. Schiek, A. Lützen, R. Koch, K. Al-Shamery, F. Balzer, R. Frese, and H. G. Rubahn, “Nanofibers from functionalized para-phenylene molecules,” Appl. Phys. Lett. 86, 153107 (2005).
[CrossRef]

Schmidt, O.

W. Swiech, G. Fecher, C. Ziethen, O. Schmidt, G. Schönhense, K. Grzelakowski, C. M. Schneider, R. Frömter, H. Oepen, and J. Kirschner, “Recent progress in photoemission microscopy with emphasis on chemical and magnetic sensitivity,” J. Electron Spectrosc. Relat. Phenom. 84, 171–188 (1997).
[CrossRef]

Schneider, C. M.

W. Swiech, G. Fecher, C. Ziethen, O. Schmidt, G. Schönhense, K. Grzelakowski, C. M. Schneider, R. Frömter, H. Oepen, and J. Kirschner, “Recent progress in photoemission microscopy with emphasis on chemical and magnetic sensitivity,” J. Electron Spectrosc. Relat. Phenom. 84, 171–188 (1997).
[CrossRef]

Schönhense, G.

W. Swiech, G. Fecher, C. Ziethen, O. Schmidt, G. Schönhense, K. Grzelakowski, C. M. Schneider, R. Frömter, H. Oepen, and J. Kirschner, “Recent progress in photoemission microscopy with emphasis on chemical and magnetic sensitivity,” J. Electron Spectrosc. Relat. Phenom. 84, 171–188 (1997).
[CrossRef]

Šileikait, A.

T. Tamulevi?ius, A. Šileikait, S. Tamulevi?ius, M. Madsen, and H.-G. Rubahn, “Scanning electron microscopy of semiconducting nanowires at low voltages,” Mater Sci-Medzg 15, 86–90 (2009).

Simonsen, A.

F. Balzer, V. Bordo, A. Simonsen, and H.-G. Rubahn, “Optical waveguiding in individual nanometer-scale organic fibers,” Phys. Rev. B 67, 115408 (2003).
[CrossRef]

Simonsen, A. C.

F. Balzer, J. Beermann, S. I. Bozhevolnyi, A. C. Simonsen, and H.-G. Rubahn, “Optically active organic microrings,” Nano Lett. 3, 1311–1314 (2003).
[CrossRef]

Sitter, H.

F. Quochi, F. Cordella, R. Orru, J. E. Communal, P. Verzeroli, A. Mura, G. Bongiovanni, A. Andreev, H. Sitter, and N. S. Sariciftci, “Random laser action in self-organized para-sexiphenyl nanofibers grown by hot-wall epitaxy,” Appl. Phys. Lett. 84, 4454 (2004).
[CrossRef]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–32 (2009).
[CrossRef] [PubMed]

Strunskus, T.

M. Müller, Y. Gonzalez-Garcia, C. Pakula, V. Zaporojtchenko, T. Strunskus, F. Faupel, R. Herges, D. Zargarani, and O. Magnussen, “In situ atomic force microscopy studies of reversible light-induced switching of surface roughness and adhesion in azobenzene-containing PMMA films,” Appl. Surf. Sci. 257, 7719–7726 (2011).
[CrossRef]

Sun, Z.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film.” Nano Lett. 5, 1123–7 (2005).
[CrossRef] [PubMed]

Swiech, W.

W. Swiech, G. Fecher, C. Ziethen, O. Schmidt, G. Schönhense, K. Grzelakowski, C. M. Schneider, R. Frömter, H. Oepen, and J. Kirschner, “Recent progress in photoemission microscopy with emphasis on chemical and magnetic sensitivity,” J. Electron Spectrosc. Relat. Phenom. 84, 171–188 (1997).
[CrossRef]

Tamulevicius, S.

T. Tamulevi?ius, A. Šileikait, S. Tamulevi?ius, M. Madsen, and H.-G. Rubahn, “Scanning electron microscopy of semiconducting nanowires at low voltages,” Mater Sci-Medzg 15, 86–90 (2009).

Tamulevicius, T.

T. Tamulevi?ius, A. Šileikait, S. Tamulevi?ius, M. Madsen, and H.-G. Rubahn, “Scanning electron microscopy of semiconducting nanowires at low voltages,” Mater Sci-Medzg 15, 86–90 (2009).

Tavares, L.

I. P. Radko, J. Fiutowski, L. Tavares, H.-G. Rubahn, and S. I. Bozhevolnyi, “Organic nanofiber-loaded surface plasmon-polariton waveguides,” Opt. Express 19, 15155 (2011).
[CrossRef] [PubMed]

L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers,” Small 7, 2460–2463 (2011).

Thien, D.

F.-J. Meyer zu Heringdorf, L. Chelaru, S. Möllenbeck, D. Thien, and M. Horn-von Hoegen, “Femtosecond photoemission microscopy,” Surf. Sci. 601, 4700–4705 (2007).
[CrossRef]

Thilsing-Hansen, K.

T. Leißner, K. Thilsing-Hansen, C. Lemke, S. Jauernik, J. Kjelstrup-Hansen, M. Bauer, and H.-G. Rubahn, “Surface plasmon polariton emission prompted by organic nanofibers on thin gold films,” Plasmonics 7, 253–260 (2012).
[CrossRef]

K. Thilsing-Hansen and H.-G. Rubahn, “Storage and transfer of organic nanofibers,” European Patent EP2111655 (2008).

Ulm, M. H.

Verzeroli, P.

F. Quochi, F. Cordella, R. Orru, J. E. Communal, P. Verzeroli, A. Mura, G. Bongiovanni, A. Andreev, H. Sitter, and N. S. Sariciftci, “Random laser action in self-organized para-sexiphenyl nanofibers grown by hot-wall epitaxy,” Appl. Phys. Lett. 84, 4454 (2004).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–11 (2006).
[CrossRef] [PubMed]

Weeber, J.-C.

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[CrossRef]

Wegener, M.

Wehner, M. U.

Wiemann, C.

M. Bauer, C. Wiemann, J. Lange, D. Bayer, M. Rohmer, and M. Aeschlimann, “Phase propagation of localized surface plasmons probed by time-resolved photoemission electron microscopy,” Appl. Phys. A: Mater. Sci. Process. 88, 473–480 (2007).
[CrossRef]

Wiley, B.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–5 (2008).
[CrossRef] [PubMed]

Xia, Y.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–5 (2008).
[CrossRef] [PubMed]

Zaporojtchenko, V.

M. Müller, Y. Gonzalez-Garcia, C. Pakula, V. Zaporojtchenko, T. Strunskus, F. Faupel, R. Herges, D. Zargarani, and O. Magnussen, “In situ atomic force microscopy studies of reversible light-induced switching of surface roughness and adhesion in azobenzene-containing PMMA films,” Appl. Surf. Sci. 257, 7719–7726 (2011).
[CrossRef]

Zargarani, D.

M. Müller, Y. Gonzalez-Garcia, C. Pakula, V. Zaporojtchenko, T. Strunskus, F. Faupel, R. Herges, D. Zargarani, and O. Magnussen, “In situ atomic force microscopy studies of reversible light-induced switching of surface roughness and adhesion in azobenzene-containing PMMA films,” Appl. Surf. Sci. 257, 7719–7726 (2011).
[CrossRef]

Zayats, A.

T. Holmgaard, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, P. Bolger, and A. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78 (2008).
[CrossRef]

A. Krasavin and A. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
[CrossRef]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–32 (2009).
[CrossRef] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–32 (2009).
[CrossRef] [PubMed]

Ziethen, C.

W. Swiech, G. Fecher, C. Ziethen, O. Schmidt, G. Schönhense, K. Grzelakowski, C. M. Schneider, R. Frömter, H. Oepen, and J. Kirschner, “Recent progress in photoemission microscopy with emphasis on chemical and magnetic sensitivity,” J. Electron Spectrosc. Relat. Phenom. 84, 171–188 (1997).
[CrossRef]

Appl. Phys. A: Mater. Sci. Process.

M. Bauer, C. Wiemann, J. Lange, D. Bayer, M. Rohmer, and M. Aeschlimann, “Phase propagation of localized surface plasmons probed by time-resolved photoemission electron microscopy,” Appl. Phys. A: Mater. Sci. Process. 88, 473–480 (2007).
[CrossRef]

Appl. Phys. Lett.

F. Balzer and H.-G. Rubahn, “Dipole-assisted self-assembly of light-emitting p-nP needles on mica,” Appl. Phys. Lett. 79, 3860 (2001).
[CrossRef]

M. Schiek, A. Lützen, R. Koch, K. Al-Shamery, F. Balzer, R. Frese, and H. G. Rubahn, “Nanofibers from functionalized para-phenylene molecules,” Appl. Phys. Lett. 86, 153107 (2005).
[CrossRef]

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

F. Quochi, F. Cordella, R. Orru, J. E. Communal, P. Verzeroli, A. Mura, G. Bongiovanni, A. Andreev, H. Sitter, and N. S. Sariciftci, “Random laser action in self-organized para-sexiphenyl nanofibers grown by hot-wall epitaxy,” Appl. Phys. Lett. 84, 4454 (2004).
[CrossRef]

Appl. Surf. Sci.

M. Müller, Y. Gonzalez-Garcia, C. Pakula, V. Zaporojtchenko, T. Strunskus, F. Faupel, R. Herges, D. Zargarani, and O. Magnussen, “In situ atomic force microscopy studies of reversible light-induced switching of surface roughness and adhesion in azobenzene-containing PMMA films,” Appl. Surf. Sci. 257, 7719–7726 (2011).
[CrossRef]

IEEE J. Quantum. Electron.

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metaldielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 ?m,” IEEE J. Quantum. Electron. 43, 479–485 (2007).
[CrossRef]

J. Electron Spectrosc. Relat. Phenom.

W. Swiech, G. Fecher, C. Ziethen, O. Schmidt, G. Schönhense, K. Grzelakowski, C. M. Schneider, R. Frömter, H. Oepen, and J. Kirschner, “Recent progress in photoemission microscopy with emphasis on chemical and magnetic sensitivity,” J. Electron Spectrosc. Relat. Phenom. 84, 171–188 (1997).
[CrossRef]

J. Lightwave Technol.

J. Gosciniak, T. Holmgaard, and S. I. Bozhevolnyi, “Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides,” J. Lightwave Technol. 29, 1473–1481 (2011).
[CrossRef]

J. Phys. Chem. B

F. Quochi, F. Cordella, A. Mura, G. Bongiovanni, F. Balzer, and H.-G. Rubahn, “One-dimensional random lasing in a single organic nanofiber,” J. Phys. Chem. B 109, 21690–3 (2005).
[CrossRef]

Mater Sci-Medzg

T. Tamulevi?ius, A. Šileikait, S. Tamulevi?ius, M. Madsen, and H.-G. Rubahn, “Scanning electron microscopy of semiconducting nanowires at low voltages,” Mater Sci-Medzg 15, 86–90 (2009).

Nano Lett.

A. Kubo, N. Pontius, and H. Petek, “Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface,” Nano Lett. 7, 470–5 (2007).
[CrossRef] [PubMed]

Nano Lett.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film.” Nano Lett. 5, 1123–7 (2005).
[CrossRef] [PubMed]

F. Balzer, J. Beermann, S. I. Bozhevolnyi, A. C. Simonsen, and H.-G. Rubahn, “Optically active organic microrings,” Nano Lett. 3, 1311–1314 (2003).
[CrossRef]

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10, 4851–4857 (2010).
[CrossRef]

N. J. Halas, “Plasmonics: an emerging field fostered by Nano Letters,” Nano Lett. 10, 3816–3822 (2010).
[CrossRef] [PubMed]

Nat. Nanotechnol.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–5 (2008).
[CrossRef] [PubMed]

Nat. Photonics

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Nature

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–32 (2009).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–11 (2006).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Opt. Commun.

J. Beermann, S. I. Bozhevolnyi, V. G. Bordo, and H.-G. Rubahn, “Two-photon mapping of local molecular orientations in hexaphenyl nanofibers,” Opt. Commun. 237, 423–429 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

A. Krasavin and A. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
[CrossRef]

Phys. Rev. B

J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[CrossRef]

T. Holmgaard, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, P. Bolger, and A. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78 (2008).
[CrossRef]

F. Balzer, V. Bordo, A. Simonsen, and H.-G. Rubahn, “Optical waveguiding in individual nanometer-scale organic fibers,” Phys. Rev. B 67, 115408 (2003).
[CrossRef]

T. Holmgaard and S. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[CrossRef]

Physics Today

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Physics Today 61, 44 (2008).
[CrossRef]

Plasmonics

T. Leißner, K. Thilsing-Hansen, C. Lemke, S. Jauernik, J. Kjelstrup-Hansen, M. Bauer, and H.-G. Rubahn, “Surface plasmon polariton emission prompted by organic nanofibers on thin gold films,” Plasmonics 7, 253–260 (2012).
[CrossRef]

Prog. Surf. Sci.

H. Petek and S. Ogawa, “Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals,” Prog. Surf. Sci. 56, 239–310 (1997).
[CrossRef]

Science

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–93 (2006).
[CrossRef] [PubMed]

Small

L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers,” Small 7, 2460–2463 (2011).

Soft Matter

M. Schiek, F. Balzer, K. Al-Shamery, A. Lützen, and H.-G. Rubahn, “Light-emitting organic nanoaggregates from functionalized p-quaterphenylenes,” Soft Matter 4, 277 (2008).
[CrossRef]

Surf. Sci.

F.-J. Meyer zu Heringdorf, L. Chelaru, S. Möllenbeck, D. Thien, and M. Horn-von Hoegen, “Femtosecond photoemission microscopy,” Surf. Sci. 601, 4700–4705 (2007).
[CrossRef]

L. I. Chelaru and F.-J. Meyer zu Heringdorf, “In situ monitoring of surface plasmons in single-crystalline Ag-nanowires,” Surf. Sci. 601, 4541–4545 (2007).
[CrossRef]

Other

K. H. Al-Shamery, H. G. Rubahn, and H. Sitter, eds., Organic Nanostructures for Next Generation Devices (Springer-Verlag, 2008).
[CrossRef]

K. Thilsing-Hansen and H.-G. Rubahn, “Storage and transfer of organic nanofibers,” European Patent EP2111655 (2008).

Supplementary Material (1)

» Media 1: AVI (9746 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Optical microscopy image of p-6P nanofibers deposited onto a gold film; the nanofibers (dark shapes) are up to 70 μm in length and their parallel alignment is kept upon deposition; (b) Atomic force microscopy image of a single p-6P nanofiber; (c) cross-section profiles of five different nanofibers of the sample.

Fig. 2
Fig. 2

(a) Threshold PEEM image of a p-6P nanofiber recorded at UV-illumination ( = 4.9 eV); (b) same nanofiber imaged at illumination with 18 fs laser pulses at 812 nm central wavelength; the laser light is polarized within the plane of incidence (p-polarized); the red frame marks the periodic DLSPPW signature along the fiber used for the quantitative analysis; (c) experimental two-photon PEEM intensity profile along the p-6P nanofiber (black), corresponding fitted profile (red) and exponential decay of the two-photon PEEM signal (blue); (d) Fourier transformation of the intensity profile yielding a periodicity in the two-photon PEEM signal of 6.25 μm; the red line is a Gaussian fit to the DLSPPW peak; (e) illustration of the electric field distribution (transversal component |Ez| of the fundamental TM00 mode) of an SPP waveguiding mode supported by a rectangular p-6P nanofiber on top of a gold surface; the electric field distribution at an excitation wavelength λLaser = 812 nm has been calculated using the finite-element method.

Fig. 3
Fig. 3

(a) Three different p-6P nanofibers of the same samples recorded in two-photon PEEM mode; the periodic DLSPPW signatures are marked with red rectangles. (b) Fourier transformation of the intensity profiles along the nanofibers for analysis of the beating pattern periodicity.

Fig. 4
Fig. 4

(a) ITR-PEEM snapshots at five different phase delays within a single oscillation period of the laser field showing the characteristic splitting of the static and the dynamic part of the beating pattern (red arrows); the complete ITR-PEEM movie is provided in the supplemental data ( Media 1); (b) ITR-PEEM delay-intensity profile of the p-6P nanofiber shown in Fig. 2; intensity profiles have been corrected for static signal contributions by background subtraction and are normalized to maximum intensity; the slope of the interference pattern indicated by the tilted red dashed line is a indirect measure for the phase velocity of the waveguiding mode; the white arrows indicate the position of splitting signatures characteristic for the group velocity of the waveguiding mode; (c) simulated ITR-PEEM delay-intensity profiles for different group velocities of the SPP wave packet (0.80c, 0.85c and 0.90c); the white arrows display the position of the splitting signature as determined in the experiment; (d) simulated ITR-PEEM intensity traces at a fixed position within the fiber (see red lines in Fig. 4(b),(c)) for five different SPP group velocities in comparison to the experimental data (black line).

Fig. 5
Fig. 5

(a) Two-photon PEEM image of a p-6P nanofiber prepared in another deposition run showing a considerably deviating cross section in comparison to the nanofibers of the sample shown in Fig. 1; (b) AFM cross section of the nanofiber in (a); (c) FFT spectrum of the two-photon PEEM beating pattern; the DLSPPW shows a beating period of 4.76 μm, corresponding to a SPP wavelength of 745 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k beat = k SPP k Laser
v ph , SPP = s c | | s + c | | .
v ph , SPP = ω Laser k SPP = c n eff = 0.965 c .

Metrics