Abstract

A liquid-crystal tunable plasmonic optical switch based on a long-range metal stripe directional coupler is proposed and theoretically investigated. Extensive electro-optic tuning of the coupler’s characteristics is demonstrated by introducing a nematic liquid crystal layer above two coplanar plasmonic waveguides. The switching properties of the proposed plasmonic structure are investigated through rigorous liquid-crystal studies coupled with a finite-element based analysis of light propagation. A directional coupler optical switch is demonstrated, which combines very low power consumption, low operation voltages, adjustable crosstalk and coupling lengths, along with sufficiently reduced insertion losses.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61, 44–50 (2008).
    [CrossRef]
  2. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19, 22029–22106 (2011).
    [CrossRef] [PubMed]
  3. E. Le Ru and P. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, Amsterdam, 2009).
  4. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4, 83–91 (2010).
    [CrossRef]
  5. N. Pleros, E. E. Kriezis, and K. Vyrsokinos, “Optical interconnects using plasmonics and Si-photonics,” IEEE Photon. J.3, 296–301 (2011).
    [CrossRef]
  6. S. Papaioannou, K. Vyrsokinos, O. Tsilipakos, A. Pitilakis, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, S. I. Bozhevolnyi, A. Miliou, E. E. Kriezis, and N. Pleros, “A 320 Gb/s-throughput capable 2×2 silicon-plasmonic router architecture for optical interconnects,” J. Lightwave Technol.29, 3185–3195 (2011).
    [CrossRef]
  7. O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: Theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron.48, 678–687 (2012).
    [CrossRef]
  8. S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci. Rep.2, 652 (2012).
    [CrossRef] [PubMed]
  9. J. J. Ju, S. Park, M.-S. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “40 Gbits/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett.91, 171117 (2007).
    [CrossRef]
  10. S. Park, J. J. Ju, J. T. Kim, M.-S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express17, 697–702 (2009).
    [CrossRef] [PubMed]
  11. J. J. Ju, S. Park, M.-S. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “Polymer-based long-range surface plasmon polariton waveguides for 10-Gbps optical signal transmission applications,” J. Lightwave Technol.26, 1510–1518 (2008).
    [CrossRef]
  12. J. T. Kim, J. J. Ju, S. Park, M.-S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express16, 13133–13138 (2008).
    [CrossRef] [PubMed]
  13. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1, 484–588 (2009).
    [CrossRef]
  14. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85, 5833–5835 (2004).
    [CrossRef]
  15. A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quant. Electron.12, 1233–1241 (2006).
    [CrossRef]
  16. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berrini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol.24, 477–494 (2006).
    [CrossRef]
  17. G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berrini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” J. Lightwave Technol.24, 4391–4402 (2006).
    [CrossRef]
  18. D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip12, 3598–3610 (2012).
    [CrossRef] [PubMed]
  19. I. Abdulhalim, “Optimized guided mode resonant structure as thermooptic sensor and liquid crystal tunable filter,” Chin. Opt. Lett.7, 667–670 (2009).
    [CrossRef]
  20. I. Abdulhalim, “Liquid crystal active nanophotonics and plasmonics: from science to devices,” J. Nanophotonics6, 061001 (2012).
    [CrossRef]
  21. P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett.5, 1978–1981 (2005).
    [CrossRef] [PubMed]
  22. Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett.97, 091101 (2010).
    [CrossRef]
  23. L. De Sio, R. Caputo, U. Cataldi, and C. Umeton, “Broad band tuning of the plasmonic resonance of gold nanoparticles hosted in self-organized soft materials,” J. Mater. Chem21, 18967–18970 (2011).
    [CrossRef]
  24. L. De Sio, A. Cunningham, V. Verrina, C. M. Tone, R. Caputo, T. Bürgi, and C. Umeton, “Double active control of the plasmonic resonance of a gold nanoparticle array,” Nanoscale4, 7619–7623 (2012).
    [CrossRef] [PubMed]
  25. A. C. Tasolamprou, D. C. Zografopoulos, and E. E. Kriezis, “Liquid crystal-based dielectric loaded surface plasmon polariton optical switches,” J. Appl. Phys.110, 093102 (2011).
    [CrossRef]
  26. J. S. T. Smalley, Y. Zhao, A. A. Nawaz, Q. Hao, Y. Ma, I.-C. Khoo, and T. J. Huang, “High contrast modulation of plasmonic signals using nanoscale dual-frequency liquid crystals,” Opt. Express19, 15265–15274 (2011).
    [CrossRef] [PubMed]
  27. A. E. Cętin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Möstecaplıoğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett.101, 121113 (2012).
    [CrossRef]
  28. D. C. Zografopoulos and R. Beccherelli, “Plasmonic variable optical attenuator based on liquid-crystal tunable stripe waveguides,” Plasmonics (2013). DOI:.
    [CrossRef]
  29. D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquid-crystal tunable waveguides for integrated plasmonic components,” Photon. Nanostruct.: Fundam. Appl.11, 73–84 (2013).
    [CrossRef]
  30. J. Pfeifle, L. Alloatti, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding,” Opt. Express20, 15359–15376 (2012).
    [CrossRef] [PubMed]
  31. A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron.42, 1084–1090 (2006).
    [CrossRef]
  32. D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “A switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron.46, 762–768 (2010).
    [CrossRef]
  33. A. K. Pitilakis, D. C. Zografopoulos, and E. E. Kriezis, “In-line polarization controller based on liquid-crystal photonic crystal fibers,” J. Lightwave Technol.29, 2560–2569 (2011).
    [CrossRef]
  34. B. Bellini and R. Beccherelli, “Modelling, design and analysis of liquid crystal waveguides in preferentially etched silicon grooves,” J. Phys. D: Appl. Phys.42, 045111 (2009).
    [CrossRef]
  35. J. F. Strömer, E. P. Raynes, and C. V. Brown, “Study of elastic constant ratios in nematic liquid crystals,” Appl. Phys. Lett.88, 051915 (2006).
    [CrossRef]
  36. R. D. Schaller, L. F. Lee, J. C. Johnson, L. H. Haber, R. J. Saykally, J. Vieceli, I. Benjamin, T.-Q. Nguyen, and B. J. Schwartz, “The nature of interchain excitations in conjugated polymers: spatially-varying interfacial solvatochromism of annealed MEH-PPV films studied by near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B106, 9496–9506 (2002).
    [CrossRef]
  37. J. Robertson, “High dielectric constant oxides,” Eur. Phys. J.28, 265–291 (2004).
  38. C. Vassallo, Optical Waveguide Concepts (Elsevier, Amsterdam, 1991).
  39. Norland Products, Optical Adhesives, ( www.norlandprod.com ).
  40. M. Wang, ed., Lithography (InTech, 2010).
    [CrossRef]
  41. CYCLOTENE, Dow Chemical, ( www.dow.com ).
  42. J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys.97, 073501 (2005).
    [CrossRef]
  43. B. Tatian, “Fitting refractive-index data with the Sellmeier dispersion formula,” Appl. Opt.23, 4477–4485 (1984).
    [CrossRef] [PubMed]
  44. E. D. Palik, Handbook of optical constants of solids (Orlando, FL, Academic, 1985).
  45. S. Laux, N. Kaiser, A. Zöller, R. Götzelmann, H. Lauth, and H. Bernitzki, “Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation,” Thin Solid Films335, 1–5 (1998).
    [CrossRef]
  46. T. Srivastava and A. Kumar, “Comparative study of directional couplers utilizing long-range surface plasmon polaritons,” Appl. Optics49, 2397–2402 (2010).
    [CrossRef]
  47. A. Degiron, C. Dellagiacoma, J. G. McIlhargey, G. Shvets, O. J. F. Martin, and D. R. Smith, “Simulations of hybrid long-range plasmon modes with application to 90° bends,” Opt. Lett.32, 2354–2356 (2007).
    [CrossRef] [PubMed]
  48. I. Abdulhalim, “Surface plasmon TE and TM waves at the anisotropic film-metal interface,” J. Opt. A: Pure Appl. Opt.11, 015002 (2009).
    [CrossRef]
  49. R. Li, C. Cheng, F.-F. Ren, J. Chen, Y.-X. Fan, J. Ding, and H.-T. Wang, “Hybridized surface plasmon polaritons at an interface between a metal and a uniaxial crystal,” Appl. Phys. Lett.92, 141115 (2008).
    [CrossRef]
  50. COMSOL Multiphysics v4.3a, ( www.comsol.com ).
  51. M. Stallein, C. Kolleck, and G. Mrozynski, “Improved analysis of the coupling of optical waves into multimode waveguides using overlap integrals,” in “PIERS 2005 Proceedings,” (Hangzhou, China, 2005), pp. 464–468.
  52. S.-T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys.84, 4462–4465 (1998).
    [CrossRef]
  53. I. W. Steward, The Static and Dynamic Continuum Theory of Liquid Crystals (Taylor & Francis, London, 2004).

2013 (1)

D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquid-crystal tunable waveguides for integrated plasmonic components,” Photon. Nanostruct.: Fundam. Appl.11, 73–84 (2013).
[CrossRef]

2012 (7)

J. Pfeifle, L. Alloatti, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding,” Opt. Express20, 15359–15376 (2012).
[CrossRef] [PubMed]

A. E. Cętin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Möstecaplıoğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett.101, 121113 (2012).
[CrossRef]

L. De Sio, A. Cunningham, V. Verrina, C. M. Tone, R. Caputo, T. Bürgi, and C. Umeton, “Double active control of the plasmonic resonance of a gold nanoparticle array,” Nanoscale4, 7619–7623 (2012).
[CrossRef] [PubMed]

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: Theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron.48, 678–687 (2012).
[CrossRef]

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci. Rep.2, 652 (2012).
[CrossRef] [PubMed]

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip12, 3598–3610 (2012).
[CrossRef] [PubMed]

I. Abdulhalim, “Liquid crystal active nanophotonics and plasmonics: from science to devices,” J. Nanophotonics6, 061001 (2012).
[CrossRef]

2011 (7)

2010 (4)

D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “A switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron.46, 762–768 (2010).
[CrossRef]

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett.97, 091101 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4, 83–91 (2010).
[CrossRef]

T. Srivastava and A. Kumar, “Comparative study of directional couplers utilizing long-range surface plasmon polaritons,” Appl. Optics49, 2397–2402 (2010).
[CrossRef]

2009 (5)

2008 (4)

2007 (2)

A. Degiron, C. Dellagiacoma, J. G. McIlhargey, G. Shvets, O. J. F. Martin, and D. R. Smith, “Simulations of hybrid long-range plasmon modes with application to 90° bends,” Opt. Lett.32, 2354–2356 (2007).
[CrossRef] [PubMed]

J. J. Ju, S. Park, M.-S. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “40 Gbits/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett.91, 171117 (2007).
[CrossRef]

2006 (5)

A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quant. Electron.12, 1233–1241 (2006).
[CrossRef]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berrini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol.24, 477–494 (2006).
[CrossRef]

G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berrini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” J. Lightwave Technol.24, 4391–4402 (2006).
[CrossRef]

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron.42, 1084–1090 (2006).
[CrossRef]

J. F. Strömer, E. P. Raynes, and C. V. Brown, “Study of elastic constant ratios in nematic liquid crystals,” Appl. Phys. Lett.88, 051915 (2006).
[CrossRef]

2005 (2)

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys.97, 073501 (2005).
[CrossRef]

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett.5, 1978–1981 (2005).
[CrossRef] [PubMed]

2004 (2)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85, 5833–5835 (2004).
[CrossRef]

J. Robertson, “High dielectric constant oxides,” Eur. Phys. J.28, 265–291 (2004).

2002 (1)

R. D. Schaller, L. F. Lee, J. C. Johnson, L. H. Haber, R. J. Saykally, J. Vieceli, I. Benjamin, T.-Q. Nguyen, and B. J. Schwartz, “The nature of interchain excitations in conjugated polymers: spatially-varying interfacial solvatochromism of annealed MEH-PPV films studied by near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B106, 9496–9506 (2002).
[CrossRef]

1998 (2)

S.-T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys.84, 4462–4465 (1998).
[CrossRef]

S. Laux, N. Kaiser, A. Zöller, R. Götzelmann, H. Lauth, and H. Bernitzki, “Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation,” Thin Solid Films335, 1–5 (1998).
[CrossRef]

1984 (1)

Abdulhalim, I.

I. Abdulhalim, “Liquid crystal active nanophotonics and plasmonics: from science to devices,” J. Nanophotonics6, 061001 (2012).
[CrossRef]

I. Abdulhalim, “Optimized guided mode resonant structure as thermooptic sensor and liquid crystal tunable filter,” Chin. Opt. Lett.7, 667–670 (2009).
[CrossRef]

I. Abdulhalim, “Surface plasmon TE and TM waves at the anisotropic film-metal interface,” J. Opt. A: Pure Appl. Opt.11, 015002 (2009).
[CrossRef]

Alloatti, L.

Alsing, P. M.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett.5, 1978–1981 (2005).
[CrossRef] [PubMed]

Altug, H.

A. E. Cętin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Möstecaplıoğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett.101, 121113 (2012).
[CrossRef]

Apostolopoulos, D.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: Theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron.48, 678–687 (2012).
[CrossRef]

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci. Rep.2, 652 (2012).
[CrossRef] [PubMed]

Asquini, R.

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip12, 3598–3610 (2012).
[CrossRef] [PubMed]

D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “A switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron.46, 762–768 (2010).
[CrossRef]

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron.42, 1084–1090 (2006).
[CrossRef]

Avramopoulos, H.

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci. Rep.2, 652 (2012).
[CrossRef] [PubMed]

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: Theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron.48, 678–687 (2012).
[CrossRef]

Baus, M.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: Theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron.48, 678–687 (2012).
[CrossRef]

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci. Rep.2, 652 (2012).
[CrossRef] [PubMed]

Beccherelli, R.

D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquid-crystal tunable waveguides for integrated plasmonic components,” Photon. Nanostruct.: Fundam. Appl.11, 73–84 (2013).
[CrossRef]

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip12, 3598–3610 (2012).
[CrossRef] [PubMed]

D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “A switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron.46, 762–768 (2010).
[CrossRef]

B. Bellini and R. Beccherelli, “Modelling, design and analysis of liquid crystal waveguides in preferentially etched silicon grooves,” J. Phys. D: Appl. Phys.42, 045111 (2009).
[CrossRef]

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron.42, 1084–1090 (2006).
[CrossRef]

D. C. Zografopoulos and R. Beccherelli, “Plasmonic variable optical attenuator based on liquid-crystal tunable stripe waveguides,” Plasmonics (2013). DOI:.
[CrossRef]

Bellini, B.

D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “A switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron.46, 762–768 (2010).
[CrossRef]

B. Bellini and R. Beccherelli, “Modelling, design and analysis of liquid crystal waveguides in preferentially etched silicon grooves,” J. Phys. D: Appl. Phys.42, 045111 (2009).
[CrossRef]

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron.42, 1084–1090 (2006).
[CrossRef]

Benjamin, I.

R. D. Schaller, L. F. Lee, J. C. Johnson, L. H. Haber, R. J. Saykally, J. Vieceli, I. Benjamin, T.-Q. Nguyen, and B. J. Schwartz, “The nature of interchain excitations in conjugated polymers: spatially-varying interfacial solvatochromism of annealed MEH-PPV films studied by near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B106, 9496–9506 (2002).
[CrossRef]

Berini, P.

Bernitzki, H.

S. Laux, N. Kaiser, A. Zöller, R. Götzelmann, H. Lauth, and H. Bernitzki, “Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation,” Thin Solid Films335, 1–5 (1998).
[CrossRef]

Berrini, P.

Boltasseva, A.

A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quant. Electron.12, 1233–1241 (2006).
[CrossRef]

Bozhevolnyi, S. I.

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci. Rep.2, 652 (2012).
[CrossRef] [PubMed]

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: Theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron.48, 678–687 (2012).
[CrossRef]

S. Papaioannou, K. Vyrsokinos, O. Tsilipakos, A. Pitilakis, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, S. I. Bozhevolnyi, A. Miliou, E. E. Kriezis, and N. Pleros, “A 320 Gb/s-throughput capable 2×2 silicon-plasmonic router architecture for optical interconnects,” J. Lightwave Technol.29, 3185–3195 (2011).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4, 83–91 (2010).
[CrossRef]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61, 44–50 (2008).
[CrossRef]

A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quant. Electron.12, 1233–1241 (2006).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85, 5833–5835 (2004).
[CrossRef]

Breukelaar, I.

Brown, C. V.

J. F. Strömer, E. P. Raynes, and C. V. Brown, “Study of elastic constant ratios in nematic liquid crystals,” Appl. Phys. Lett.88, 051915 (2006).
[CrossRef]

Brugioni, S.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys.97, 073501 (2005).
[CrossRef]

Bürgi, T.

L. De Sio, A. Cunningham, V. Verrina, C. M. Tone, R. Caputo, T. Bürgi, and C. Umeton, “Double active control of the plasmonic resonance of a gold nanoparticle array,” Nanoscale4, 7619–7623 (2012).
[CrossRef] [PubMed]

Caputo, R.

L. De Sio, A. Cunningham, V. Verrina, C. M. Tone, R. Caputo, T. Bürgi, and C. Umeton, “Double active control of the plasmonic resonance of a gold nanoparticle array,” Nanoscale4, 7619–7623 (2012).
[CrossRef] [PubMed]

L. De Sio, R. Caputo, U. Cataldi, and C. Umeton, “Broad band tuning of the plasmonic resonance of gold nanoparticles hosted in self-organized soft materials,” J. Mater. Chem21, 18967–18970 (2011).
[CrossRef]

Cardimona, D. A.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett.5, 1978–1981 (2005).
[CrossRef] [PubMed]

Cataldi, U.

L. De Sio, R. Caputo, U. Cataldi, and C. Umeton, “Broad band tuning of the plasmonic resonance of gold nanoparticles hosted in self-organized soft materials,” J. Mater. Chem21, 18967–18970 (2011).
[CrossRef]

Cetin, A. E.

A. E. Cętin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Möstecaplıoğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett.101, 121113 (2012).
[CrossRef]

Charbonneau, R.

Chen, J.

R. Li, C. Cheng, F.-F. Ren, J. Chen, Y.-X. Fan, J. Ding, and H.-T. Wang, “Hybridized surface plasmon polaritons at an interface between a metal and a uniaxial crystal,” Appl. Phys. Lett.92, 141115 (2008).
[CrossRef]

Cheng, C.

R. Li, C. Cheng, F.-F. Ren, J. Chen, Y.-X. Fan, J. Ding, and H.-T. Wang, “Hybridized surface plasmon polaritons at an interface between a metal and a uniaxial crystal,” Appl. Phys. Lett.92, 141115 (2008).
[CrossRef]

Cloutier, S. G.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett.5, 1978–1981 (2005).
[CrossRef] [PubMed]

Cunningham, A.

L. De Sio, A. Cunningham, V. Verrina, C. M. Tone, R. Caputo, T. Bürgi, and C. Umeton, “Double active control of the plasmonic resonance of a gold nanoparticle array,” Nanoscale4, 7619–7623 (2012).
[CrossRef] [PubMed]

d’Alessandro, A.

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip12, 3598–3610 (2012).
[CrossRef] [PubMed]

D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “A switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron.46, 762–768 (2010).
[CrossRef]

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron.42, 1084–1090 (2006).
[CrossRef]

De Sio, L.

L. De Sio, A. Cunningham, V. Verrina, C. M. Tone, R. Caputo, T. Bürgi, and C. Umeton, “Double active control of the plasmonic resonance of a gold nanoparticle array,” Nanoscale4, 7619–7623 (2012).
[CrossRef] [PubMed]

L. De Sio, R. Caputo, U. Cataldi, and C. Umeton, “Broad band tuning of the plasmonic resonance of gold nanoparticles hosted in self-organized soft materials,” J. Mater. Chem21, 18967–18970 (2011).
[CrossRef]

Degiron, A.

Dellagiacoma, C.

Dereux, A.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: Theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron.48, 678–687 (2012).
[CrossRef]

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci. Rep.2, 652 (2012).
[CrossRef] [PubMed]

S. Papaioannou, K. Vyrsokinos, O. Tsilipakos, A. Pitilakis, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, S. I. Bozhevolnyi, A. Miliou, E. E. Kriezis, and N. Pleros, “A 320 Gb/s-throughput capable 2×2 silicon-plasmonic router architecture for optical interconnects,” J. Lightwave Technol.29, 3185–3195 (2011).
[CrossRef]

Ding, J.

R. Li, C. Cheng, F.-F. Ren, J. Chen, Y.-X. Fan, J. Ding, and H.-T. Wang, “Hybridized surface plasmon polaritons at an interface between a metal and a uniaxial crystal,” Appl. Phys. Lett.92, 141115 (2008).
[CrossRef]

Donisi, D.

D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “A switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron.46, 762–768 (2010).
[CrossRef]

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron.42, 1084–1090 (2006).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61, 44–50 (2008).
[CrossRef]

Erramilli, S.

A. E. Cętin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Möstecaplıoğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett.101, 121113 (2012).
[CrossRef]

Etchegoin, P.

E. Le Ru and P. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, Amsterdam, 2009).

Faetti, S.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys.97, 073501 (2005).
[CrossRef]

Fafard, S.

Fan, Y.-X.

R. Li, C. Cheng, F.-F. Ren, J. Chen, Y.-X. Fan, J. Ding, and H.-T. Wang, “Hybridized surface plasmon polaritons at an interface between a metal and a uniaxial crystal,” Appl. Phys. Lett.92, 141115 (2008).
[CrossRef]

Freude, W.

Gagnon, G.

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61, 44–50 (2008).
[CrossRef]

Giannoulis, G.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: Theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron.48, 678–687 (2012).
[CrossRef]

Gilardi, G.

D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “A switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron.46, 762–768 (2010).
[CrossRef]

Götzelmann, R.

S. Laux, N. Kaiser, A. Zöller, R. Götzelmann, H. Lauth, and H. Bernitzki, “Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation,” Thin Solid Films335, 1–5 (1998).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4, 83–91 (2010).
[CrossRef]

Haber, L. H.

R. D. Schaller, L. F. Lee, J. C. Johnson, L. H. Haber, R. J. Saykally, J. Vieceli, I. Benjamin, T.-Q. Nguyen, and B. J. Schwartz, “The nature of interchain excitations in conjugated polymers: spatially-varying interfacial solvatochromism of annealed MEH-PPV films studied by near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B106, 9496–9506 (2002).
[CrossRef]

Hao, Q.

J. S. T. Smalley, Y. Zhao, A. A. Nawaz, Q. Hao, Y. Ma, I.-C. Khoo, and T. J. Huang, “High contrast modulation of plasmonic signals using nanoscale dual-frequency liquid crystals,” Opt. Express19, 15265–15274 (2011).
[CrossRef] [PubMed]

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett.97, 091101 (2010).
[CrossRef]

Hassan, K.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: Theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron.48, 678–687 (2012).
[CrossRef]

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci. Rep.2, 652 (2012).
[CrossRef] [PubMed]

S. Papaioannou, K. Vyrsokinos, O. Tsilipakos, A. Pitilakis, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, S. I. Bozhevolnyi, A. Miliou, E. E. Kriezis, and N. Pleros, “A 320 Gb/s-throughput capable 2×2 silicon-plasmonic router architecture for optical interconnects,” J. Lightwave Technol.29, 3185–3195 (2011).
[CrossRef]

Huang, D.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett.5, 1978–1981 (2005).
[CrossRef] [PubMed]

Huang, T. J.

J. S. T. Smalley, Y. Zhao, A. A. Nawaz, Q. Hao, Y. Ma, I.-C. Khoo, and T. J. Huang, “High contrast modulation of plasmonic signals using nanoscale dual-frequency liquid crystals,” Opt. Express19, 15265–15274 (2011).
[CrossRef] [PubMed]

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett.97, 091101 (2010).
[CrossRef]

Johnson, J. C.

R. D. Schaller, L. F. Lee, J. C. Johnson, L. H. Haber, R. J. Saykally, J. Vieceli, I. Benjamin, T.-Q. Nguyen, and B. J. Schwartz, “The nature of interchain excitations in conjugated polymers: spatially-varying interfacial solvatochromism of annealed MEH-PPV films studied by near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B106, 9496–9506 (2002).
[CrossRef]

Ju, J. J.

Kaiser, N.

S. Laux, N. Kaiser, A. Zöller, R. Götzelmann, H. Lauth, and H. Bernitzki, “Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation,” Thin Solid Films335, 1–5 (1998).
[CrossRef]

Kalavrouziotis, D.

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci. Rep.2, 652 (2012).
[CrossRef] [PubMed]

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: Theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron.48, 678–687 (2012).
[CrossRef]

Karl, M.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: Theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron.48, 678–687 (2012).
[CrossRef]

Khoo, I. C.

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett.97, 091101 (2010).
[CrossRef]

Khoo, I.-C.

Kim, J. T.

Kim, M.-S.

Kolleck, C.

M. Stallein, C. Kolleck, and G. Mrozynski, “Improved analysis of the coupling of optical waves into multimode waveguides using overlap integrals,” in “PIERS 2005 Proceedings,” (Hangzhou, China, 2005), pp. 464–468.

Koos, C.

Kossyrev, P. A.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett.5, 1978–1981 (2005).
[CrossRef] [PubMed]

Kriezis, E. E.

D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquid-crystal tunable waveguides for integrated plasmonic components,” Photon. Nanostruct.: Fundam. Appl.11, 73–84 (2013).
[CrossRef]

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip12, 3598–3610 (2012).
[CrossRef] [PubMed]

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: Theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron.48, 678–687 (2012).
[CrossRef]

S. Papaioannou, K. Vyrsokinos, O. Tsilipakos, A. Pitilakis, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, S. I. Bozhevolnyi, A. Miliou, E. E. Kriezis, and N. Pleros, “A 320 Gb/s-throughput capable 2×2 silicon-plasmonic router architecture for optical interconnects,” J. Lightwave Technol.29, 3185–3195 (2011).
[CrossRef]

N. Pleros, E. E. Kriezis, and K. Vyrsokinos, “Optical interconnects using plasmonics and Si-photonics,” IEEE Photon. J.3, 296–301 (2011).
[CrossRef]

A. C. Tasolamprou, D. C. Zografopoulos, and E. E. Kriezis, “Liquid crystal-based dielectric loaded surface plasmon polariton optical switches,” J. Appl. Phys.110, 093102 (2011).
[CrossRef]

A. K. Pitilakis, D. C. Zografopoulos, and E. E. Kriezis, “In-line polarization controller based on liquid-crystal photonic crystal fibers,” J. Lightwave Technol.29, 2560–2569 (2011).
[CrossRef]

Kumar, A.

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci. Rep.2, 652 (2012).
[CrossRef] [PubMed]

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: Theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron.48, 678–687 (2012).
[CrossRef]

T. Srivastava and A. Kumar, “Comparative study of directional couplers utilizing long-range surface plasmon polaritons,” Appl. Optics49, 2397–2402 (2010).
[CrossRef]

Lahoud, N.

Lauth, H.

S. Laux, N. Kaiser, A. Zöller, R. Götzelmann, H. Lauth, and H. Bernitzki, “Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation,” Thin Solid Films335, 1–5 (1998).
[CrossRef]

Laux, S.

S. Laux, N. Kaiser, A. Zöller, R. Götzelmann, H. Lauth, and H. Bernitzki, “Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation,” Thin Solid Films335, 1–5 (1998).
[CrossRef]

Le Ru, E.

E. Le Ru and P. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, Amsterdam, 2009).

Lee, J.-M.

Lee, L. F.

R. D. Schaller, L. F. Lee, J. C. Johnson, L. H. Haber, R. J. Saykally, J. Vieceli, I. Benjamin, T.-Q. Nguyen, and B. J. Schwartz, “The nature of interchain excitations in conjugated polymers: spatially-varying interfacial solvatochromism of annealed MEH-PPV films studied by near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B106, 9496–9506 (2002).
[CrossRef]

Lee, M.-H.

Lee, W.-J.

Leosson, K.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85, 5833–5835 (2004).
[CrossRef]

Leuthold, J.

Li, J.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys.97, 073501 (2005).
[CrossRef]

Li, R.

R. Li, C. Cheng, F.-F. Ren, J. Chen, Y.-X. Fan, J. Ding, and H.-T. Wang, “Hybridized surface plasmon polaritons at an interface between a metal and a uniaxial crystal,” Appl. Phys. Lett.92, 141115 (2008).
[CrossRef]

Liou, J.

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett.97, 091101 (2010).
[CrossRef]

Liu, Y. J.

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett.97, 091101 (2010).
[CrossRef]

Ma, Y.

Markey, L.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: Theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron.48, 678–687 (2012).
[CrossRef]

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci. Rep.2, 652 (2012).
[CrossRef] [PubMed]

S. Papaioannou, K. Vyrsokinos, O. Tsilipakos, A. Pitilakis, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, S. I. Bozhevolnyi, A. Miliou, E. E. Kriezis, and N. Pleros, “A 320 Gb/s-throughput capable 2×2 silicon-plasmonic router architecture for optical interconnects,” J. Lightwave Technol.29, 3185–3195 (2011).
[CrossRef]

Martin, O. J. F.

Mattiussi, G.

Mattiussi, G. A.

McIlhargey, J. G.

Mertiri, A.

A. E. Cętin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Möstecaplıoğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett.101, 121113 (2012).
[CrossRef]

Meucci, R.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys.97, 073501 (2005).
[CrossRef]

Miliou, A.

Möstecaplioglu, Ö. E.

A. E. Cętin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Möstecaplıoğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett.101, 121113 (2012).
[CrossRef]

Mrozynski, G.

M. Stallein, C. Kolleck, and G. Mrozynski, “Improved analysis of the coupling of optical waves into multimode waveguides using overlap integrals,” in “PIERS 2005 Proceedings,” (Hangzhou, China, 2005), pp. 464–468.

Nawaz, A. A.

Nguyen, T.-Q.

R. D. Schaller, L. F. Lee, J. C. Johnson, L. H. Haber, R. J. Saykally, J. Vieceli, I. Benjamin, T.-Q. Nguyen, and B. J. Schwartz, “The nature of interchain excitations in conjugated polymers: spatially-varying interfacial solvatochromism of annealed MEH-PPV films studied by near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B106, 9496–9506 (2002).
[CrossRef]

Nikolajsen, T.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85, 5833–5835 (2004).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of optical constants of solids (Orlando, FL, Academic, 1985).

Papaioannou, S.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: Theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron.48, 678–687 (2012).
[CrossRef]

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci. Rep.2, 652 (2012).
[CrossRef] [PubMed]

S. Papaioannou, K. Vyrsokinos, O. Tsilipakos, A. Pitilakis, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, S. I. Bozhevolnyi, A. Miliou, E. E. Kriezis, and N. Pleros, “A 320 Gb/s-throughput capable 2×2 silicon-plasmonic router architecture for optical interconnects,” J. Lightwave Technol.29, 3185–3195 (2011).
[CrossRef]

Park, S.

Park, S. K.

Park, Y. J.

J. J. Ju, S. Park, M.-S. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “Polymer-based long-range surface plasmon polariton waveguides for 10-Gbps optical signal transmission applications,” J. Lightwave Technol.26, 1510–1518 (2008).
[CrossRef]

J. J. Ju, S. Park, M.-S. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “40 Gbits/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett.91, 171117 (2007).
[CrossRef]

Pfeifle, J.

Pitilakis, A.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: Theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron.48, 678–687 (2012).
[CrossRef]

S. Papaioannou, K. Vyrsokinos, O. Tsilipakos, A. Pitilakis, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, S. I. Bozhevolnyi, A. Miliou, E. E. Kriezis, and N. Pleros, “A 320 Gb/s-throughput capable 2×2 silicon-plasmonic router architecture for optical interconnects,” J. Lightwave Technol.29, 3185–3195 (2011).
[CrossRef]

Pitilakis, A. K.

Pleros, N.

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci. Rep.2, 652 (2012).
[CrossRef] [PubMed]

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: Theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron.48, 678–687 (2012).
[CrossRef]

S. Papaioannou, K. Vyrsokinos, O. Tsilipakos, A. Pitilakis, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, S. I. Bozhevolnyi, A. Miliou, E. E. Kriezis, and N. Pleros, “A 320 Gb/s-throughput capable 2×2 silicon-plasmonic router architecture for optical interconnects,” J. Lightwave Technol.29, 3185–3195 (2011).
[CrossRef]

N. Pleros, E. E. Kriezis, and K. Vyrsokinos, “Optical interconnects using plasmonics and Si-photonics,” IEEE Photon. J.3, 296–301 (2011).
[CrossRef]

Raynes, E. P.

J. F. Strömer, E. P. Raynes, and C. V. Brown, “Study of elastic constant ratios in nematic liquid crystals,” Appl. Phys. Lett.88, 051915 (2006).
[CrossRef]

Ren, F.-F.

R. Li, C. Cheng, F.-F. Ren, J. Chen, Y.-X. Fan, J. Ding, and H.-T. Wang, “Hybridized surface plasmon polaritons at an interface between a metal and a uniaxial crystal,” Appl. Phys. Lett.92, 141115 (2008).
[CrossRef]

Robertson, J.

J. Robertson, “High dielectric constant oxides,” Eur. Phys. J.28, 265–291 (2004).

Saykally, R. J.

R. D. Schaller, L. F. Lee, J. C. Johnson, L. H. Haber, R. J. Saykally, J. Vieceli, I. Benjamin, T.-Q. Nguyen, and B. J. Schwartz, “The nature of interchain excitations in conjugated polymers: spatially-varying interfacial solvatochromism of annealed MEH-PPV films studied by near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B106, 9496–9506 (2002).
[CrossRef]

Scales, C.

Schaller, R. D.

R. D. Schaller, L. F. Lee, J. C. Johnson, L. H. Haber, R. J. Saykally, J. Vieceli, I. Benjamin, T.-Q. Nguyen, and B. J. Schwartz, “The nature of interchain excitations in conjugated polymers: spatially-varying interfacial solvatochromism of annealed MEH-PPV films studied by near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B106, 9496–9506 (2002).
[CrossRef]

Schwartz, B. J.

R. D. Schaller, L. F. Lee, J. C. Johnson, L. H. Haber, R. J. Saykally, J. Vieceli, I. Benjamin, T.-Q. Nguyen, and B. J. Schwartz, “The nature of interchain excitations in conjugated polymers: spatially-varying interfacial solvatochromism of annealed MEH-PPV films studied by near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B106, 9496–9506 (2002).
[CrossRef]

Shvets, G.

Smalley, J. S. T.

J. S. T. Smalley, Y. Zhao, A. A. Nawaz, Q. Hao, Y. Ma, I.-C. Khoo, and T. J. Huang, “High contrast modulation of plasmonic signals using nanoscale dual-frequency liquid crystals,” Opt. Express19, 15265–15274 (2011).
[CrossRef] [PubMed]

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett.97, 091101 (2010).
[CrossRef]

Smith, D. R.

Srivastava, T.

T. Srivastava and A. Kumar, “Comparative study of directional couplers utilizing long-range surface plasmon polaritons,” Appl. Optics49, 2397–2402 (2010).
[CrossRef]

Stallein, M.

M. Stallein, C. Kolleck, and G. Mrozynski, “Improved analysis of the coupling of optical waves into multimode waveguides using overlap integrals,” in “PIERS 2005 Proceedings,” (Hangzhou, China, 2005), pp. 464–468.

Steward, I. W.

I. W. Steward, The Static and Dynamic Continuum Theory of Liquid Crystals (Taylor & Francis, London, 2004).

Stockman, M. I.

Strömer, J. F.

J. F. Strömer, E. P. Raynes, and C. V. Brown, “Study of elastic constant ratios in nematic liquid crystals,” Appl. Phys. Lett.88, 051915 (2006).
[CrossRef]

Tasolamprou, A. C.

D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquid-crystal tunable waveguides for integrated plasmonic components,” Photon. Nanostruct.: Fundam. Appl.11, 73–84 (2013).
[CrossRef]

A. C. Tasolamprou, D. C. Zografopoulos, and E. E. Kriezis, “Liquid crystal-based dielectric loaded surface plasmon polariton optical switches,” J. Appl. Phys.110, 093102 (2011).
[CrossRef]

Tatian, B.

Tekin, T.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: Theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron.48, 678–687 (2012).
[CrossRef]

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci. Rep.2, 652 (2012).
[CrossRef] [PubMed]

Tone, C. M.

L. De Sio, A. Cunningham, V. Verrina, C. M. Tone, R. Caputo, T. Bürgi, and C. Umeton, “Double active control of the plasmonic resonance of a gold nanoparticle array,” Nanoscale4, 7619–7623 (2012).
[CrossRef] [PubMed]

Trotta, M.

D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “A switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron.46, 762–768 (2010).
[CrossRef]

Tsilipakos, O.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: Theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron.48, 678–687 (2012).
[CrossRef]

S. Papaioannou, K. Vyrsokinos, O. Tsilipakos, A. Pitilakis, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, S. I. Bozhevolnyi, A. Miliou, E. E. Kriezis, and N. Pleros, “A 320 Gb/s-throughput capable 2×2 silicon-plasmonic router architecture for optical interconnects,” J. Lightwave Technol.29, 3185–3195 (2011).
[CrossRef]

Umeton, C.

L. De Sio, A. Cunningham, V. Verrina, C. M. Tone, R. Caputo, T. Bürgi, and C. Umeton, “Double active control of the plasmonic resonance of a gold nanoparticle array,” Nanoscale4, 7619–7623 (2012).
[CrossRef] [PubMed]

L. De Sio, R. Caputo, U. Cataldi, and C. Umeton, “Broad band tuning of the plasmonic resonance of gold nanoparticles hosted in self-organized soft materials,” J. Mater. Chem21, 18967–18970 (2011).
[CrossRef]

Vassallo, C.

C. Vassallo, Optical Waveguide Concepts (Elsevier, Amsterdam, 1991).

Verrina, V.

L. De Sio, A. Cunningham, V. Verrina, C. M. Tone, R. Caputo, T. Bürgi, and C. Umeton, “Double active control of the plasmonic resonance of a gold nanoparticle array,” Nanoscale4, 7619–7623 (2012).
[CrossRef] [PubMed]

Vieceli, J.

R. D. Schaller, L. F. Lee, J. C. Johnson, L. H. Haber, R. J. Saykally, J. Vieceli, I. Benjamin, T.-Q. Nguyen, and B. J. Schwartz, “The nature of interchain excitations in conjugated polymers: spatially-varying interfacial solvatochromism of annealed MEH-PPV films studied by near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B106, 9496–9506 (2002).
[CrossRef]

Vyrsokinos, K.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: Theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron.48, 678–687 (2012).
[CrossRef]

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci. Rep.2, 652 (2012).
[CrossRef] [PubMed]

S. Papaioannou, K. Vyrsokinos, O. Tsilipakos, A. Pitilakis, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, S. I. Bozhevolnyi, A. Miliou, E. E. Kriezis, and N. Pleros, “A 320 Gb/s-throughput capable 2×2 silicon-plasmonic router architecture for optical interconnects,” J. Lightwave Technol.29, 3185–3195 (2011).
[CrossRef]

N. Pleros, E. E. Kriezis, and K. Vyrsokinos, “Optical interconnects using plasmonics and Si-photonics,” IEEE Photon. J.3, 296–301 (2011).
[CrossRef]

Wang, H.-T.

R. Li, C. Cheng, F.-F. Ren, J. Chen, Y.-X. Fan, J. Ding, and H.-T. Wang, “Hybridized surface plasmon polaritons at an interface between a metal and a uniaxial crystal,” Appl. Phys. Lett.92, 141115 (2008).
[CrossRef]

Weeber, J.-C.

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci. Rep.2, 652 (2012).
[CrossRef] [PubMed]

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: Theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron.48, 678–687 (2012).
[CrossRef]

S. Papaioannou, K. Vyrsokinos, O. Tsilipakos, A. Pitilakis, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, S. I. Bozhevolnyi, A. Miliou, E. E. Kriezis, and N. Pleros, “A 320 Gb/s-throughput capable 2×2 silicon-plasmonic router architecture for optical interconnects,” J. Lightwave Technol.29, 3185–3195 (2011).
[CrossRef]

Wu, S.-T.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys.97, 073501 (2005).
[CrossRef]

S.-T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys.84, 4462–4465 (1998).
[CrossRef]

Xu, J. M.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett.5, 1978–1981 (2005).
[CrossRef] [PubMed]

Yanik, A. A.

A. E. Cętin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Möstecaplıoğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett.101, 121113 (2012).
[CrossRef]

Yin, A.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett.5, 1978–1981 (2005).
[CrossRef] [PubMed]

Yioultsis, T. V.

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: Theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron.48, 678–687 (2012).
[CrossRef]

Zhao, Y.

Zografopoulos, D. C.

D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquid-crystal tunable waveguides for integrated plasmonic components,” Photon. Nanostruct.: Fundam. Appl.11, 73–84 (2013).
[CrossRef]

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip12, 3598–3610 (2012).
[CrossRef] [PubMed]

A. C. Tasolamprou, D. C. Zografopoulos, and E. E. Kriezis, “Liquid crystal-based dielectric loaded surface plasmon polariton optical switches,” J. Appl. Phys.110, 093102 (2011).
[CrossRef]

A. K. Pitilakis, D. C. Zografopoulos, and E. E. Kriezis, “In-line polarization controller based on liquid-crystal photonic crystal fibers,” J. Lightwave Technol.29, 2560–2569 (2011).
[CrossRef]

D. C. Zografopoulos and R. Beccherelli, “Plasmonic variable optical attenuator based on liquid-crystal tunable stripe waveguides,” Plasmonics (2013). DOI:.
[CrossRef]

Zöller, A.

S. Laux, N. Kaiser, A. Zöller, R. Götzelmann, H. Lauth, and H. Bernitzki, “Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation,” Thin Solid Films335, 1–5 (1998).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Opt. (1)

Appl. Optics (1)

T. Srivastava and A. Kumar, “Comparative study of directional couplers utilizing long-range surface plasmon polaritons,” Appl. Optics49, 2397–2402 (2010).
[CrossRef]

Appl. Phys. Lett. (6)

R. Li, C. Cheng, F.-F. Ren, J. Chen, Y.-X. Fan, J. Ding, and H.-T. Wang, “Hybridized surface plasmon polaritons at an interface between a metal and a uniaxial crystal,” Appl. Phys. Lett.92, 141115 (2008).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85, 5833–5835 (2004).
[CrossRef]

J. J. Ju, S. Park, M.-S. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “40 Gbits/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett.91, 171117 (2007).
[CrossRef]

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett.97, 091101 (2010).
[CrossRef]

A. E. Cętin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Möstecaplıoğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett.101, 121113 (2012).
[CrossRef]

J. F. Strömer, E. P. Raynes, and C. V. Brown, “Study of elastic constant ratios in nematic liquid crystals,” Appl. Phys. Lett.88, 051915 (2006).
[CrossRef]

Chin. Opt. Lett. (1)

Eur. Phys. J. (1)

J. Robertson, “High dielectric constant oxides,” Eur. Phys. J.28, 265–291 (2004).

IEEE J. Quantum Electron. (3)

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron.42, 1084–1090 (2006).
[CrossRef]

D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “A switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron.46, 762–768 (2010).
[CrossRef]

O. Tsilipakos, A. Pitilakis, T. V. Yioultsis, S. Papaioannou, K. Vyrsokinos, D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, T. Tekin, M. Baus, M. Karl, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, N. Pleros, and E. E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: Theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron.48, 678–687 (2012).
[CrossRef]

IEEE J. Sel. Top. Quant. Electron. (1)

A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quant. Electron.12, 1233–1241 (2006).
[CrossRef]

IEEE Photon. J. (1)

N. Pleros, E. E. Kriezis, and K. Vyrsokinos, “Optical interconnects using plasmonics and Si-photonics,” IEEE Photon. J.3, 296–301 (2011).
[CrossRef]

J. Appl. Phys. (3)

A. C. Tasolamprou, D. C. Zografopoulos, and E. E. Kriezis, “Liquid crystal-based dielectric loaded surface plasmon polariton optical switches,” J. Appl. Phys.110, 093102 (2011).
[CrossRef]

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys.97, 073501 (2005).
[CrossRef]

S.-T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys.84, 4462–4465 (1998).
[CrossRef]

J. Lightwave Technol. (5)

J. Mater. Chem (1)

L. De Sio, R. Caputo, U. Cataldi, and C. Umeton, “Broad band tuning of the plasmonic resonance of gold nanoparticles hosted in self-organized soft materials,” J. Mater. Chem21, 18967–18970 (2011).
[CrossRef]

J. Nanophotonics (1)

I. Abdulhalim, “Liquid crystal active nanophotonics and plasmonics: from science to devices,” J. Nanophotonics6, 061001 (2012).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

I. Abdulhalim, “Surface plasmon TE and TM waves at the anisotropic film-metal interface,” J. Opt. A: Pure Appl. Opt.11, 015002 (2009).
[CrossRef]

J. Phys. Chem. B (1)

R. D. Schaller, L. F. Lee, J. C. Johnson, L. H. Haber, R. J. Saykally, J. Vieceli, I. Benjamin, T.-Q. Nguyen, and B. J. Schwartz, “The nature of interchain excitations in conjugated polymers: spatially-varying interfacial solvatochromism of annealed MEH-PPV films studied by near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B106, 9496–9506 (2002).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

B. Bellini and R. Beccherelli, “Modelling, design and analysis of liquid crystal waveguides in preferentially etched silicon grooves,” J. Phys. D: Appl. Phys.42, 045111 (2009).
[CrossRef]

Lab Chip (1)

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip12, 3598–3610 (2012).
[CrossRef] [PubMed]

Nano Lett. (1)

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett.5, 1978–1981 (2005).
[CrossRef] [PubMed]

Nanoscale (1)

L. De Sio, A. Cunningham, V. Verrina, C. M. Tone, R. Caputo, T. Bürgi, and C. Umeton, “Double active control of the plasmonic resonance of a gold nanoparticle array,” Nanoscale4, 7619–7623 (2012).
[CrossRef] [PubMed]

Nat. Photonics (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4, 83–91 (2010).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Photon. Nanostruct.: Fundam. Appl. (1)

D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquid-crystal tunable waveguides for integrated plasmonic components,” Photon. Nanostruct.: Fundam. Appl.11, 73–84 (2013).
[CrossRef]

Phys. Today (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61, 44–50 (2008).
[CrossRef]

Sci. Rep. (1)

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci. Rep.2, 652 (2012).
[CrossRef] [PubMed]

Thin Solid Films (1)

S. Laux, N. Kaiser, A. Zöller, R. Götzelmann, H. Lauth, and H. Bernitzki, “Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation,” Thin Solid Films335, 1–5 (1998).
[CrossRef]

Other (10)

E. D. Palik, Handbook of optical constants of solids (Orlando, FL, Academic, 1985).

C. Vassallo, Optical Waveguide Concepts (Elsevier, Amsterdam, 1991).

Norland Products, Optical Adhesives, ( www.norlandprod.com ).

M. Wang, ed., Lithography (InTech, 2010).
[CrossRef]

CYCLOTENE, Dow Chemical, ( www.dow.com ).

COMSOL Multiphysics v4.3a, ( www.comsol.com ).

M. Stallein, C. Kolleck, and G. Mrozynski, “Improved analysis of the coupling of optical waves into multimode waveguides using overlap integrals,” in “PIERS 2005 Proceedings,” (Hangzhou, China, 2005), pp. 464–468.

I. W. Steward, The Static and Dynamic Continuum Theory of Liquid Crystals (Taylor & Francis, London, 2004).

E. Le Ru and P. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, Amsterdam, 2009).

D. C. Zografopoulos and R. Beccherelli, “Plasmonic variable optical attenuator based on liquid-crystal tunable stripe waveguides,” Plasmonics (2013). DOI:.
[CrossRef]

Supplementary Material (2)

» Media 1: MOV (1680 KB)     
» Media 2: MOV (1650 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Cross-sectional view of the proposed LC-based plasmonic directional coupler and definition of material and structural parameters. Alignments layers (not shown) promote strong anchoring of the LC molecules along the z–axis at the LC/PMMA and LC/polymer interfaces. (b) Definition of tilt and twist angles that describe the nematic director local orientation. (c) Three-dimensional view of the proposed coupler. The coupling length is equal to LC and the separation between the two metal stripes is dC.

Fig. 2
Fig. 2

(a) Tilt and (b) twist angle profile in the LC-layer for an applied voltage VLC = 2 V and a stripe separation equal to 3 and 7 μm. (c) Electric potential distribution plotted in the section between the silica substrates for dC = 3 μm.

Fig. 3
Fig. 3

Maximum tilt and twist angles in the voltage range between VLC = 1.5 and 2.5 V for a stripe separation from dC = 1 to 10 μm. Shorter values of dC lead to higher twist angles owing to stronger interaction of the electrostatic field with the grounded Au stripe and opposite ITO that define the bar port.

Fig. 4
Fig. 4

Modal effective indices for the two TM-polarized supermodes supported of the coupler structure in the rest state (VLC = 0) as a function of the separation dC, and corresponding coupling length LC, defined as LC = 0.5λ0n, where Δn = nsymnasym, for λ0 = 1.55 μm.

Fig. 5
Fig. 5

Electric field modal profiles for the (a) symmetric and (b) anti-symmetric coupler supermodes for dC = 7 μm and the (c) polymer and (d) LC-excitation modes.

Fig. 6
Fig. 6

Crosstalk evolution along a total propagation distance equal to 2LC for three excitation scenarios: launching the polymer-input LRSPP mode (Fig. 5(a)), the LC-input LRSPP mode (Fig. 5(b)), or a superposition of the two coupler supermodes (Fig. 5(c–d)). The separation dC is equal to 7 μm.

Fig. 7
Fig. 7

Crosstalk values and insertion losses for the cross-state of the coupler as a function of stripe separation dC for the two realistic excitation scenarios under study.

Fig. 8
Fig. 8

Crosstalk evolution for the two excitation scenarios at VLC = 0 and VLC = VC = 1.954 V, which correspond to operation in the CROSS and BAR state, respectively, for a propagation distance equal to the coupling length LC = 2.275 mm. Inset shows the insertion losses of the component for both operation states and excitation profiles.

Fig. 9
Fig. 9

Optical power propagation at 100 nm above the metal stripes for the (a) cross and (b) bar operation states calculated for the LC-excitation scenario, with parameters as in Fig. 8. The associated multimedia files monitor power coupling at the coupler’s cross-section for the (a) cross ( Media 1) and (b) bar ( Media 2) state.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

e o ( x , y , z ) = m γ m e m ( x , y ) exp ( j n eff ( m ) k 0 z ) ,
γ m = A e i × h m * z ^ d S A e m × h m * z ^ d S .

Metrics