Abstract

A novel in-line polarization-dependent microfiber interferometer (PD-MFI) is proposed and experimentally demonstrated, which is tapered from a commercial polarization-maintaining fiber. Different from conventional MFIs, the transmission spectra of such MFIs are highly polarization-dependent, due to the mode-sensitive birefringence. The experimental results agree well with the theoretical predictions. Moreover, exploiting the polarization-dependent property of PD-MFIs, we demonstrate a simple and flexible scheme of generating polarity-switchable ultra-wideband pulses in the optical domain. Doublet pulses with a central frequency of 6.28 GHz and a 10-dB bandwidth of 7.86 GHz are obtained. Hence, with the advantages of being fiberized, simple fabrication and robustness, these PD-MFIs can be attractive elements in optical signal processing, optical sensing, optical fiber communication, and microwave photonics.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  2. G. Brambilla, “Optical fibre nanowires and microwires: A review,” J. Opt.12(4), 043001 (2010).
    [CrossRef]
  3. L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun.285(23), 4641–4647 (2012).
    [CrossRef]
  4. J. Y. Lou, L. M. Tong, and Z. Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express13(6), 2135–2140 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-6-2135 .
    [CrossRef] [PubMed]
  5. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett.30(11), 1273–1275 (2005).
    [CrossRef] [PubMed]
  6. F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett.92(10), 101126 (2008).
    [CrossRef]
  7. Y. Zhang, B. Lin, S. C. Tjin, H. Zhang, G. Wang, P. Shum, and X. Zhang, “Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating,” Opt. Express18(25), 26345–26350 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26345 .
    [CrossRef] [PubMed]
  8. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St J Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express12(13), 2864–2869 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-13-2864 .
    [CrossRef] [PubMed]
  9. F. Le Kien and K. Hakuta, “Slowing down of a guided light field along a nanofiber in a cold atomic gas,” Phys. Rev. A79(1), 013818 (2009).
    [CrossRef]
  10. L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett.5(2), 259–262 (2005).
    [CrossRef] [PubMed]
  11. P. Zhao, J. Zhang, G. Wang, M. Jiang, P. P. Shum, and X. Zhang, “Longitudinal coupling effect in microfiber Bragg gratings,” Opt. Commun.285(23), 4655–4659 (2012).
    [CrossRef]
  12. P. Zhao, Y. Li, J. Zhang, L. Shi, and X. Zhang, “Nanohole induced microfiber Bragg gratings,” Opt. Express20(27), 28625–28630 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-27-28625 .
    [CrossRef] [PubMed]
  13. Y. Zhang, E. M. Xu, D. X. Huang, and X. L. Zhang, “All-optical format conversion from RZ to NRZ utilizing microfiber resonator,” IEEE Photon. Technol. Lett.21(17), 1202–1204 (2009).
    [CrossRef]
  14. Y. Zhang, X. L. Zhang, G. J. Chen, E. M. Xu, and D. X. Huang, “A microwave photonic notch flter using a microfiber ring resonator,” Chin. Phys. Lett.27(7), 074207 (2010).
    [CrossRef]
  15. Z. Yu, Z. Xin-Liang, C. Guo-Jie, X. En-Ming, and H. De-Xiu, “Photonic generation of millimeter-wave ultra-wideband signal using microfiber ring resonator,” Opt. Commun.284(7), 1803–1806 (2011).
    [CrossRef]
  16. F. Gonthier, J. Lapierre, C. Veilleux, S. Lacroix, and J. Bures, “Investigation of power oscillations along tapered monomode fibers,” Appl. Opt.26(3), 444–449 (1987).
    [CrossRef] [PubMed]
  17. Z. B. Tian, S. S. H. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett.33(10), 1105–1107 (2008).
    [CrossRef] [PubMed]
  18. Z. B. Tian and S. S. H. Yam, “In-line abrupt taper optical fiber Mach-Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett.21(3), 161–163 (2009).
    [CrossRef]
  19. G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G. A. Cardenas-Sevilla, and J. Villatoro, “Optical microfiber mode interferometer for temperature-independent refractometric sensing,” Opt. Lett.37(11), 1974–1976 (2012).
    [CrossRef] [PubMed]
  20. J. Li, L.-P. Sun, S. Gao, Z. Quan, Y.-L. Chang, Y. Ran, L. Jin, and B.-O. Guan, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett.36(18), 3593–3595 (2011).
    [CrossRef] [PubMed]
  21. K. Kieu and M. Mansuripur, “Tuning of fiber lasers by use of a single-mode biconic fiber taper,” Opt. Lett.31(16), 2435–2437 (2006).
    [CrossRef] [PubMed]
  22. Z. B. Tian, M. Nix, and S. S. H. Yam, “Laser beam shaping using a single-mode fiber abrupt taper,” Opt. Lett.34(3), 229–231 (2009).
    [CrossRef] [PubMed]
  23. D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag.41(7), 66–74 (2003).
    [CrossRef]
  24. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
    [CrossRef]
  25. J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol.25(11), 3219–3235 (2007).
    [CrossRef]
  26. J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, and P. Shum, “Ultrawideband monocycle generation using cross-phase modulation in a semiconductor optical amplifier,” Opt. Lett.32(10), 1223–1225 (2007).
    [CrossRef] [PubMed]
  27. Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett.31(21), 3083–3085 (2006).
    [CrossRef] [PubMed]
  28. B. Luo, J. Dong, Y. Yu, T. Yang, and X. Zhang, “Photonic generation of ultra-wideband doublet pulse using a semiconductor-optical-amplifier based polarization-diversified loop,” Opt. Lett.37(12), 2217–2219 (2012).
    [CrossRef] [PubMed]
  29. Y. Yu, J. J. Dong, X. Li, and X. L. Zhang, “UWB monocycle generation and bi-phase modulation based on Mach-Zehnder modulator and semiconductor optical amplifier,” IEEE Photon. J.4(2), 327–339 (2012).
    [CrossRef]
  30. T. Huang, J. Li, J. Sun, and L. R. Chen, “All-optical UWB signal generation and multicasting using a nonlinear optical loop mirror,” Opt. Express19(17), 15885–15890 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-17-15885 .
    [CrossRef] [PubMed]
  31. Y. Yue, H. Huang, L. Zhang, J. Wang, J.-Y. Yang, O. F. Yilmaz, J. S. Levy, M. Lipson, and A. E. Willner, “UWB monocycle pulse generation using two-photon absorption in a silicon waveguide,” Opt. Lett.37(4), 551–553 (2012).
    [CrossRef] [PubMed]
  32. Y. Park, M. H. Asghari, T.-J. Ahn, and J. Azaña, “Transform-limited picosecond pulse shaping based on temporal coherence synthesization,” Opt. Express15(15), 9584–9599 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-15-9584 .
    [CrossRef] [PubMed]
  33. M. Li, P. Dumais, R. Ashrafi, H. P. Bazargani, J.-B. Quelene, C. Callender, and J. Azana, “Ultrashort flat-top pulse generation using on-chip CMOS-compatible Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett.24(16), 1387–1389 (2012).
    [CrossRef]
  34. Y. M. Jung, G. Brambilla, and D. J. Richardson, “Polarization-maintaining optical microfiber,” Opt. Lett.35(12), 2034–2036 (2010).
    [CrossRef] [PubMed]

2012 (8)

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun.285(23), 4641–4647 (2012).
[CrossRef]

P. Zhao, J. Zhang, G. Wang, M. Jiang, P. P. Shum, and X. Zhang, “Longitudinal coupling effect in microfiber Bragg gratings,” Opt. Commun.285(23), 4655–4659 (2012).
[CrossRef]

Y. Yu, J. J. Dong, X. Li, and X. L. Zhang, “UWB monocycle generation and bi-phase modulation based on Mach-Zehnder modulator and semiconductor optical amplifier,” IEEE Photon. J.4(2), 327–339 (2012).
[CrossRef]

M. Li, P. Dumais, R. Ashrafi, H. P. Bazargani, J.-B. Quelene, C. Callender, and J. Azana, “Ultrashort flat-top pulse generation using on-chip CMOS-compatible Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett.24(16), 1387–1389 (2012).
[CrossRef]

Y. Yue, H. Huang, L. Zhang, J. Wang, J.-Y. Yang, O. F. Yilmaz, J. S. Levy, M. Lipson, and A. E. Willner, “UWB monocycle pulse generation using two-photon absorption in a silicon waveguide,” Opt. Lett.37(4), 551–553 (2012).
[CrossRef] [PubMed]

G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G. A. Cardenas-Sevilla, and J. Villatoro, “Optical microfiber mode interferometer for temperature-independent refractometric sensing,” Opt. Lett.37(11), 1974–1976 (2012).
[CrossRef] [PubMed]

B. Luo, J. Dong, Y. Yu, T. Yang, and X. Zhang, “Photonic generation of ultra-wideband doublet pulse using a semiconductor-optical-amplifier based polarization-diversified loop,” Opt. Lett.37(12), 2217–2219 (2012).
[CrossRef] [PubMed]

P. Zhao, Y. Li, J. Zhang, L. Shi, and X. Zhang, “Nanohole induced microfiber Bragg gratings,” Opt. Express20(27), 28625–28630 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-27-28625 .
[CrossRef] [PubMed]

2011 (3)

2010 (4)

2009 (4)

Z. B. Tian, M. Nix, and S. S. H. Yam, “Laser beam shaping using a single-mode fiber abrupt taper,” Opt. Lett.34(3), 229–231 (2009).
[CrossRef] [PubMed]

Z. B. Tian and S. S. H. Yam, “In-line abrupt taper optical fiber Mach-Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett.21(3), 161–163 (2009).
[CrossRef]

F. Le Kien and K. Hakuta, “Slowing down of a guided light field along a nanofiber in a cold atomic gas,” Phys. Rev. A79(1), 013818 (2009).
[CrossRef]

Y. Zhang, E. M. Xu, D. X. Huang, and X. L. Zhang, “All-optical format conversion from RZ to NRZ utilizing microfiber resonator,” IEEE Photon. Technol. Lett.21(17), 1202–1204 (2009).
[CrossRef]

2008 (2)

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett.92(10), 101126 (2008).
[CrossRef]

Z. B. Tian, S. S. H. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett.33(10), 1105–1107 (2008).
[CrossRef] [PubMed]

2007 (4)

2006 (2)

2005 (3)

2004 (1)

2003 (2)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag.41(7), 66–74 (2003).
[CrossRef]

1987 (1)

Ahn, T.-J.

Asghari, M. H.

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Ashrafi, R.

M. Li, P. Dumais, R. Ashrafi, H. P. Bazargani, J.-B. Quelene, C. Callender, and J. Azana, “Ultrashort flat-top pulse generation using on-chip CMOS-compatible Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett.24(16), 1387–1389 (2012).
[CrossRef]

Azana, J.

M. Li, P. Dumais, R. Ashrafi, H. P. Bazargani, J.-B. Quelene, C. Callender, and J. Azana, “Ultrashort flat-top pulse generation using on-chip CMOS-compatible Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett.24(16), 1387–1389 (2012).
[CrossRef]

Azaña, J.

Bazargani, H. P.

M. Li, P. Dumais, R. Ashrafi, H. P. Bazargani, J.-B. Quelene, C. Callender, and J. Azana, “Ultrashort flat-top pulse generation using on-chip CMOS-compatible Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett.24(16), 1387–1389 (2012).
[CrossRef]

Birks, T. A.

Blais, S.

Brambilla, G.

Y. M. Jung, G. Brambilla, and D. J. Richardson, “Polarization-maintaining optical microfiber,” Opt. Lett.35(12), 2034–2036 (2010).
[CrossRef] [PubMed]

G. Brambilla, “Optical fibre nanowires and microwires: A review,” J. Opt.12(4), 043001 (2010).
[CrossRef]

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett.92(10), 101126 (2008).
[CrossRef]

Bures, J.

Callender, C.

M. Li, P. Dumais, R. Ashrafi, H. P. Bazargani, J.-B. Quelene, C. Callender, and J. Azana, “Ultrashort flat-top pulse generation using on-chip CMOS-compatible Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett.24(16), 1387–1389 (2012).
[CrossRef]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

Cardenas-Sevilla, G. A.

Chang, Y.-L.

Chen, G. J.

Y. Zhang, X. L. Zhang, G. J. Chen, E. M. Xu, and D. X. Huang, “A microwave photonic notch flter using a microfiber ring resonator,” Chin. Phys. Lett.27(7), 074207 (2010).
[CrossRef]

Chen, L. R.

Chen, X. W.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett.5(2), 259–262 (2005).
[CrossRef] [PubMed]

De-Xiu, H.

Z. Yu, Z. Xin-Liang, C. Guo-Jie, X. En-Ming, and H. De-Xiu, “Photonic generation of millimeter-wave ultra-wideband signal using microfiber ring resonator,” Opt. Commun.284(7), 1803–1806 (2011).
[CrossRef]

Dong, J.

Dong, J. J.

Y. Yu, J. J. Dong, X. Li, and X. L. Zhang, “UWB monocycle generation and bi-phase modulation based on Mach-Zehnder modulator and semiconductor optical amplifier,” IEEE Photon. J.4(2), 327–339 (2012).
[CrossRef]

Dumais, P.

M. Li, P. Dumais, R. Ashrafi, H. P. Bazargani, J.-B. Quelene, C. Callender, and J. Azana, “Ultrashort flat-top pulse generation using on-chip CMOS-compatible Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett.24(16), 1387–1389 (2012).
[CrossRef]

En-Ming, X.

Z. Yu, Z. Xin-Liang, C. Guo-Jie, X. En-Ming, and H. De-Xiu, “Photonic generation of millimeter-wave ultra-wideband signal using microfiber ring resonator,” Opt. Commun.284(7), 1803–1806 (2011).
[CrossRef]

Fu, S.

Gao, S.

Gattass, R. R.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett.5(2), 259–262 (2005).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Gonthier, F.

Guan, B.-O.

Guo, X.

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun.285(23), 4641–4647 (2012).
[CrossRef]

Guo-Jie, C.

Z. Yu, Z. Xin-Liang, C. Guo-Jie, X. En-Ming, and H. De-Xiu, “Photonic generation of millimeter-wave ultra-wideband signal using microfiber ring resonator,” Opt. Commun.284(7), 1803–1806 (2011).
[CrossRef]

Hakuta, K.

F. Le Kien and K. Hakuta, “Slowing down of a guided light field along a nanofiber in a cold atomic gas,” Phys. Rev. A79(1), 013818 (2009).
[CrossRef]

He, S. L.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett.5(2), 259–262 (2005).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Hirt, W.

D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag.41(7), 66–74 (2003).
[CrossRef]

Huang, D.

Huang, D. X.

Y. Zhang, X. L. Zhang, G. J. Chen, E. M. Xu, and D. X. Huang, “A microwave photonic notch flter using a microfiber ring resonator,” Chin. Phys. Lett.27(7), 074207 (2010).
[CrossRef]

Y. Zhang, E. M. Xu, D. X. Huang, and X. L. Zhang, “All-optical format conversion from RZ to NRZ utilizing microfiber resonator,” IEEE Photon. Technol. Lett.21(17), 1202–1204 (2009).
[CrossRef]

Huang, H.

Huang, T.

Jiang, M.

P. Zhao, J. Zhang, G. Wang, M. Jiang, P. P. Shum, and X. Zhang, “Longitudinal coupling effect in microfiber Bragg gratings,” Opt. Commun.285(23), 4655–4659 (2012).
[CrossRef]

Jin, L.

Jung, Y. M.

Kieu, K.

Lacroix, S.

Lapierre, J.

Le Kien, F.

F. Le Kien and K. Hakuta, “Slowing down of a guided light field along a nanofiber in a cold atomic gas,” Phys. Rev. A79(1), 013818 (2009).
[CrossRef]

Leon-Saval, S. G.

Levy, J. S.

Li, J.

Li, M.

M. Li, P. Dumais, R. Ashrafi, H. P. Bazargani, J.-B. Quelene, C. Callender, and J. Azana, “Ultrashort flat-top pulse generation using on-chip CMOS-compatible Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett.24(16), 1387–1389 (2012).
[CrossRef]

Li, X.

Y. Yu, J. J. Dong, X. Li, and X. L. Zhang, “UWB monocycle generation and bi-phase modulation based on Mach-Zehnder modulator and semiconductor optical amplifier,” IEEE Photon. J.4(2), 327–339 (2012).
[CrossRef]

Li, Y.

Lin, B.

Lipson, M.

Liu, L.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett.5(2), 259–262 (2005).
[CrossRef] [PubMed]

Loock, H. P.

Lou, J.

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun.285(23), 4641–4647 (2012).
[CrossRef]

Lou, J. Y.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett.5(2), 259–262 (2005).
[CrossRef] [PubMed]

J. Y. Lou, L. M. Tong, and Z. Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express13(6), 2135–2140 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-6-2135 .
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Luo, B.

Mansuripur, M.

Martinez-Rios, A.

Mason, M. W.

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett.5(2), 259–262 (2005).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Monzon-Hernandez, D.

Nix, M.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

Park, Y.

Peyghambarian, N.

Polynkin, A.

Polynkin, P.

Porcino, D.

D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag.41(7), 66–74 (2003).
[CrossRef]

Quan, Z.

Quelene, J.-B.

M. Li, P. Dumais, R. Ashrafi, H. P. Bazargani, J.-B. Quelene, C. Callender, and J. Azana, “Ultrashort flat-top pulse generation using on-chip CMOS-compatible Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett.24(16), 1387–1389 (2012).
[CrossRef]

Ran, Y.

Richardson, D. J.

Salceda-Delgado, G.

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Shi, L.

Shum, P.

Shum, P. P.

P. Zhao, J. Zhang, G. Wang, M. Jiang, P. P. Shum, and X. Zhang, “Longitudinal coupling effect in microfiber Bragg gratings,” Opt. Commun.285(23), 4655–4659 (2012).
[CrossRef]

St J Russell, P.

Sun, J.

Sun, L.-P.

Tian, Z. B.

Tjin, S. C.

Tong, L.

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun.285(23), 4641–4647 (2012).
[CrossRef]

Tong, L. M.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett.5(2), 259–262 (2005).
[CrossRef] [PubMed]

J. Y. Lou, L. M. Tong, and Z. Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express13(6), 2135–2140 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-6-2135 .
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Veilleux, C.

Villatoro, J.

Wadsworth, W. J.

Wang, G.

Wang, J.

Wang, Q.

Willner, A. E.

Xin-Liang, Z.

Z. Yu, Z. Xin-Liang, C. Guo-Jie, X. En-Ming, and H. De-Xiu, “Photonic generation of millimeter-wave ultra-wideband signal using microfiber ring resonator,” Opt. Commun.284(7), 1803–1806 (2011).
[CrossRef]

Xu, E. M.

Y. Zhang, X. L. Zhang, G. J. Chen, E. M. Xu, and D. X. Huang, “A microwave photonic notch flter using a microfiber ring resonator,” Chin. Phys. Lett.27(7), 074207 (2010).
[CrossRef]

Y. Zhang, E. M. Xu, D. X. Huang, and X. L. Zhang, “All-optical format conversion from RZ to NRZ utilizing microfiber resonator,” IEEE Photon. Technol. Lett.21(17), 1202–1204 (2009).
[CrossRef]

Xu, F.

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett.92(10), 101126 (2008).
[CrossRef]

Xu, J.

Yam, S. S. H.

Yang, J.-Y.

Yang, T.

Yao, J.

Ye, Z. Z.

Yilmaz, O. F.

Yu, Y.

B. Luo, J. Dong, Y. Yu, T. Yang, and X. Zhang, “Photonic generation of ultra-wideband doublet pulse using a semiconductor-optical-amplifier based polarization-diversified loop,” Opt. Lett.37(12), 2217–2219 (2012).
[CrossRef] [PubMed]

Y. Yu, J. J. Dong, X. Li, and X. L. Zhang, “UWB monocycle generation and bi-phase modulation based on Mach-Zehnder modulator and semiconductor optical amplifier,” IEEE Photon. J.4(2), 327–339 (2012).
[CrossRef]

Yu, Z.

Z. Yu, Z. Xin-Liang, C. Guo-Jie, X. En-Ming, and H. De-Xiu, “Photonic generation of millimeter-wave ultra-wideband signal using microfiber ring resonator,” Opt. Commun.284(7), 1803–1806 (2011).
[CrossRef]

Yue, Y.

Zeng, F.

Zhang, H.

Zhang, J.

P. Zhao, Y. Li, J. Zhang, L. Shi, and X. Zhang, “Nanohole induced microfiber Bragg gratings,” Opt. Express20(27), 28625–28630 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-27-28625 .
[CrossRef] [PubMed]

P. Zhao, J. Zhang, G. Wang, M. Jiang, P. P. Shum, and X. Zhang, “Longitudinal coupling effect in microfiber Bragg gratings,” Opt. Commun.285(23), 4655–4659 (2012).
[CrossRef]

Zhang, L.

Zhang, X.

Zhang, X. L.

Y. Yu, J. J. Dong, X. Li, and X. L. Zhang, “UWB monocycle generation and bi-phase modulation based on Mach-Zehnder modulator and semiconductor optical amplifier,” IEEE Photon. J.4(2), 327–339 (2012).
[CrossRef]

Y. Zhang, X. L. Zhang, G. J. Chen, E. M. Xu, and D. X. Huang, “A microwave photonic notch flter using a microfiber ring resonator,” Chin. Phys. Lett.27(7), 074207 (2010).
[CrossRef]

Y. Zhang, E. M. Xu, D. X. Huang, and X. L. Zhang, “All-optical format conversion from RZ to NRZ utilizing microfiber resonator,” IEEE Photon. Technol. Lett.21(17), 1202–1204 (2009).
[CrossRef]

Zhang, Y.

Y. Zhang, X. L. Zhang, G. J. Chen, E. M. Xu, and D. X. Huang, “A microwave photonic notch flter using a microfiber ring resonator,” Chin. Phys. Lett.27(7), 074207 (2010).
[CrossRef]

Y. Zhang, B. Lin, S. C. Tjin, H. Zhang, G. Wang, P. Shum, and X. Zhang, “Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating,” Opt. Express18(25), 26345–26350 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26345 .
[CrossRef] [PubMed]

Y. Zhang, E. M. Xu, D. X. Huang, and X. L. Zhang, “All-optical format conversion from RZ to NRZ utilizing microfiber resonator,” IEEE Photon. Technol. Lett.21(17), 1202–1204 (2009).
[CrossRef]

Zhao, P.

P. Zhao, Y. Li, J. Zhang, L. Shi, and X. Zhang, “Nanohole induced microfiber Bragg gratings,” Opt. Express20(27), 28625–28630 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-27-28625 .
[CrossRef] [PubMed]

P. Zhao, J. Zhang, G. Wang, M. Jiang, P. P. Shum, and X. Zhang, “Longitudinal coupling effect in microfiber Bragg gratings,” Opt. Commun.285(23), 4655–4659 (2012).
[CrossRef]

Zi, F.

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun.285(23), 4641–4647 (2012).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett.92(10), 101126 (2008).
[CrossRef]

Chin. Phys. Lett. (1)

Y. Zhang, X. L. Zhang, G. J. Chen, E. M. Xu, and D. X. Huang, “A microwave photonic notch flter using a microfiber ring resonator,” Chin. Phys. Lett.27(7), 074207 (2010).
[CrossRef]

IEEE Commun. Mag. (1)

D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag.41(7), 66–74 (2003).
[CrossRef]

IEEE Photon. J. (1)

Y. Yu, J. J. Dong, X. Li, and X. L. Zhang, “UWB monocycle generation and bi-phase modulation based on Mach-Zehnder modulator and semiconductor optical amplifier,” IEEE Photon. J.4(2), 327–339 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

M. Li, P. Dumais, R. Ashrafi, H. P. Bazargani, J.-B. Quelene, C. Callender, and J. Azana, “Ultrashort flat-top pulse generation using on-chip CMOS-compatible Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett.24(16), 1387–1389 (2012).
[CrossRef]

Z. B. Tian and S. S. H. Yam, “In-line abrupt taper optical fiber Mach-Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett.21(3), 161–163 (2009).
[CrossRef]

Y. Zhang, E. M. Xu, D. X. Huang, and X. L. Zhang, “All-optical format conversion from RZ to NRZ utilizing microfiber resonator,” IEEE Photon. Technol. Lett.21(17), 1202–1204 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. (1)

G. Brambilla, “Optical fibre nanowires and microwires: A review,” J. Opt.12(4), 043001 (2010).
[CrossRef]

Nano Lett. (1)

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett.5(2), 259–262 (2005).
[CrossRef] [PubMed]

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

Nature (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Commun. (3)

Z. Yu, Z. Xin-Liang, C. Guo-Jie, X. En-Ming, and H. De-Xiu, “Photonic generation of millimeter-wave ultra-wideband signal using microfiber ring resonator,” Opt. Commun.284(7), 1803–1806 (2011).
[CrossRef]

P. Zhao, J. Zhang, G. Wang, M. Jiang, P. P. Shum, and X. Zhang, “Longitudinal coupling effect in microfiber Bragg gratings,” Opt. Commun.285(23), 4655–4659 (2012).
[CrossRef]

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun.285(23), 4641–4647 (2012).
[CrossRef]

Opt. Express (6)

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St J Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express12(13), 2864–2869 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-13-2864 .
[CrossRef] [PubMed]

J. Y. Lou, L. M. Tong, and Z. Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express13(6), 2135–2140 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-6-2135 .
[CrossRef] [PubMed]

Y. Zhang, B. Lin, S. C. Tjin, H. Zhang, G. Wang, P. Shum, and X. Zhang, “Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating,” Opt. Express18(25), 26345–26350 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26345 .
[CrossRef] [PubMed]

T. Huang, J. Li, J. Sun, and L. R. Chen, “All-optical UWB signal generation and multicasting using a nonlinear optical loop mirror,” Opt. Express19(17), 15885–15890 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-17-15885 .
[CrossRef] [PubMed]

Y. Park, M. H. Asghari, T.-J. Ahn, and J. Azaña, “Transform-limited picosecond pulse shaping based on temporal coherence synthesization,” Opt. Express15(15), 9584–9599 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-15-9584 .
[CrossRef] [PubMed]

P. Zhao, Y. Li, J. Zhang, L. Shi, and X. Zhang, “Nanohole induced microfiber Bragg gratings,” Opt. Express20(27), 28625–28630 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-27-28625 .
[CrossRef] [PubMed]

Opt. Lett. (11)

J. Li, L.-P. Sun, S. Gao, Z. Quan, Y.-L. Chang, Y. Ran, L. Jin, and B.-O. Guan, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett.36(18), 3593–3595 (2011).
[CrossRef] [PubMed]

Y. Yue, H. Huang, L. Zhang, J. Wang, J.-Y. Yang, O. F. Yilmaz, J. S. Levy, M. Lipson, and A. E. Willner, “UWB monocycle pulse generation using two-photon absorption in a silicon waveguide,” Opt. Lett.37(4), 551–553 (2012).
[CrossRef] [PubMed]

G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G. A. Cardenas-Sevilla, and J. Villatoro, “Optical microfiber mode interferometer for temperature-independent refractometric sensing,” Opt. Lett.37(11), 1974–1976 (2012).
[CrossRef] [PubMed]

B. Luo, J. Dong, Y. Yu, T. Yang, and X. Zhang, “Photonic generation of ultra-wideband doublet pulse using a semiconductor-optical-amplifier based polarization-diversified loop,” Opt. Lett.37(12), 2217–2219 (2012).
[CrossRef] [PubMed]

Z. B. Tian, S. S. H. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett.33(10), 1105–1107 (2008).
[CrossRef] [PubMed]

Z. B. Tian, M. Nix, and S. S. H. Yam, “Laser beam shaping using a single-mode fiber abrupt taper,” Opt. Lett.34(3), 229–231 (2009).
[CrossRef] [PubMed]

Y. M. Jung, G. Brambilla, and D. J. Richardson, “Polarization-maintaining optical microfiber,” Opt. Lett.35(12), 2034–2036 (2010).
[CrossRef] [PubMed]

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett.30(11), 1273–1275 (2005).
[CrossRef] [PubMed]

K. Kieu and M. Mansuripur, “Tuning of fiber lasers by use of a single-mode biconic fiber taper,” Opt. Lett.31(16), 2435–2437 (2006).
[CrossRef] [PubMed]

Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett.31(21), 3083–3085 (2006).
[CrossRef] [PubMed]

J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, and P. Shum, “Ultrawideband monocycle generation using cross-phase modulation in a semiconductor optical amplifier,” Opt. Lett.32(10), 1223–1225 (2007).
[CrossRef] [PubMed]

Phys. Rev. A (1)

F. Le Kien and K. Hakuta, “Slowing down of a guided light field along a nanofiber in a cold atomic gas,” Phys. Rev. A79(1), 013818 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical microscope images of (a) the cross section of a conventional 125μm PMF and (b) a transition of a tapered PMF. The inset is a micrograph of the microfiber fabricated with a diameter of 5.8 μm.

Fig. 2
Fig. 2

Measured normalized transmission spectra of an as-fabricated PD-MFI. The blue and green lines are spectral curves for x- and y-polarization, respectively. The PD-MFI length was 65 mm and the diameter was 5μm. The intensity was normalized by the power at the highest peak of the transmission spectral curve.

Fig. 3
Fig. 3

(a) Geometrical diagram of microfibers drawn from PMFs. (b-i) Simulated intensity distribution of low-order guided modes (HE11, TE01, TM01 and HE12) in a resulted microfiber. Simulated parameters: R = 2.5 μm, r = 1.45 μm and D = 2.2 μm. The polarization states of modes in (b-e) and (f-i) are in x- and y-axes, respectively. neff is the effective refractive index of modes.

Fig. 4
Fig. 4

Simulated transmission spectra of PD-MFI. The blue and red lines correspond to the responses under the injection of x- and y-polarized lightwaves, respectively.

Fig. 5
Fig. 5

(a) Principle of UWB pulse generation based on a PD-MFI. λ0 is the carrier wavelength. φ0 is the phase of input phase-modulated signal. The green arrow denotes the polarization state of lightwave. Ix1 and Iy1 are the signal intensity on x- and y-polarizations. τ is the relative delay between the two signals. Iout is the intensity of the output signal. (b) Detuning between the PD-MFI and the carrier wavelength. The blue solid and the green dotted lines denote the PD-MFI transmission spectra for x- and y-polarizations, respectively.

Fig. 6
Fig. 6

Simulation results. (a) Input optical Gaussian phase-modulated signals. (b) Temporal waveforms and (c) electrical spectra of the output pulses with various τ. Red dotted line: the FCC spectrum mask.

Fig. 7
Fig. 7

(a) Experimental setup of the UWB pulse generation. LD, laser diode. BPG, bit pattern generator. MA, microwave amplifier. PM, phase modulator. PC, polarization-controller. PBS, polarization-beam splitter. ODL, optical delay-line. PBC, polarization-beam coupler. EDFA, Erbium-doped fiber amplifier. ATT, tunable attenuator. OC, optical coupler. DCA, digital communications analyzer. PD, photodetector. ESA, electrical spectrum analyzer. (b) Measured transmission spectra of the PD-MFI. The blue and green lines represent the spectral curves for x- and y-polarizations, respectively.

Fig. 8
Fig. 8

Experimental results. (a-d) Temporal waveforms: negative and positive monocycles, positive and negative doublets, respectively. (e-f) corresponding electrical spectra of UWB pulses. The black dot-dashed line is the fitted envelope and the red-dotted line represents the FCC spectrum mask.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E out,x = E 1x e j φ 1x + E 2x e j φ 2x
E out,y = E 1y e j φ 1y + E 2y e j φ 2y
Δ n x Δ n y = B 1 B 2

Metrics