Abstract

Optical fiber amplifiers based on PbS/CdS semiconductor quantum dots (QDs) modified by an amphiphilic polymer were demonstrated. Well-defined QDs and an amphiphilic copolymer were first prepared and the amphiphilic copolymer was then used to disperse the QDs into silica sol to allow uniform and reproducible incorporation of QDs into the silica coating of the optical fibers. QD-doped silica sol was deposited on the fusion tapered fiber coupler via dip-coating. A 1550 nm semiconductor light emitting diode as the signal source and a 980 nm laser diode as the pump source were injected into the fiber coupler simultaneously. Through evanescent wave excitation, a signal gain as high as 8 dB was obtained within the wavelength range between 1450 and 1650 nm. In addition, the optical fiber amplifiers based on PbS/CdS QDs showed enhanced thermal stability when compared to amplifiers based on PbS QDs.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices,” IEEE J. Quantum Electron.37(8), 1059–1065 (2001).
    [CrossRef]
  2. V. Sukhovatkin, S. Hinds, L. Brzozowski, and E. H. Sargent, “Colloidal quantum-dot photodetectors exploiting multiexciton generation,” Science324(5934), 1542–1544 (2009).
    [CrossRef] [PubMed]
  3. I. Kang and F. W. Wise, “Electronic structure and optical properties of PbS and PbSe quantum dots,” J. Opt. Soc. Am.14(7), 1632–1646 (1997).
    [CrossRef]
  4. K. Wundke, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 μm in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
    [CrossRef]
  5. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
    [CrossRef] [PubMed]
  6. S. Sapra, J. Nanda, J. M. Pietryga, J. A. Hollingsworth, and D. D. Sarma, “Unraveling internal structures of highly luminescent PbSe nanocrystallites using variable-energy synchrotron radiation photoelectron spectroscopy,” J. Phys. Chem. B110(31), 15244–15250 (2006).
    [CrossRef] [PubMed]
  7. A. Lobo, T. Möller, M. Nagel, H. Borchert, S. G. Hickey, and H. Weller, “Photoelectron spectroscopic investigations of chemical bonding in organically stabilized PbS nanocrystals,” J. Phys. Chem. B109(37), 17422–17428 (2005).
    [CrossRef] [PubMed]
  8. X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc.119(30), 7019–7029 (1997).
    [CrossRef]
  9. A. Aharoni, T. Mokari, I. Popov, and U. Banin, “Synthesis of InAs/CdSe/ZnSe core/shell1/shell2 structures with bright and stable near-infrared fluorescence,” J. Am. Chem. Soc.128(1), 257–264 (2006).
    [CrossRef] [PubMed]
  10. A. M. Smith and S. M. Nie, “Semiconductor nanocrystals: structure, properties, and band gap engineering,” Acc. Chem. Res.43(2), 190–200 (2010).
    [CrossRef] [PubMed]
  11. B. O. Dabbousi, J. R. Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B101(46), 9463–9475 (1997).
    [CrossRef]
  12. P. Bhattacharya and Z. Mi, “Quantum-dot optoelectronic devices,” Proc. IEEE95(9), 1723–1740 (2007).
    [CrossRef]
  13. P. R. Watekar, A. Lin, S. Ju, and W. T. Han, “1537 nm emission upon 980 nm pumping in PbSe quantum dots doped optical fiber,” OFC, OWO1 (2008).
  14. S. Kawanishi, T. Komukai, M. Ohmori, and H. Sakaki, “Photoluminescence of semiconductor nanocrystal quantum dots at 1550 nm wavelength in the core of photonic bandgap fiber,” CLEO, CTuII4 (2007).
  15. A. Hreibi, F. Gérôme, J. L. Auguste, Y. Zhang, W. W. Yu, and J. M. Blondy, “Semiconductor-doped liquid-core optical fiber,” Opt. Lett.36(9), 1695–1697 (2011).
    [CrossRef] [PubMed]
  16. F. Pang, X. Sun, H. Guo, J. Yan, J. Wang, X. Zeng, Z. Chen, and T. Wang, “A PbS quantum dots fiber amplifier excited by evanescent wave,” Opt. Express18(13), 14024–14030 (2010).
    [CrossRef] [PubMed]
  17. H. Zhao, M. Chaker, and D. Ma, “Effect of CdS shell thickness on the optical properties of water-soluble, amphiphilic polymer-encapsulated PbS/CdS core/shell quantum dots,” J. Mater. Chem.21(43), 17483–17491 (2011).
    [CrossRef]
  18. H. Zhao, D. Wang, T. Zhang, M. Chaker, and D. Ma, “Two-step synthesis of high-quality water-soluble near-infrared emitting quantum dots via amphiphilic polymers,” Chem. Commun. (Camb.)46(29), 5301–5303 (2010).
    [CrossRef] [PubMed]
  19. V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science287(5455), 1011–1013 (2000).
    [CrossRef] [PubMed]
  20. R. D. Schaller, V. M. Agranovich, and V. I. Klimov, “High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states,” Nat. Phys.1(3), 189–194 (2005).
    [CrossRef]

2011

H. Zhao, M. Chaker, and D. Ma, “Effect of CdS shell thickness on the optical properties of water-soluble, amphiphilic polymer-encapsulated PbS/CdS core/shell quantum dots,” J. Mater. Chem.21(43), 17483–17491 (2011).
[CrossRef]

A. Hreibi, F. Gérôme, J. L. Auguste, Y. Zhang, W. W. Yu, and J. M. Blondy, “Semiconductor-doped liquid-core optical fiber,” Opt. Lett.36(9), 1695–1697 (2011).
[CrossRef] [PubMed]

2010

F. Pang, X. Sun, H. Guo, J. Yan, J. Wang, X. Zeng, Z. Chen, and T. Wang, “A PbS quantum dots fiber amplifier excited by evanescent wave,” Opt. Express18(13), 14024–14030 (2010).
[CrossRef] [PubMed]

H. Zhao, D. Wang, T. Zhang, M. Chaker, and D. Ma, “Two-step synthesis of high-quality water-soluble near-infrared emitting quantum dots via amphiphilic polymers,” Chem. Commun. (Camb.)46(29), 5301–5303 (2010).
[CrossRef] [PubMed]

A. M. Smith and S. M. Nie, “Semiconductor nanocrystals: structure, properties, and band gap engineering,” Acc. Chem. Res.43(2), 190–200 (2010).
[CrossRef] [PubMed]

2009

V. Sukhovatkin, S. Hinds, L. Brzozowski, and E. H. Sargent, “Colloidal quantum-dot photodetectors exploiting multiexciton generation,” Science324(5934), 1542–1544 (2009).
[CrossRef] [PubMed]

2007

P. Bhattacharya and Z. Mi, “Quantum-dot optoelectronic devices,” Proc. IEEE95(9), 1723–1740 (2007).
[CrossRef]

2006

S. Sapra, J. Nanda, J. M. Pietryga, J. A. Hollingsworth, and D. D. Sarma, “Unraveling internal structures of highly luminescent PbSe nanocrystallites using variable-energy synchrotron radiation photoelectron spectroscopy,” J. Phys. Chem. B110(31), 15244–15250 (2006).
[CrossRef] [PubMed]

A. Aharoni, T. Mokari, I. Popov, and U. Banin, “Synthesis of InAs/CdSe/ZnSe core/shell1/shell2 structures with bright and stable near-infrared fluorescence,” J. Am. Chem. Soc.128(1), 257–264 (2006).
[CrossRef] [PubMed]

2005

A. Lobo, T. Möller, M. Nagel, H. Borchert, S. G. Hickey, and H. Weller, “Photoelectron spectroscopic investigations of chemical bonding in organically stabilized PbS nanocrystals,” J. Phys. Chem. B109(37), 17422–17428 (2005).
[CrossRef] [PubMed]

R. D. Schaller, V. M. Agranovich, and V. I. Klimov, “High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states,” Nat. Phys.1(3), 189–194 (2005).
[CrossRef]

2001

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices,” IEEE J. Quantum Electron.37(8), 1059–1065 (2001).
[CrossRef]

2000

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

1999

K. Wundke, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 μm in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
[CrossRef]

1997

I. Kang and F. W. Wise, “Electronic structure and optical properties of PbS and PbSe quantum dots,” J. Opt. Soc. Am.14(7), 1632–1646 (1997).
[CrossRef]

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc.119(30), 7019–7029 (1997).
[CrossRef]

B. O. Dabbousi, J. R. Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B101(46), 9463–9475 (1997).
[CrossRef]

Agranovich, V. M.

R. D. Schaller, V. M. Agranovich, and V. I. Klimov, “High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states,” Nat. Phys.1(3), 189–194 (2005).
[CrossRef]

Aharoni, A.

A. Aharoni, T. Mokari, I. Popov, and U. Banin, “Synthesis of InAs/CdSe/ZnSe core/shell1/shell2 structures with bright and stable near-infrared fluorescence,” J. Am. Chem. Soc.128(1), 257–264 (2006).
[CrossRef] [PubMed]

Akiyama, T.

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices,” IEEE J. Quantum Electron.37(8), 1059–1065 (2001).
[CrossRef]

Alivisatos, A. P.

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc.119(30), 7019–7029 (1997).
[CrossRef]

Auguste, J. L.

Auxier, J. M.

K. Wundke, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 μm in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
[CrossRef]

Banin, U.

A. Aharoni, T. Mokari, I. Popov, and U. Banin, “Synthesis of InAs/CdSe/ZnSe core/shell1/shell2 structures with bright and stable near-infrared fluorescence,” J. Am. Chem. Soc.128(1), 257–264 (2006).
[CrossRef] [PubMed]

Bawendi, M. G.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

B. O. Dabbousi, J. R. Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B101(46), 9463–9475 (1997).
[CrossRef]

Bhattacharya, P.

P. Bhattacharya and Z. Mi, “Quantum-dot optoelectronic devices,” Proc. IEEE95(9), 1723–1740 (2007).
[CrossRef]

Blondy, J. M.

Borchert, H.

A. Lobo, T. Möller, M. Nagel, H. Borchert, S. G. Hickey, and H. Weller, “Photoelectron spectroscopic investigations of chemical bonding in organically stabilized PbS nanocrystals,” J. Phys. Chem. B109(37), 17422–17428 (2005).
[CrossRef] [PubMed]

Borrelli, N. F.

K. Wundke, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 μm in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
[CrossRef]

Brzozowski, L.

V. Sukhovatkin, S. Hinds, L. Brzozowski, and E. H. Sargent, “Colloidal quantum-dot photodetectors exploiting multiexciton generation,” Science324(5934), 1542–1544 (2009).
[CrossRef] [PubMed]

Chaker, M.

H. Zhao, M. Chaker, and D. Ma, “Effect of CdS shell thickness on the optical properties of water-soluble, amphiphilic polymer-encapsulated PbS/CdS core/shell quantum dots,” J. Mater. Chem.21(43), 17483–17491 (2011).
[CrossRef]

H. Zhao, D. Wang, T. Zhang, M. Chaker, and D. Ma, “Two-step synthesis of high-quality water-soluble near-infrared emitting quantum dots via amphiphilic polymers,” Chem. Commun. (Camb.)46(29), 5301–5303 (2010).
[CrossRef] [PubMed]

Chen, Z.

Dabbousi, B. O.

B. O. Dabbousi, J. R. Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B101(46), 9463–9475 (1997).
[CrossRef]

Eisler, H. J.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Gérôme, F.

Guo, H.

Heine, J. R.

B. O. Dabbousi, J. R. Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B101(46), 9463–9475 (1997).
[CrossRef]

Hickey, S. G.

A. Lobo, T. Möller, M. Nagel, H. Borchert, S. G. Hickey, and H. Weller, “Photoelectron spectroscopic investigations of chemical bonding in organically stabilized PbS nanocrystals,” J. Phys. Chem. B109(37), 17422–17428 (2005).
[CrossRef] [PubMed]

Hinds, S.

V. Sukhovatkin, S. Hinds, L. Brzozowski, and E. H. Sargent, “Colloidal quantum-dot photodetectors exploiting multiexciton generation,” Science324(5934), 1542–1544 (2009).
[CrossRef] [PubMed]

Hollingsworth, J. A.

S. Sapra, J. Nanda, J. M. Pietryga, J. A. Hollingsworth, and D. D. Sarma, “Unraveling internal structures of highly luminescent PbSe nanocrystallites using variable-energy synchrotron radiation photoelectron spectroscopy,” J. Phys. Chem. B110(31), 15244–15250 (2006).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Hreibi, A.

Ishikawa, H.

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices,” IEEE J. Quantum Electron.37(8), 1059–1065 (2001).
[CrossRef]

Jensen, K. F.

B. O. Dabbousi, J. R. Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B101(46), 9463–9475 (1997).
[CrossRef]

Kadavanich, A. V.

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc.119(30), 7019–7029 (1997).
[CrossRef]

Kang, I.

I. Kang and F. W. Wise, “Electronic structure and optical properties of PbS and PbSe quantum dots,” J. Opt. Soc. Am.14(7), 1632–1646 (1997).
[CrossRef]

Klimov, V. I.

R. D. Schaller, V. M. Agranovich, and V. I. Klimov, “High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states,” Nat. Phys.1(3), 189–194 (2005).
[CrossRef]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

Kuwatsuka, H.

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices,” IEEE J. Quantum Electron.37(8), 1059–1065 (2001).
[CrossRef]

Leatherdale, C. A.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Lobo, A.

A. Lobo, T. Möller, M. Nagel, H. Borchert, S. G. Hickey, and H. Weller, “Photoelectron spectroscopic investigations of chemical bonding in organically stabilized PbS nanocrystals,” J. Phys. Chem. B109(37), 17422–17428 (2005).
[CrossRef] [PubMed]

Ma, D.

H. Zhao, M. Chaker, and D. Ma, “Effect of CdS shell thickness on the optical properties of water-soluble, amphiphilic polymer-encapsulated PbS/CdS core/shell quantum dots,” J. Mater. Chem.21(43), 17483–17491 (2011).
[CrossRef]

H. Zhao, D. Wang, T. Zhang, M. Chaker, and D. Ma, “Two-step synthesis of high-quality water-soluble near-infrared emitting quantum dots via amphiphilic polymers,” Chem. Commun. (Camb.)46(29), 5301–5303 (2010).
[CrossRef] [PubMed]

Malko, A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Mattoussi, H.

B. O. Dabbousi, J. R. Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B101(46), 9463–9475 (1997).
[CrossRef]

McBranch, D. W.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

Mi, Z.

P. Bhattacharya and Z. Mi, “Quantum-dot optoelectronic devices,” Proc. IEEE95(9), 1723–1740 (2007).
[CrossRef]

Mikhailovsky, A. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

Mikulec, F. V.

B. O. Dabbousi, J. R. Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B101(46), 9463–9475 (1997).
[CrossRef]

Mokari, T.

A. Aharoni, T. Mokari, I. Popov, and U. Banin, “Synthesis of InAs/CdSe/ZnSe core/shell1/shell2 structures with bright and stable near-infrared fluorescence,” J. Am. Chem. Soc.128(1), 257–264 (2006).
[CrossRef] [PubMed]

Möller, T.

A. Lobo, T. Möller, M. Nagel, H. Borchert, S. G. Hickey, and H. Weller, “Photoelectron spectroscopic investigations of chemical bonding in organically stabilized PbS nanocrystals,” J. Phys. Chem. B109(37), 17422–17428 (2005).
[CrossRef] [PubMed]

Mukai, K.

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices,” IEEE J. Quantum Electron.37(8), 1059–1065 (2001).
[CrossRef]

Nagel, M.

A. Lobo, T. Möller, M. Nagel, H. Borchert, S. G. Hickey, and H. Weller, “Photoelectron spectroscopic investigations of chemical bonding in organically stabilized PbS nanocrystals,” J. Phys. Chem. B109(37), 17422–17428 (2005).
[CrossRef] [PubMed]

Nakata, Y.

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices,” IEEE J. Quantum Electron.37(8), 1059–1065 (2001).
[CrossRef]

Nanda, J.

S. Sapra, J. Nanda, J. M. Pietryga, J. A. Hollingsworth, and D. D. Sarma, “Unraveling internal structures of highly luminescent PbSe nanocrystallites using variable-energy synchrotron radiation photoelectron spectroscopy,” J. Phys. Chem. B110(31), 15244–15250 (2006).
[CrossRef] [PubMed]

Nie, S. M.

A. M. Smith and S. M. Nie, “Semiconductor nanocrystals: structure, properties, and band gap engineering,” Acc. Chem. Res.43(2), 190–200 (2010).
[CrossRef] [PubMed]

Ober, R.

B. O. Dabbousi, J. R. Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B101(46), 9463–9475 (1997).
[CrossRef]

Pang, F.

Peng, X.

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc.119(30), 7019–7029 (1997).
[CrossRef]

Peyghambarian, N.

K. Wundke, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 μm in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
[CrossRef]

Pietryga, J. M.

S. Sapra, J. Nanda, J. M. Pietryga, J. A. Hollingsworth, and D. D. Sarma, “Unraveling internal structures of highly luminescent PbSe nanocrystallites using variable-energy synchrotron radiation photoelectron spectroscopy,” J. Phys. Chem. B110(31), 15244–15250 (2006).
[CrossRef] [PubMed]

Popov, I.

A. Aharoni, T. Mokari, I. Popov, and U. Banin, “Synthesis of InAs/CdSe/ZnSe core/shell1/shell2 structures with bright and stable near-infrared fluorescence,” J. Am. Chem. Soc.128(1), 257–264 (2006).
[CrossRef] [PubMed]

Sapra, S.

S. Sapra, J. Nanda, J. M. Pietryga, J. A. Hollingsworth, and D. D. Sarma, “Unraveling internal structures of highly luminescent PbSe nanocrystallites using variable-energy synchrotron radiation photoelectron spectroscopy,” J. Phys. Chem. B110(31), 15244–15250 (2006).
[CrossRef] [PubMed]

Sargent, E. H.

V. Sukhovatkin, S. Hinds, L. Brzozowski, and E. H. Sargent, “Colloidal quantum-dot photodetectors exploiting multiexciton generation,” Science324(5934), 1542–1544 (2009).
[CrossRef] [PubMed]

Sarma, D. D.

S. Sapra, J. Nanda, J. M. Pietryga, J. A. Hollingsworth, and D. D. Sarma, “Unraveling internal structures of highly luminescent PbSe nanocrystallites using variable-energy synchrotron radiation photoelectron spectroscopy,” J. Phys. Chem. B110(31), 15244–15250 (2006).
[CrossRef] [PubMed]

Schaller, R. D.

R. D. Schaller, V. M. Agranovich, and V. I. Klimov, “High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states,” Nat. Phys.1(3), 189–194 (2005).
[CrossRef]

Schlamp, M. C.

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc.119(30), 7019–7029 (1997).
[CrossRef]

Schülzgen, A.

K. Wundke, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 μm in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
[CrossRef]

Simoyama, T.

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices,” IEEE J. Quantum Electron.37(8), 1059–1065 (2001).
[CrossRef]

Smith, A. M.

A. M. Smith and S. M. Nie, “Semiconductor nanocrystals: structure, properties, and band gap engineering,” Acc. Chem. Res.43(2), 190–200 (2010).
[CrossRef] [PubMed]

Sugawara, M.

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices,” IEEE J. Quantum Electron.37(8), 1059–1065 (2001).
[CrossRef]

Sukhovatkin, V.

V. Sukhovatkin, S. Hinds, L. Brzozowski, and E. H. Sargent, “Colloidal quantum-dot photodetectors exploiting multiexciton generation,” Science324(5934), 1542–1544 (2009).
[CrossRef] [PubMed]

Sun, X.

Viejo, J. R.

B. O. Dabbousi, J. R. Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B101(46), 9463–9475 (1997).
[CrossRef]

Wada, O.

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices,” IEEE J. Quantum Electron.37(8), 1059–1065 (2001).
[CrossRef]

Wang, D.

H. Zhao, D. Wang, T. Zhang, M. Chaker, and D. Ma, “Two-step synthesis of high-quality water-soluble near-infrared emitting quantum dots via amphiphilic polymers,” Chem. Commun. (Camb.)46(29), 5301–5303 (2010).
[CrossRef] [PubMed]

Wang, J.

Wang, T.

Weller, H.

A. Lobo, T. Möller, M. Nagel, H. Borchert, S. G. Hickey, and H. Weller, “Photoelectron spectroscopic investigations of chemical bonding in organically stabilized PbS nanocrystals,” J. Phys. Chem. B109(37), 17422–17428 (2005).
[CrossRef] [PubMed]

Wise, F. W.

I. Kang and F. W. Wise, “Electronic structure and optical properties of PbS and PbSe quantum dots,” J. Opt. Soc. Am.14(7), 1632–1646 (1997).
[CrossRef]

Wundke, K.

K. Wundke, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 μm in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
[CrossRef]

Xu, S.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Yan, J.

Yu, W. W.

Zeng, X.

Zhang, T.

H. Zhao, D. Wang, T. Zhang, M. Chaker, and D. Ma, “Two-step synthesis of high-quality water-soluble near-infrared emitting quantum dots via amphiphilic polymers,” Chem. Commun. (Camb.)46(29), 5301–5303 (2010).
[CrossRef] [PubMed]

Zhang, Y.

Zhao, H.

H. Zhao, M. Chaker, and D. Ma, “Effect of CdS shell thickness on the optical properties of water-soluble, amphiphilic polymer-encapsulated PbS/CdS core/shell quantum dots,” J. Mater. Chem.21(43), 17483–17491 (2011).
[CrossRef]

H. Zhao, D. Wang, T. Zhang, M. Chaker, and D. Ma, “Two-step synthesis of high-quality water-soluble near-infrared emitting quantum dots via amphiphilic polymers,” Chem. Commun. (Camb.)46(29), 5301–5303 (2010).
[CrossRef] [PubMed]

Acc. Chem. Res.

A. M. Smith and S. M. Nie, “Semiconductor nanocrystals: structure, properties, and band gap engineering,” Acc. Chem. Res.43(2), 190–200 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett.

K. Wundke, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 μm in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
[CrossRef]

Chem. Commun. (Camb.)

H. Zhao, D. Wang, T. Zhang, M. Chaker, and D. Ma, “Two-step synthesis of high-quality water-soluble near-infrared emitting quantum dots via amphiphilic polymers,” Chem. Commun. (Camb.)46(29), 5301–5303 (2010).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices,” IEEE J. Quantum Electron.37(8), 1059–1065 (2001).
[CrossRef]

J. Am. Chem. Soc.

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc.119(30), 7019–7029 (1997).
[CrossRef]

A. Aharoni, T. Mokari, I. Popov, and U. Banin, “Synthesis of InAs/CdSe/ZnSe core/shell1/shell2 structures with bright and stable near-infrared fluorescence,” J. Am. Chem. Soc.128(1), 257–264 (2006).
[CrossRef] [PubMed]

J. Mater. Chem.

H. Zhao, M. Chaker, and D. Ma, “Effect of CdS shell thickness on the optical properties of water-soluble, amphiphilic polymer-encapsulated PbS/CdS core/shell quantum dots,” J. Mater. Chem.21(43), 17483–17491 (2011).
[CrossRef]

J. Opt. Soc. Am.

I. Kang and F. W. Wise, “Electronic structure and optical properties of PbS and PbSe quantum dots,” J. Opt. Soc. Am.14(7), 1632–1646 (1997).
[CrossRef]

J. Phys. Chem. B

B. O. Dabbousi, J. R. Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B101(46), 9463–9475 (1997).
[CrossRef]

S. Sapra, J. Nanda, J. M. Pietryga, J. A. Hollingsworth, and D. D. Sarma, “Unraveling internal structures of highly luminescent PbSe nanocrystallites using variable-energy synchrotron radiation photoelectron spectroscopy,” J. Phys. Chem. B110(31), 15244–15250 (2006).
[CrossRef] [PubMed]

A. Lobo, T. Möller, M. Nagel, H. Borchert, S. G. Hickey, and H. Weller, “Photoelectron spectroscopic investigations of chemical bonding in organically stabilized PbS nanocrystals,” J. Phys. Chem. B109(37), 17422–17428 (2005).
[CrossRef] [PubMed]

Nat. Phys.

R. D. Schaller, V. M. Agranovich, and V. I. Klimov, “High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states,” Nat. Phys.1(3), 189–194 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. IEEE

P. Bhattacharya and Z. Mi, “Quantum-dot optoelectronic devices,” Proc. IEEE95(9), 1723–1740 (2007).
[CrossRef]

Science

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

V. Sukhovatkin, S. Hinds, L. Brzozowski, and E. H. Sargent, “Colloidal quantum-dot photodetectors exploiting multiexciton generation,” Science324(5934), 1542–1544 (2009).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Other

P. R. Watekar, A. Lin, S. Ju, and W. T. Han, “1537 nm emission upon 980 nm pumping in PbSe quantum dots doped optical fiber,” OFC, OWO1 (2008).

S. Kawanishi, T. Komukai, M. Ohmori, and H. Sakaki, “Photoluminescence of semiconductor nanocrystal quantum dots at 1550 nm wavelength in the core of photonic bandgap fiber,” CLEO, CTuII4 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) TEM image of PbS/CdS QDs. (b) HRTEM image of a PbS/CdS QD. (c) PL spectrum of a PbS/CdS QDs-doped film.

Fig. 2
Fig. 2

Schematic representation of QD modification with amphiphilic copolymers.

Fig. 3
Fig. 3

Schematic representation of the fiber amplifier coated with QDs.

Fig. 4
Fig. 4

Output spectra with input signal only and signal with pump.

Fig. 5
Fig. 5

Gain spectra of QD optical fiber amplifier with different pump power.

Fig. 6
Fig. 6

Dependence of gain at 1550 nm on pump power.

Fig. 7
Fig. 7

Temperature dependence of gain of optical fiber amplifiers based on PbS/CdS and PbS QDs.

Metrics