Abstract

In this paper, we propose a low-complexity and efficient carrier recovery algorithm for single carrier transmission systems that is capable of tracking frequency offset (FO) variations. Working as a FO tracking estimator, the algorithm demonstrates good accuracy in simulation and a FO drift of up to 200 MHz/μs can be compensated with minimal degradation in a QPSK system. In 112 Gb/s dual polarization (DP) QPSK experiments, the algorithm recovers a data sequence having >80 MHz of FO drift within 250 μs, providing better performance than a one-time estimator. In a regime that utilizes parallel processing of the data, we further demonstrate FO tracking and carrier phase recovery (CPR) using only one of the streams in a parallelized configuration, and we apply the carrier information to recover neighbouring streams directly. Consequently, the complexity of both the FO tracking and the CPR is further reduced.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Li, Z. Tao, S. Oda, T. Hoshida, and J. C. Rasmussen, “Wide-range, accurate and simple digital frequency offset compensator for optical coherent receivers,” in Proc. OFC’08, Paper OWT4.
    [CrossRef]
  2. M. Selmi, Y. Jaouen, and P. Ciblat, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in Proc. ECOC '09, Paper P3.08.
  3. J. C. M. Diniz, J. C. R. F. de Oliveira, E. S. Rosa, V. B. Ribeiro, V. E. S. Parahyba, R. da Silva, E. P. da Silva, L. H. H. de Carvalho, A. F. Herbster, and A. C. Bordonalli, “Simple feed-forward wide-range frequency offset estimator for optical coherent receivers,” Opt. Express19(26), B323–B328 (2011).
    [CrossRef] [PubMed]
  4. T. Nakagawa, K. Ishihara, T. Kobayashi, R. Kudo, M. Matsui, Y. Takatori, and M. Mizoguchi, “Wide-range and fast-tracking frequency offset estimator for optical coherent receivers,” in Proc. ECOC’10, Paper We.7.A.2.
    [CrossRef]
  5. T. Nakagawa, M. Matsui, T. Kobayashi, K. Ishihara, R. Kudo, M. Mizoguchi, and Y. Miyamoto, “Non-data-aided wide-range frequency offset estimator for QAM optical coherent receivers,” in Proc. OFC’11, Paper OMJ1.
  6. X. Zhou, X. Chen, and K. Long, “Wide-range frequency offset estimation algorithm for optical coherent systems using training sequence,” IEEE Photon. Technol. Lett.24(1), 82–84 (2012).
    [CrossRef]
  7. A. Leven, N. Kaneda, U. Koc, and Y. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett.19(6), 366–368 (2007).
    [CrossRef]
  8. P. Gianni, G. Corral-Briones, C. E. Rodriguez, H. S. Carrer, and M. R. Hueda, “A new parallel carrier recovery architecture for intradyne coherent optical receivers in the presence of laser frequency fluctuations,” in Proc. IEEE GLOBECOM’11, pp. 1–6.
    [CrossRef]
  9. S.-H. Fan, J. Yu, D. Qian, and G.-K. Chang, “A fast and efficient frequency offset correction technique for coherent optical orthogonal frequency division multiplexing,” J. Lightwave Technol.29(13), 1997–2004 (2011).
    [CrossRef]
  10. M. Qiu, Q. Zhuge, X. Xu, M. Chagnon, M. Morsy-Osman, and D. V. Plant, “Wide-range, low-complexity frequency offset tracking technique for single carrier transmission systems,” in Proc. OFC’13, Paper OTu3I.8.
  11. E. Ip and J. M. Kahn, “Feedforward carrier recovery for coherent optical communications,” J. Lightwave Technol.25(9), 2675–2692 (2007).
    [CrossRef]
  12. T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol.27(8), 989–999 (2009).
    [CrossRef]
  13. M. G. Taylor, “Phase estimation methods for optical coherent detection using digital signal processing,” J. Lightwave Technol.27(7), 901–914 (2009).
    [CrossRef]
  14. Q. Zhuge, M. Morsy-Osman, X. Xu, M. E. Mousa-Pasandi, M. Chagnon, Z. A. El-Sahn, and D. V. Plant, “Pilot-aided carrier phase recovery for M-QAM using superscalar parallelization based PLL,” Opt. Express20(17), 19599–19609 (2012).
    [CrossRef] [PubMed]
  15. Z. Tao, L. Li, L. Liu, W. Yan, H. Nakashima, T. Tanimura, S. Oda, T. Hoshida, and J. C. Rasmussen, “Improvements to digital carrier phase recovery algorithm for high-performance optical coherent receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1201–1209 (2010).
    [CrossRef]
  16. M. Oerder and H. Meyr, “Digital filter and square timing recovery,” IEEE Trans. Commun.36(5), 605–612 (1988).
    [CrossRef]

2012 (2)

X. Zhou, X. Chen, and K. Long, “Wide-range frequency offset estimation algorithm for optical coherent systems using training sequence,” IEEE Photon. Technol. Lett.24(1), 82–84 (2012).
[CrossRef]

Q. Zhuge, M. Morsy-Osman, X. Xu, M. E. Mousa-Pasandi, M. Chagnon, Z. A. El-Sahn, and D. V. Plant, “Pilot-aided carrier phase recovery for M-QAM using superscalar parallelization based PLL,” Opt. Express20(17), 19599–19609 (2012).
[CrossRef] [PubMed]

2011 (2)

2010 (1)

Z. Tao, L. Li, L. Liu, W. Yan, H. Nakashima, T. Tanimura, S. Oda, T. Hoshida, and J. C. Rasmussen, “Improvements to digital carrier phase recovery algorithm for high-performance optical coherent receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1201–1209 (2010).
[CrossRef]

2009 (2)

2007 (2)

E. Ip and J. M. Kahn, “Feedforward carrier recovery for coherent optical communications,” J. Lightwave Technol.25(9), 2675–2692 (2007).
[CrossRef]

A. Leven, N. Kaneda, U. Koc, and Y. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett.19(6), 366–368 (2007).
[CrossRef]

1988 (1)

M. Oerder and H. Meyr, “Digital filter and square timing recovery,” IEEE Trans. Commun.36(5), 605–612 (1988).
[CrossRef]

Bordonalli, A. C.

Carrer, H. S.

P. Gianni, G. Corral-Briones, C. E. Rodriguez, H. S. Carrer, and M. R. Hueda, “A new parallel carrier recovery architecture for intradyne coherent optical receivers in the presence of laser frequency fluctuations,” in Proc. IEEE GLOBECOM’11, pp. 1–6.
[CrossRef]

Chagnon, M.

Chang, G.-K.

Chen, X.

X. Zhou, X. Chen, and K. Long, “Wide-range frequency offset estimation algorithm for optical coherent systems using training sequence,” IEEE Photon. Technol. Lett.24(1), 82–84 (2012).
[CrossRef]

Chen, Y.

A. Leven, N. Kaneda, U. Koc, and Y. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett.19(6), 366–368 (2007).
[CrossRef]

Ciblat, P.

M. Selmi, Y. Jaouen, and P. Ciblat, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in Proc. ECOC '09, Paper P3.08.

Corral-Briones, G.

P. Gianni, G. Corral-Briones, C. E. Rodriguez, H. S. Carrer, and M. R. Hueda, “A new parallel carrier recovery architecture for intradyne coherent optical receivers in the presence of laser frequency fluctuations,” in Proc. IEEE GLOBECOM’11, pp. 1–6.
[CrossRef]

da Silva, E. P.

da Silva, R.

de Carvalho, L. H. H.

de Oliveira, J. C. R. F.

Diniz, J. C. M.

El-Sahn, Z. A.

Fan, S.-H.

Gianni, P.

P. Gianni, G. Corral-Briones, C. E. Rodriguez, H. S. Carrer, and M. R. Hueda, “A new parallel carrier recovery architecture for intradyne coherent optical receivers in the presence of laser frequency fluctuations,” in Proc. IEEE GLOBECOM’11, pp. 1–6.
[CrossRef]

Herbster, A. F.

Hoffmann, S.

Hoshida, T.

Z. Tao, L. Li, L. Liu, W. Yan, H. Nakashima, T. Tanimura, S. Oda, T. Hoshida, and J. C. Rasmussen, “Improvements to digital carrier phase recovery algorithm for high-performance optical coherent receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1201–1209 (2010).
[CrossRef]

Hueda, M. R.

P. Gianni, G. Corral-Briones, C. E. Rodriguez, H. S. Carrer, and M. R. Hueda, “A new parallel carrier recovery architecture for intradyne coherent optical receivers in the presence of laser frequency fluctuations,” in Proc. IEEE GLOBECOM’11, pp. 1–6.
[CrossRef]

Ip, E.

Jaouen, Y.

M. Selmi, Y. Jaouen, and P. Ciblat, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in Proc. ECOC '09, Paper P3.08.

Kahn, J. M.

Kaneda, N.

A. Leven, N. Kaneda, U. Koc, and Y. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett.19(6), 366–368 (2007).
[CrossRef]

Koc, U.

A. Leven, N. Kaneda, U. Koc, and Y. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett.19(6), 366–368 (2007).
[CrossRef]

Leven, A.

A. Leven, N. Kaneda, U. Koc, and Y. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett.19(6), 366–368 (2007).
[CrossRef]

Li, L.

Z. Tao, L. Li, L. Liu, W. Yan, H. Nakashima, T. Tanimura, S. Oda, T. Hoshida, and J. C. Rasmussen, “Improvements to digital carrier phase recovery algorithm for high-performance optical coherent receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1201–1209 (2010).
[CrossRef]

Liu, L.

Z. Tao, L. Li, L. Liu, W. Yan, H. Nakashima, T. Tanimura, S. Oda, T. Hoshida, and J. C. Rasmussen, “Improvements to digital carrier phase recovery algorithm for high-performance optical coherent receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1201–1209 (2010).
[CrossRef]

Long, K.

X. Zhou, X. Chen, and K. Long, “Wide-range frequency offset estimation algorithm for optical coherent systems using training sequence,” IEEE Photon. Technol. Lett.24(1), 82–84 (2012).
[CrossRef]

Meyr, H.

M. Oerder and H. Meyr, “Digital filter and square timing recovery,” IEEE Trans. Commun.36(5), 605–612 (1988).
[CrossRef]

Morsy-Osman, M.

Mousa-Pasandi, M. E.

Nakashima, H.

Z. Tao, L. Li, L. Liu, W. Yan, H. Nakashima, T. Tanimura, S. Oda, T. Hoshida, and J. C. Rasmussen, “Improvements to digital carrier phase recovery algorithm for high-performance optical coherent receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1201–1209 (2010).
[CrossRef]

Noé, R.

Oda, S.

Z. Tao, L. Li, L. Liu, W. Yan, H. Nakashima, T. Tanimura, S. Oda, T. Hoshida, and J. C. Rasmussen, “Improvements to digital carrier phase recovery algorithm for high-performance optical coherent receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1201–1209 (2010).
[CrossRef]

Oerder, M.

M. Oerder and H. Meyr, “Digital filter and square timing recovery,” IEEE Trans. Commun.36(5), 605–612 (1988).
[CrossRef]

Parahyba, V. E. S.

Pfau, T.

Plant, D. V.

Qian, D.

Rasmussen, J. C.

Z. Tao, L. Li, L. Liu, W. Yan, H. Nakashima, T. Tanimura, S. Oda, T. Hoshida, and J. C. Rasmussen, “Improvements to digital carrier phase recovery algorithm for high-performance optical coherent receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1201–1209 (2010).
[CrossRef]

Ribeiro, V. B.

Rodriguez, C. E.

P. Gianni, G. Corral-Briones, C. E. Rodriguez, H. S. Carrer, and M. R. Hueda, “A new parallel carrier recovery architecture for intradyne coherent optical receivers in the presence of laser frequency fluctuations,” in Proc. IEEE GLOBECOM’11, pp. 1–6.
[CrossRef]

Rosa, E. S.

Selmi, M.

M. Selmi, Y. Jaouen, and P. Ciblat, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in Proc. ECOC '09, Paper P3.08.

Tanimura, T.

Z. Tao, L. Li, L. Liu, W. Yan, H. Nakashima, T. Tanimura, S. Oda, T. Hoshida, and J. C. Rasmussen, “Improvements to digital carrier phase recovery algorithm for high-performance optical coherent receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1201–1209 (2010).
[CrossRef]

Tao, Z.

Z. Tao, L. Li, L. Liu, W. Yan, H. Nakashima, T. Tanimura, S. Oda, T. Hoshida, and J. C. Rasmussen, “Improvements to digital carrier phase recovery algorithm for high-performance optical coherent receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1201–1209 (2010).
[CrossRef]

Taylor, M. G.

Xu, X.

Yan, W.

Z. Tao, L. Li, L. Liu, W. Yan, H. Nakashima, T. Tanimura, S. Oda, T. Hoshida, and J. C. Rasmussen, “Improvements to digital carrier phase recovery algorithm for high-performance optical coherent receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1201–1209 (2010).
[CrossRef]

Yu, J.

Zhou, X.

X. Zhou, X. Chen, and K. Long, “Wide-range frequency offset estimation algorithm for optical coherent systems using training sequence,” IEEE Photon. Technol. Lett.24(1), 82–84 (2012).
[CrossRef]

Zhuge, Q.

IEEE J. Sel. Top. Quantum Electron. (1)

Z. Tao, L. Li, L. Liu, W. Yan, H. Nakashima, T. Tanimura, S. Oda, T. Hoshida, and J. C. Rasmussen, “Improvements to digital carrier phase recovery algorithm for high-performance optical coherent receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1201–1209 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

X. Zhou, X. Chen, and K. Long, “Wide-range frequency offset estimation algorithm for optical coherent systems using training sequence,” IEEE Photon. Technol. Lett.24(1), 82–84 (2012).
[CrossRef]

A. Leven, N. Kaneda, U. Koc, and Y. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett.19(6), 366–368 (2007).
[CrossRef]

IEEE Trans. Commun. (1)

M. Oerder and H. Meyr, “Digital filter and square timing recovery,” IEEE Trans. Commun.36(5), 605–612 (1988).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Express (2)

Other (6)

T. Nakagawa, K. Ishihara, T. Kobayashi, R. Kudo, M. Matsui, Y. Takatori, and M. Mizoguchi, “Wide-range and fast-tracking frequency offset estimator for optical coherent receivers,” in Proc. ECOC’10, Paper We.7.A.2.
[CrossRef]

T. Nakagawa, M. Matsui, T. Kobayashi, K. Ishihara, R. Kudo, M. Mizoguchi, and Y. Miyamoto, “Non-data-aided wide-range frequency offset estimator for QAM optical coherent receivers,” in Proc. OFC’11, Paper OMJ1.

L. Li, Z. Tao, S. Oda, T. Hoshida, and J. C. Rasmussen, “Wide-range, accurate and simple digital frequency offset compensator for optical coherent receivers,” in Proc. OFC’08, Paper OWT4.
[CrossRef]

M. Selmi, Y. Jaouen, and P. Ciblat, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in Proc. ECOC '09, Paper P3.08.

M. Qiu, Q. Zhuge, X. Xu, M. Chagnon, M. Morsy-Osman, and D. V. Plant, “Wide-range, low-complexity frequency offset tracking technique for single carrier transmission systems,” in Proc. OFC’13, Paper OTu3I.8.

P. Gianni, G. Corral-Briones, C. E. Rodriguez, H. S. Carrer, and M. R. Hueda, “A new parallel carrier recovery architecture for intradyne coherent optical receivers in the presence of laser frequency fluctuations,” in Proc. IEEE GLOBECOM’11, pp. 1–6.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Illustration of the FO tracking process.

Fig. 2
Fig. 2

The implementation of parallelization.

Fig. 3
Fig. 3

Carrier recovery in the regime with parallelization. B(n, p): the nth block in the pth tream; Φn: the carrier phase information of the nth block in the pth stream.

Fig. 4
Fig. 4

Block diagram of the first-order DPLL.

Fig. 5
Fig. 5

(a) FO evolution and the estimations using the proposed tracking algorithm. (b) BER versus FO drift rate for systems with different tracking strategies.

Fig. 6
Fig. 6

BER versus OSNR in different configurations for QPSK system when the FO drift rate of the serial sequence is (a) 0.2 MHz/μs and (b) 2 MHz/μs.

Fig. 7
Fig. 7

BER versus OSNR in different configurations for 16-QAM system when the FO drift rate of the serial sequence is 0.2 MHz/μs.

Fig. 8
Fig. 8

Experimental setup. DAC: digital-to-analog converter, PC: polarization controller, PBS/PBC: polarization beam splitter/combiner, ODL: optical delay line, BPF: band-pass filter.

Fig. 9
Fig. 9

(a) Estimated FO versus time and (b) BER versus sequence length for systems with and without FO tracking.

Fig. 10
Fig. 10

BER of different parallel streams when the degree of parallelism is (a) 8, (b) 16 and (c) 32.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f o.n+1 = f o,n +CΔ f o,n
Δ φ i =ϕ( k i +K )ϕ( k i )
Δφ ¯ 2πΔ f o,n K T sym

Metrics