Abstract

Pulsed terahertz imaging is being developed as a technique to image obscured mural paintings. Due to significant advances in terahertz technology, portable systems are now capable of operating in unregulated environments and this has prompted their use on archaeological excavations. August 2011 saw the first use of pulsed terahertz imaging at the archaeological site of Çatalhöyük, Turkey, where mural paintings dating from the Neolithic period are continuously being uncovered by archaeologists. In these particular paintings the paint is applied onto an uneven surface, and then covered by an equally uneven surface. Traditional terahertz data analysis has proven unsuccessful at sub-surface imaging of these paintings due to the effect of these uneven surfaces. For the first time, an image processing technique is presented, based around Gaussian beam-mode coupling, which enables the visualization of the obscured painting.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. http://whc.unesco.org/en/list/1405 .
  2. J. B. Jackson, J. W. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. THz Sci. Technol.1(1), 220–231 (2011).
  3. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 microm telecom wavelengths,” Opt. Express16(13), 9565–9570 (2008).
    [CrossRef] [PubMed]
  4. J. V. Rudd, D. Zimdars, and M. Wannuth, “Compact fiber-pigtailed terahertz imaging system,” Proc. SPIE3934(3934), 27–35 (2000).
    [CrossRef]
  5. S. Farid, Çatalhöyük 2011 Archive Report (2011), pp. 29–30.
  6. I. Hodder, Çatalhöyük 2010 Archive Report (2010), pp. 3–4.
  7. J. Mellaart, “Excavations at Çatal Hüyük, 1965: fourth preliminary report,” Anatolian Studies16, 165–191 (1966).
    [CrossRef]
  8. J. B. Jackson, M. Mourou, J. F. Whitker, I. N. Durling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for the non-destructive evaluation of mural paintings,” Opt. Commun.281(4), 527–532 (2008).
    [CrossRef]
  9. H. Kogelnik, “Coupling and conversion coefficients for optical modes,” Proceedings of the Symposium on Quasi-Optics, Microwave Research Institute Symposia Series 14, (Polytechnic Press, 1964), pp. 333–347, (1964).
  10. W. B. Joyce and B. C. DeLoach, “Alignment of Gaussian beams,” Appl. Opt.23(23), 4187–4196 (1984).
    [CrossRef] [PubMed]
  11. D. H. Martin and J. W. Bowen, “Long wave optics,” IEEE Trans. Microw. Theory Tech.41(10), 1676–1690 (1993).
    [CrossRef]
  12. E. Berry, R. D. Boyle, A. J. Fitzgerald, and J. W. Handley, Computer vision beyond the Visible Spectrum (Springer, 2004), Chap. 9.
  13. S. Fowler, “Into the stone age with a scalpel - a dig with clues on early urban life,” The New York Times (September 7, 2011).
  14. K. Fukunaga and I. Hosako, “Innovative non-invasive analysis techniques for cultural heritage using terahertz technology,” C. R. Phys.11(7-8), 519–526 (2010).
    [CrossRef]

2011 (1)

J. B. Jackson, J. W. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. THz Sci. Technol.1(1), 220–231 (2011).

2010 (1)

K. Fukunaga and I. Hosako, “Innovative non-invasive analysis techniques for cultural heritage using terahertz technology,” C. R. Phys.11(7-8), 519–526 (2010).
[CrossRef]

2008 (2)

J. B. Jackson, M. Mourou, J. F. Whitker, I. N. Durling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for the non-destructive evaluation of mural paintings,” Opt. Commun.281(4), 527–532 (2008).
[CrossRef]

B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 microm telecom wavelengths,” Opt. Express16(13), 9565–9570 (2008).
[CrossRef] [PubMed]

2000 (1)

J. V. Rudd, D. Zimdars, and M. Wannuth, “Compact fiber-pigtailed terahertz imaging system,” Proc. SPIE3934(3934), 27–35 (2000).
[CrossRef]

1993 (1)

D. H. Martin and J. W. Bowen, “Long wave optics,” IEEE Trans. Microw. Theory Tech.41(10), 1676–1690 (1993).
[CrossRef]

1984 (1)

1966 (1)

J. Mellaart, “Excavations at Çatal Hüyük, 1965: fourth preliminary report,” Anatolian Studies16, 165–191 (1966).
[CrossRef]

Böttcher, J.

Bowen, J. W.

J. B. Jackson, J. W. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. THz Sci. Technol.1(1), 220–231 (2011).

D. H. Martin and J. W. Bowen, “Long wave optics,” IEEE Trans. Microw. Theory Tech.41(10), 1676–1690 (1993).
[CrossRef]

DeLoach, B. C.

Durling, I. N.

J. B. Jackson, M. Mourou, J. F. Whitker, I. N. Durling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for the non-destructive evaluation of mural paintings,” Opt. Commun.281(4), 527–532 (2008).
[CrossRef]

Fukunaga, K.

J. B. Jackson, J. W. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. THz Sci. Technol.1(1), 220–231 (2011).

K. Fukunaga and I. Hosako, “Innovative non-invasive analysis techniques for cultural heritage using terahertz technology,” C. R. Phys.11(7-8), 519–526 (2010).
[CrossRef]

Hosako, I.

K. Fukunaga and I. Hosako, “Innovative non-invasive analysis techniques for cultural heritage using terahertz technology,” C. R. Phys.11(7-8), 519–526 (2010).
[CrossRef]

Jackson, J. B.

J. B. Jackson, J. W. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. THz Sci. Technol.1(1), 220–231 (2011).

J. B. Jackson, M. Mourou, J. F. Whitker, I. N. Durling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for the non-destructive evaluation of mural paintings,” Opt. Commun.281(4), 527–532 (2008).
[CrossRef]

Joyce, W. B.

Künzel, H.

Labaune, J.

J. B. Jackson, J. W. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. THz Sci. Technol.1(1), 220–231 (2011).

Martin, D. H.

D. H. Martin and J. W. Bowen, “Long wave optics,” IEEE Trans. Microw. Theory Tech.41(10), 1676–1690 (1993).
[CrossRef]

Mellaart, J.

J. Mellaart, “Excavations at Çatal Hüyük, 1965: fourth preliminary report,” Anatolian Studies16, 165–191 (1966).
[CrossRef]

Menu, M.

J. B. Jackson, J. W. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. THz Sci. Technol.1(1), 220–231 (2011).

J. B. Jackson, M. Mourou, J. F. Whitker, I. N. Durling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for the non-destructive evaluation of mural paintings,” Opt. Commun.281(4), 527–532 (2008).
[CrossRef]

Mourou, G.

J. B. Jackson, J. W. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. THz Sci. Technol.1(1), 220–231 (2011).

Mourou, G. A.

J. B. Jackson, M. Mourou, J. F. Whitker, I. N. Durling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for the non-destructive evaluation of mural paintings,” Opt. Commun.281(4), 527–532 (2008).
[CrossRef]

Mourou, M.

J. B. Jackson, M. Mourou, J. F. Whitker, I. N. Durling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for the non-destructive evaluation of mural paintings,” Opt. Commun.281(4), 527–532 (2008).
[CrossRef]

Roehle, H.

Rudd, J. V.

J. V. Rudd, D. Zimdars, and M. Wannuth, “Compact fiber-pigtailed terahertz imaging system,” Proc. SPIE3934(3934), 27–35 (2000).
[CrossRef]

Sartorius, B.

Schell, M.

Schlak, M.

Stanze, D.

Venghaus, H.

Walker, G.

J. B. Jackson, J. W. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. THz Sci. Technol.1(1), 220–231 (2011).

Wannuth, M.

J. V. Rudd, D. Zimdars, and M. Wannuth, “Compact fiber-pigtailed terahertz imaging system,” Proc. SPIE3934(3934), 27–35 (2000).
[CrossRef]

Whitker, J. F.

J. B. Jackson, M. Mourou, J. F. Whitker, I. N. Durling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for the non-destructive evaluation of mural paintings,” Opt. Commun.281(4), 527–532 (2008).
[CrossRef]

Williamson, S. L.

J. B. Jackson, M. Mourou, J. F. Whitker, I. N. Durling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for the non-destructive evaluation of mural paintings,” Opt. Commun.281(4), 527–532 (2008).
[CrossRef]

Zimdars, D.

J. V. Rudd, D. Zimdars, and M. Wannuth, “Compact fiber-pigtailed terahertz imaging system,” Proc. SPIE3934(3934), 27–35 (2000).
[CrossRef]

Anatolian Studies (1)

J. Mellaart, “Excavations at Çatal Hüyük, 1965: fourth preliminary report,” Anatolian Studies16, 165–191 (1966).
[CrossRef]

Appl. Opt. (1)

C. R. Phys. (1)

K. Fukunaga and I. Hosako, “Innovative non-invasive analysis techniques for cultural heritage using terahertz technology,” C. R. Phys.11(7-8), 519–526 (2010).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

D. H. Martin and J. W. Bowen, “Long wave optics,” IEEE Trans. Microw. Theory Tech.41(10), 1676–1690 (1993).
[CrossRef]

IEEE Trans. THz Sci. Technol. (1)

J. B. Jackson, J. W. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. THz Sci. Technol.1(1), 220–231 (2011).

Opt. Commun. (1)

J. B. Jackson, M. Mourou, J. F. Whitker, I. N. Durling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for the non-destructive evaluation of mural paintings,” Opt. Commun.281(4), 527–532 (2008).
[CrossRef]

Opt. Express (1)

Proc. SPIE (1)

J. V. Rudd, D. Zimdars, and M. Wannuth, “Compact fiber-pigtailed terahertz imaging system,” Proc. SPIE3934(3934), 27–35 (2000).
[CrossRef]

Other (6)

S. Farid, Çatalhöyük 2011 Archive Report (2011), pp. 29–30.

I. Hodder, Çatalhöyük 2010 Archive Report (2010), pp. 3–4.

E. Berry, R. D. Boyle, A. J. Fitzgerald, and J. W. Handley, Computer vision beyond the Visible Spectrum (Springer, 2004), Chap. 9.

S. Fowler, “Into the stone age with a scalpel - a dig with clues on early urban life,” The New York Times (September 7, 2011).

H. Kogelnik, “Coupling and conversion coefficients for optical modes,” Proceedings of the Symposium on Quasi-Optics, Microwave Research Institute Symposia Series 14, (Polytechnic Press, 1964), pp. 333–347, (1964).

http://whc.unesco.org/en/list/1405 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a). A section of Neolithic wall with a line section covered with uneven plaster, imaged section highlighted. Figure 1. (b). The “pitch-catch” experimental configuration.

Fig. 2
Fig. 2

(a). A schematic diagram showing how the beam is deflected from the aligned detector position as the image is raster scanned. Figure 2. (b). A diagram showing the co-ordinate system used to calculate the correction.

Fig. 3
Fig. 3

Schematic diagram illustrating the derivation of the longitudinal and latitudinal deflections.

Fig. 4
Fig. 4

(a). A terahertz image of a wall section from Çatalhöyük calculated by integrating the in the frequency domain from 0.28 THz to 0.34 THz. Figure 4(b) A terahertz image of a wall section from Çatalhöyük calculated by integrating the in the frequency domain from 0.28 THz to 0.34 THz using the corrected data.

Fig. 5
Fig. 5

(a).A photographic image of the wall section imaged. Figure 5(b). The corrected THz image showing a line passing through the expected region highlighted in Fig. 5(a).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Δ lat = d cos( α/2 ) sinα
Δ long = d cos( α/2 ) ( 1+cosα )
t= 1 c [ d 1 + d cos( α/2 ) + d 1 cos2βcos2γ + dcosα cos2βcos2γcos( α/2 ) ]
t 0 = 2 d 1 c
Ψ D | Ψ S 0 = { 1+ ( Δ long k w 0 2 ) 2 } 1/2
Ψ D | Ψ S 1 = Ψ D | Ψ S 0 .exp( Δ lat 2 / d e 2 )
d e 2 =2 { ( k 2 w 0 2 ) 2 + ( k Δ long ) 2 } k 4 w 0 2
Ψ D | Ψ S = Ψ D | Ψ S 1 .| exp[ ( 2β ) 2 / θ e 2 ].exp[ ( 2γ ) 2 / θ e 2 ] |
θ e 2 = 4 k 2 [ 1 w S 2 + 1 w D 2 +i k 2 ( κ S κ D ) ]
w S = w 0 [ 1+ ( 2 z S k w 0 2 ) 2 ] 1/2
κ S = 1 z S [ 1+ ( k w 0 2 2 z S ) 2 ] 1
z S = d cos( α/2 )
z D = dcosα cos( α/2 )

Metrics