Abstract

Reaction order in Bi-doped oxide glasses depends on the optical basicity of the glass host. Red and NIR photoluminescence (PL) bands result from Bi2+ and Bin clusters, respectively. Very similar centers are present in Bi- and Pb-doped oxide and chalcogenide glasses. Bi-implanted and Bi melt-doped chalcogenide glasses display new PL bands, indicating that new Bi centers are formed. Bi-related PL bands have been observed in glasses with very similar compositions to those in which carrier-type reversal has been observed, indicating that these phenomena are related to the same Bi centers, which we suggest are interstitial Bi2+ and Bi clusters.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. W. Chi, D. C. Zhou, Z. G. Song, and J. B. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater.31(6), 945–948 (2009).
    [CrossRef]
  2. A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V. B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II). Subvalent monocation Bi⁺ and cluster Bi₅³⁺ luminescence in AlCl₃/ZnCl₂/BiCl₃ chloride glass,” Opt. Express20(7), 7212–7220 (2012).
    [CrossRef] [PubMed]
  3. M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater.29(5), 556–561 (2007).
    [CrossRef]
  4. Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett.90(26), 261110 (2007).
    [CrossRef]
  5. M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008).
    [CrossRef]
  6. J. Ren, J. Qiu, B. Wu, and D. Chen, “Ultrabroad infrared luminescence from Bi-doped alkaline earth metal germanate glasses,” J. Mater. Res.22(06), 1574–1578 (2007).
    [CrossRef]
  7. M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett.29(17), 1998–2000 (2004).
    [CrossRef] [PubMed]
  8. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett.30(18), 2433–2435 (2005).
    [CrossRef] [PubMed]
  9. X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express13(5), 1628–1634 (2005).
    [CrossRef] [PubMed]
  10. X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses,” Opt. Express13(5), 1635–1642 (2005).
    [CrossRef] [PubMed]
  11. G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, and X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett.25(5), 1891–1894 (2008).
    [CrossRef]
  12. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express17(22), 19345–19355 (2009).
    [CrossRef] [PubMed]
  13. Y. Fujimoto and M. Nakatsuka, “Infrared Luminescence from Bismuth-Doped Silica Glass,” Jpn. J. Appl. Phys. Part 2 Lett40, L279–L281 (2001).
  14. X. Wang and H. Xia, “Infrared superbroadband emission of Bi ion doped germanium-aluminum-sodium glass,” Opt. Commun.268(1), 75–78 (2006).
    [CrossRef]
  15. M. Y. Sharonov, A. B. Bykov, V. Petricevic, and R. R. Alfano, “Spectroscopic study of optical centers formed in Bi-, Pb-, Sb-, Sn-, Te-, and In-doped germanate glasses,” Opt. Lett.33(18), 2131–2133 (2008).
    [CrossRef] [PubMed]
  16. S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence Characteristics of Te- and Bi-Doped Glasses and Glass-Ceramics,” J. Ceram. Soc. Jpn.115(1340), 259–263 (2007).
    [CrossRef]
  17. V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett.33(13), 1488–1490 (2008).
    [CrossRef] [PubMed]
  18. I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett.6(7), 487–504 (2009).
    [CrossRef]
  19. S. V. Firstov, A. V. Shubin, V. F. Khopin, M. A. Mel'kumov, I. A. Bufetov, O. I. Medvedkov, A. N. Guryanov, and E. M. Dianov, “Bismuth-doped germanosilicate fibre laser with 20-W output power at 1460 nm,” Quantum Electron.41(7), 581–583 (2011).
    [CrossRef]
  20. V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient Bismuth-Doped Fiber Lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008).
    [CrossRef]
  21. S. Kivisto, J. Puustinen, M. Guina, O. G. Okhotnikov, and E. M. Dianov, “Tunable modelocked bismuth-doped soliton fibre laser,” Electron. Lett.44(25), 1456–1458 (2008).
    [CrossRef]
  22. A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, “Narrow-line, 1178nm CW bismuth-doped fiber laser with 6.4W output for direct frequency doubling,” Opt. Express15(9), 5473–5476 (2007).
    [CrossRef] [PubMed]
  23. S. Yoo, M. P. Kalita, J. Sahu, J. Nilsson, and D. Payne, “Bismuth-doped fiber laser at 1.16 mm,” in Lasers and Electro-Optics, Conference on Quantum Electronics and Laser Science. CLEO/QELS, 2008), 1–2.
  24. J. C. Phillips, “Constraint theory and carrier-type reversal in Bi-Ge chalcogenide alloy glasses,” Phys. Rev. B Condens. Matter36(8), 4265–4270 (1987).
    [CrossRef] [PubMed]
  25. K. L. Bhatia, D. P. Gosain, G. Parthasarathy, and E. S. R. Gopal, “On the structural features of doped amorphous chalcogenide semiconductors,” J. Non-Cryst. Solids86(1-2), 65–71 (1986).
    [CrossRef]
  26. L. Tichý, H. Tichá, A. Třiska, and P. Nagels, “Is the n-type conductivity in some Bi-doped chalcogenide glasses controlled by percolation?” Solid State Commun.53(4), 399–402 (1985).
    [CrossRef]
  27. V. K. Bhatnagar and K. L. Bhatia, “Frequency dependent electrical transport in bismuth-modified amorphous germanium sulfide semiconductors,” J. Non-Cryst. Solids119(2), 214–231 (1990).
    [CrossRef]
  28. S. R. Elliott and A. T. Steel, “Mechanism for Doping in Bi Chalcogenide Glasses,” Phys. Rev. Lett.57(11), 1316–1319 (1986).
    [CrossRef] [PubMed]
  29. P. Kounavis, E. Mytilineou, and M. Roilos, “p-n junctions from sputtered Ge25Se75 - xBix films,” J. Appl. Phys.66(2), 708–710 (1989).
    [CrossRef]
  30. H. Fritzsche and M. Kastner, “The effect of charged additives on the carrier concentrations in lone-pair semiconductors,” Philos. Mag. B37(3), 285–292 (1978).
    [CrossRef]
  31. S. Okano, H. Yamakawa, M. Suzuki, and A. Hiraki, “Fabrication of Chalcogenide Amorphous Semiconductor Diodes Using Low Temperature Thermal Diffusion Techniques,” Jpn. J. Appl. Phys.26(Part 1, No. 7), 1102–1106 (1987).
    [CrossRef]
  32. S. Okano, M. Suzuki, T. Imura, and A. Hiraki, “Chalcogenide amorphous-semiconductor diodes,” Jpn. J. Appl. Phys. Part 2 Lett24, L445–L448 (1985).
  33. S. Okano, M. Suzuki, and M. Suzuki, “Electrical contact properties of metal-chalcogenide amorphous-semiconductor systems,” Jpn. J. Appl. Phys.20(9), 1635–1640 (1981).
    [CrossRef]
  34. T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett.88(19), 191912 (2006).
    [CrossRef]
  35. M. Hughes, T. Suzuki, and Y. Ohishi, “Advanced bismuth doped lead-germanate glass for broadband optical gain devices,” J. Opt. Soc. Am. B25(8), 1380–1386 (2008).
    [CrossRef]
  36. S. Parke and R. S. Webb, “The optical properties of thallium, lead and bismuth in oxide glasses,” J. Phys. Chem. Solids34(1), 85–95 (1973).
    [CrossRef]
  37. B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “The IR emitting centers in Bi-doped Mg-Al-Si oxide glasses,” Laser Phys.19(5), 1105–1111 (2009).
    [CrossRef]
  38. M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional dependence of the optical properties of bismuth doped lead-aluminum-germanate glass,” Opt. Mater.32(9), 1028–1034 (2010).
    [CrossRef]
  39. M. Hughes, T. Suzuki, and Y. Ohishi, “Towards a high-performance optical gain medium based on bismuth and aluminum co-doped germanate glass,” J. Non-Cryst. Solids356(6-8), 407–418 (2010).
    [CrossRef]
  40. B. I. Denker, B. I. Galagan, V. V. Osiko, I. L. Shulman, S. E. Sverchkov, and E. M. Dianov, “Factors affecting the formation of near infrared-emitting optical centers in Bi-doped glasses,”Appl. Phys. B.98(2-3), 455–458 (2010).
    [CrossRef]
  41. X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater.33(1), 14–18 (2010).
    [CrossRef]
  42. Y. Zhou, N. Gai, and J. Wang, “Comparative investigation on spectroscopic properties of Er3+ between Ce3+-doped and B2O3-added bismuth glasses,” J. Phys. Chem. Solids70(2), 261–265 (2009).
    [CrossRef]
  43. H. Masai, Y. Takahashi, and T. Fujiwara, “Addition effect of SnO in optical property of Bi2O3-containing aluminoborate glass,” J. Appl. Phys.105(8), 4 (2009).
    [CrossRef]
  44. A. Winterstein, S. Manning, H. Ebendorff-Heidepriem, and L. Wondraczek, “Luminescence from bismuth-germanate glasses and its manipulation through oxidants,” Opt. Mater. Express2(10), 1320–1328 (2012).
    [CrossRef]
  45. A. Lebouteiller and P. Courtine, “Improvement of a bulk optical basicity table for oxidic systems,” J. Solid State Chem.137(1), 94–103 (1998).
    [CrossRef]
  46. V. Dimitrov and S. Sakka, “Electronic oxide polarizability and optical basicity of simple oxides. I,” J. Appl. Phys.79(3), 1736–1740 (1996).
    [CrossRef]
  47. M. A. Hughes, T. Suzuki, and Y. Ohishi, “Spectroscopy of bismuth doped lead-aluminum-germanate glass and yttrium-aluminum-silicate glass,” J. Non-Cryst. Solids356(44-49), 2302–2309 (2010).
    [CrossRef]
  48. J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res.22(07), 1954–1958 (2007).
    [CrossRef]
  49. W. Xu, M. Peng, Z. Ma, G. Dong, and J. Qiu, “A new study on bismuth doped oxide glasses,” Opt. Express20(14), 15692–15702 (2012).
    [CrossRef] [PubMed]
  50. H. Bach, F. K. G. Baucke, and D. Krause, Electrochemistry of Glasses and Glass Melts, Including Glass Electrodes (Springer, 2000).
  51. M. A. Hamstra, H. F. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349 (1994).
    [CrossRef]
  52. M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids351(30-32), 2388–2393 (2005).
    [CrossRef]
  53. Y. Ohishi, “Novel photonics materials for broadband lightwave processing,” in Optical Components and Materials IV, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) 2007, 646908.
    [CrossRef]
  54. S. Sumimiya, T. Nanba, Y. Miura, and S. Sakida, “Optical Properties of Bi2O3-La2O3-Al2O3-B2O3 Glasses,” in Advances in Glass and Optical Materials II (John Wiley & Sons, Inc., 2006), pp. 127–133.
  55. B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg-Al-Si oxide glass system,” Appl. Phys. B.95(4), 801–805 (2009).
    [CrossRef]
  56. M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria-alumina-silica glass,” Opt. Mater.32(2), 368–373 (2009).
    [CrossRef]
  57. J. Ren, Y. Qiao, C. Zhu, X. Jiang, and J. Qiu, “Optical amplification near 1300 nm in bismuth-doped strontium germanate glass,” J. Opt. Soc. Am. B24(10), 2597–2600 (2007).
    [CrossRef]
  58. M. Qian, C. Yu, J. Cheng, K. Li, and L. Hu, “The broadband NIR emission properties of Bi doped La2O3–Al2O3–SiO2 glass,” J. Lumin.132(10), 2634–2638 (2012).
    [CrossRef]
  59. Y. Kim, J. H. Baeck, M.-H. Cho, E. J. Jeong, and D.-H. Ko, “Effects of N2+ ion implantation on phase transition in Ge2Sb2Te5 films,” J. Appl. Phys.100(8), 083502 (2006).
    [CrossRef]
  60. N. Tohge, T. Minami, Y. Yamamoto, and M. Tanaka, “Electrical and optical properties of n-type semiconducting chalcogenide glasses in the system Ge-Bi-Se,” J. Appl. Phys.51(2), 1048–1053 (1980).
    [CrossRef]
  61. J. Málek, J. Klikorka, L. Beneš, L. Tichý, and A. Tříska, “Electrical and optical properties of Ge20Sb15−xBixBi65 glasses,” J. Mater. Sci.21(2), 488–492 (1986).
    [CrossRef]

2012 (4)

2011 (1)

S. V. Firstov, A. V. Shubin, V. F. Khopin, M. A. Mel'kumov, I. A. Bufetov, O. I. Medvedkov, A. N. Guryanov, and E. M. Dianov, “Bismuth-doped germanosilicate fibre laser with 20-W output power at 1460 nm,” Quantum Electron.41(7), 581–583 (2011).
[CrossRef]

2010 (5)

M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional dependence of the optical properties of bismuth doped lead-aluminum-germanate glass,” Opt. Mater.32(9), 1028–1034 (2010).
[CrossRef]

M. Hughes, T. Suzuki, and Y. Ohishi, “Towards a high-performance optical gain medium based on bismuth and aluminum co-doped germanate glass,” J. Non-Cryst. Solids356(6-8), 407–418 (2010).
[CrossRef]

B. I. Denker, B. I. Galagan, V. V. Osiko, I. L. Shulman, S. E. Sverchkov, and E. M. Dianov, “Factors affecting the formation of near infrared-emitting optical centers in Bi-doped glasses,”Appl. Phys. B.98(2-3), 455–458 (2010).
[CrossRef]

X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater.33(1), 14–18 (2010).
[CrossRef]

M. A. Hughes, T. Suzuki, and Y. Ohishi, “Spectroscopy of bismuth doped lead-aluminum-germanate glass and yttrium-aluminum-silicate glass,” J. Non-Cryst. Solids356(44-49), 2302–2309 (2010).
[CrossRef]

2009 (8)

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “The IR emitting centers in Bi-doped Mg-Al-Si oxide glasses,” Laser Phys.19(5), 1105–1111 (2009).
[CrossRef]

Y. Zhou, N. Gai, and J. Wang, “Comparative investigation on spectroscopic properties of Er3+ between Ce3+-doped and B2O3-added bismuth glasses,” J. Phys. Chem. Solids70(2), 261–265 (2009).
[CrossRef]

H. Masai, Y. Takahashi, and T. Fujiwara, “Addition effect of SnO in optical property of Bi2O3-containing aluminoborate glass,” J. Appl. Phys.105(8), 4 (2009).
[CrossRef]

G. W. Chi, D. C. Zhou, Z. G. Song, and J. B. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater.31(6), 945–948 (2009).
[CrossRef]

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett.6(7), 487–504 (2009).
[CrossRef]

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express17(22), 19345–19355 (2009).
[CrossRef] [PubMed]

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg-Al-Si oxide glass system,” Appl. Phys. B.95(4), 801–805 (2009).
[CrossRef]

M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria-alumina-silica glass,” Opt. Mater.32(2), 368–373 (2009).
[CrossRef]

2008 (7)

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett.33(13), 1488–1490 (2008).
[CrossRef] [PubMed]

M. Hughes, T. Suzuki, and Y. Ohishi, “Advanced bismuth doped lead-germanate glass for broadband optical gain devices,” J. Opt. Soc. Am. B25(8), 1380–1386 (2008).
[CrossRef]

M. Y. Sharonov, A. B. Bykov, V. Petricevic, and R. R. Alfano, “Spectroscopic study of optical centers formed in Bi-, Pb-, Sb-, Sn-, Te-, and In-doped germanate glasses,” Opt. Lett.33(18), 2131–2133 (2008).
[CrossRef] [PubMed]

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, and X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett.25(5), 1891–1894 (2008).
[CrossRef]

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008).
[CrossRef]

V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient Bismuth-Doped Fiber Lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008).
[CrossRef]

S. Kivisto, J. Puustinen, M. Guina, O. G. Okhotnikov, and E. M. Dianov, “Tunable modelocked bismuth-doped soliton fibre laser,” Electron. Lett.44(25), 1456–1458 (2008).
[CrossRef]

2007 (7)

J. Ren, J. Qiu, B. Wu, and D. Chen, “Ultrabroad infrared luminescence from Bi-doped alkaline earth metal germanate glasses,” J. Mater. Res.22(06), 1574–1578 (2007).
[CrossRef]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater.29(5), 556–561 (2007).
[CrossRef]

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett.90(26), 261110 (2007).
[CrossRef]

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res.22(07), 1954–1958 (2007).
[CrossRef]

A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, “Narrow-line, 1178nm CW bismuth-doped fiber laser with 6.4W output for direct frequency doubling,” Opt. Express15(9), 5473–5476 (2007).
[CrossRef] [PubMed]

J. Ren, Y. Qiao, C. Zhu, X. Jiang, and J. Qiu, “Optical amplification near 1300 nm in bismuth-doped strontium germanate glass,” J. Opt. Soc. Am. B24(10), 2597–2600 (2007).
[CrossRef]

S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence Characteristics of Te- and Bi-Doped Glasses and Glass-Ceramics,” J. Ceram. Soc. Jpn.115(1340), 259–263 (2007).
[CrossRef]

2006 (3)

Y. Kim, J. H. Baeck, M.-H. Cho, E. J. Jeong, and D.-H. Ko, “Effects of N2+ ion implantation on phase transition in Ge2Sb2Te5 films,” J. Appl. Phys.100(8), 083502 (2006).
[CrossRef]

T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett.88(19), 191912 (2006).
[CrossRef]

X. Wang and H. Xia, “Infrared superbroadband emission of Bi ion doped germanium-aluminum-sodium glass,” Opt. Commun.268(1), 75–78 (2006).
[CrossRef]

2005 (4)

2004 (1)

2001 (1)

Y. Fujimoto and M. Nakatsuka, “Infrared Luminescence from Bismuth-Doped Silica Glass,” Jpn. J. Appl. Phys. Part 2 Lett40, L279–L281 (2001).

1998 (1)

A. Lebouteiller and P. Courtine, “Improvement of a bulk optical basicity table for oxidic systems,” J. Solid State Chem.137(1), 94–103 (1998).
[CrossRef]

1996 (1)

V. Dimitrov and S. Sakka, “Electronic oxide polarizability and optical basicity of simple oxides. I,” J. Appl. Phys.79(3), 1736–1740 (1996).
[CrossRef]

1994 (1)

M. A. Hamstra, H. F. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349 (1994).
[CrossRef]

1990 (1)

V. K. Bhatnagar and K. L. Bhatia, “Frequency dependent electrical transport in bismuth-modified amorphous germanium sulfide semiconductors,” J. Non-Cryst. Solids119(2), 214–231 (1990).
[CrossRef]

1989 (1)

P. Kounavis, E. Mytilineou, and M. Roilos, “p-n junctions from sputtered Ge25Se75 - xBix films,” J. Appl. Phys.66(2), 708–710 (1989).
[CrossRef]

1987 (2)

J. C. Phillips, “Constraint theory and carrier-type reversal in Bi-Ge chalcogenide alloy glasses,” Phys. Rev. B Condens. Matter36(8), 4265–4270 (1987).
[CrossRef] [PubMed]

S. Okano, H. Yamakawa, M. Suzuki, and A. Hiraki, “Fabrication of Chalcogenide Amorphous Semiconductor Diodes Using Low Temperature Thermal Diffusion Techniques,” Jpn. J. Appl. Phys.26(Part 1, No. 7), 1102–1106 (1987).
[CrossRef]

1986 (3)

K. L. Bhatia, D. P. Gosain, G. Parthasarathy, and E. S. R. Gopal, “On the structural features of doped amorphous chalcogenide semiconductors,” J. Non-Cryst. Solids86(1-2), 65–71 (1986).
[CrossRef]

S. R. Elliott and A. T. Steel, “Mechanism for Doping in Bi Chalcogenide Glasses,” Phys. Rev. Lett.57(11), 1316–1319 (1986).
[CrossRef] [PubMed]

J. Málek, J. Klikorka, L. Beneš, L. Tichý, and A. Tříska, “Electrical and optical properties of Ge20Sb15−xBixBi65 glasses,” J. Mater. Sci.21(2), 488–492 (1986).
[CrossRef]

1985 (2)

L. Tichý, H. Tichá, A. Třiska, and P. Nagels, “Is the n-type conductivity in some Bi-doped chalcogenide glasses controlled by percolation?” Solid State Commun.53(4), 399–402 (1985).
[CrossRef]

S. Okano, M. Suzuki, T. Imura, and A. Hiraki, “Chalcogenide amorphous-semiconductor diodes,” Jpn. J. Appl. Phys. Part 2 Lett24, L445–L448 (1985).

1981 (1)

S. Okano, M. Suzuki, and M. Suzuki, “Electrical contact properties of metal-chalcogenide amorphous-semiconductor systems,” Jpn. J. Appl. Phys.20(9), 1635–1640 (1981).
[CrossRef]

1980 (1)

N. Tohge, T. Minami, Y. Yamamoto, and M. Tanaka, “Electrical and optical properties of n-type semiconducting chalcogenide glasses in the system Ge-Bi-Se,” J. Appl. Phys.51(2), 1048–1053 (1980).
[CrossRef]

1978 (1)

H. Fritzsche and M. Kastner, “The effect of charged additives on the carrier concentrations in lone-pair semiconductors,” Philos. Mag. B37(3), 285–292 (1978).
[CrossRef]

1973 (1)

S. Parke and R. S. Webb, “The optical properties of thallium, lead and bismuth in oxide glasses,” J. Phys. Chem. Solids34(1), 85–95 (1973).
[CrossRef]

Akada, T.

Alfano, R. R.

Arai, Y.

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett.90(26), 261110 (2007).
[CrossRef]

S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence Characteristics of Te- and Bi-Doped Glasses and Glass-Ceramics,” J. Ceram. Soc. Jpn.115(1340), 259–263 (2007).
[CrossRef]

Baeck, J. H.

Y. Kim, J. H. Baeck, M.-H. Cho, E. J. Jeong, and D.-H. Ko, “Effects of N2+ ion implantation on phase transition in Ge2Sb2Te5 films,” J. Appl. Phys.100(8), 083502 (2006).
[CrossRef]

Beneš, L.

J. Málek, J. Klikorka, L. Beneš, L. Tichý, and A. Tříska, “Electrical and optical properties of Ge20Sb15−xBixBi65 glasses,” J. Mater. Sci.21(2), 488–492 (1986).
[CrossRef]

Bhatia, K. L.

V. K. Bhatnagar and K. L. Bhatia, “Frequency dependent electrical transport in bismuth-modified amorphous germanium sulfide semiconductors,” J. Non-Cryst. Solids119(2), 214–231 (1990).
[CrossRef]

K. L. Bhatia, D. P. Gosain, G. Parthasarathy, and E. S. R. Gopal, “On the structural features of doped amorphous chalcogenide semiconductors,” J. Non-Cryst. Solids86(1-2), 65–71 (1986).
[CrossRef]

Bhatnagar, V. K.

V. K. Bhatnagar and K. L. Bhatia, “Frequency dependent electrical transport in bismuth-modified amorphous germanium sulfide semiconductors,” J. Non-Cryst. Solids119(2), 214–231 (1990).
[CrossRef]

Bigot, L.

Blasse, G.

M. A. Hamstra, H. F. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349 (1994).
[CrossRef]

Bouwmans, G.

Bufetov, I. A.

S. V. Firstov, A. V. Shubin, V. F. Khopin, M. A. Mel'kumov, I. A. Bufetov, O. I. Medvedkov, A. N. Guryanov, and E. M. Dianov, “Bismuth-doped germanosilicate fibre laser with 20-W output power at 1460 nm,” Quantum Electron.41(7), 581–583 (2011).
[CrossRef]

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett.6(7), 487–504 (2009).
[CrossRef]

Bykov, A. B.

Chen, D.

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008).
[CrossRef]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater.29(5), 556–561 (2007).
[CrossRef]

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res.22(07), 1954–1958 (2007).
[CrossRef]

J. Ren, J. Qiu, B. Wu, and D. Chen, “Ultrabroad infrared luminescence from Bi-doped alkaline earth metal germanate glasses,” J. Mater. Res.22(06), 1574–1578 (2007).
[CrossRef]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids351(30-32), 2388–2393 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett.30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett.29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Chen, D. P.

Cheng, J.

M. Qian, C. Yu, J. Cheng, K. Li, and L. Hu, “The broadband NIR emission properties of Bi doped La2O3–Al2O3–SiO2 glass,” J. Lumin.132(10), 2634–2638 (2012).
[CrossRef]

Chi, G. W.

G. W. Chi, D. C. Zhou, Z. G. Song, and J. B. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater.31(6), 945–948 (2009).
[CrossRef]

Cho, M.-H.

Y. Kim, J. H. Baeck, M.-H. Cho, E. J. Jeong, and D.-H. Ko, “Effects of N2+ ion implantation on phase transition in Ge2Sb2Te5 films,” J. Appl. Phys.100(8), 083502 (2006).
[CrossRef]

Courtine, P.

A. Lebouteiller and P. Courtine, “Improvement of a bulk optical basicity table for oxidic systems,” J. Solid State Chem.137(1), 94–103 (1998).
[CrossRef]

Da, N.

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008).
[CrossRef]

Denker, B.

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “The IR emitting centers in Bi-doped Mg-Al-Si oxide glasses,” Laser Phys.19(5), 1105–1111 (2009).
[CrossRef]

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg-Al-Si oxide glass system,” Appl. Phys. B.95(4), 801–805 (2009).
[CrossRef]

Denker, B. I.

B. I. Denker, B. I. Galagan, V. V. Osiko, I. L. Shulman, S. E. Sverchkov, and E. M. Dianov, “Factors affecting the formation of near infrared-emitting optical centers in Bi-doped glasses,”Appl. Phys. B.98(2-3), 455–458 (2010).
[CrossRef]

Dianov, E.

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “The IR emitting centers in Bi-doped Mg-Al-Si oxide glasses,” Laser Phys.19(5), 1105–1111 (2009).
[CrossRef]

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg-Al-Si oxide glass system,” Appl. Phys. B.95(4), 801–805 (2009).
[CrossRef]

Dianov, E. M.

S. V. Firstov, A. V. Shubin, V. F. Khopin, M. A. Mel'kumov, I. A. Bufetov, O. I. Medvedkov, A. N. Guryanov, and E. M. Dianov, “Bismuth-doped germanosilicate fibre laser with 20-W output power at 1460 nm,” Quantum Electron.41(7), 581–583 (2011).
[CrossRef]

B. I. Denker, B. I. Galagan, V. V. Osiko, I. L. Shulman, S. E. Sverchkov, and E. M. Dianov, “Factors affecting the formation of near infrared-emitting optical centers in Bi-doped glasses,”Appl. Phys. B.98(2-3), 455–458 (2010).
[CrossRef]

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett.6(7), 487–504 (2009).
[CrossRef]

S. Kivisto, J. Puustinen, M. Guina, O. G. Okhotnikov, and E. M. Dianov, “Tunable modelocked bismuth-doped soliton fibre laser,” Electron. Lett.44(25), 1456–1458 (2008).
[CrossRef]

V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient Bismuth-Doped Fiber Lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008).
[CrossRef]

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett.33(13), 1488–1490 (2008).
[CrossRef] [PubMed]

Dimitrov, V.

V. Dimitrov and S. Sakka, “Electronic oxide polarizability and optical basicity of simple oxides. I,” J. Appl. Phys.79(3), 1736–1740 (1996).
[CrossRef]

Dong, G.

Dong, G. P.

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, and X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett.25(5), 1891–1894 (2008).
[CrossRef]

Dvoyrin, V. V.

V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient Bismuth-Doped Fiber Lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008).
[CrossRef]

Ebendorff-Heidepriem, H.

Elliott, S. R.

S. R. Elliott and A. T. Steel, “Mechanism for Doping in Bi Chalcogenide Glasses,” Phys. Rev. Lett.57(11), 1316–1319 (1986).
[CrossRef] [PubMed]

Fattakhova, Z. T.

Ferin, A. A.

Firstov, S. V.

S. V. Firstov, A. V. Shubin, V. F. Khopin, M. A. Mel'kumov, I. A. Bufetov, O. I. Medvedkov, A. N. Guryanov, and E. M. Dianov, “Bismuth-doped germanosilicate fibre laser with 20-W output power at 1460 nm,” Quantum Electron.41(7), 581–583 (2011).
[CrossRef]

Folkerts, H. F.

M. A. Hamstra, H. F. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349 (1994).
[CrossRef]

Fritzsche, H.

H. Fritzsche and M. Kastner, “The effect of charged additives on the carrier concentrations in lone-pair semiconductors,” Philos. Mag. B37(3), 285–292 (1978).
[CrossRef]

Fujimoto, Y.

Y. Fujimoto and M. Nakatsuka, “Infrared Luminescence from Bismuth-Doped Silica Glass,” Jpn. J. Appl. Phys. Part 2 Lett40, L279–L281 (2001).

Fujiwara, T.

H. Masai, Y. Takahashi, and T. Fujiwara, “Addition effect of SnO in optical property of Bi2O3-containing aluminoborate glass,” J. Appl. Phys.105(8), 4 (2009).
[CrossRef]

Gai, N.

Y. Zhou, N. Gai, and J. Wang, “Comparative investigation on spectroscopic properties of Er3+ between Ce3+-doped and B2O3-added bismuth glasses,” J. Phys. Chem. Solids70(2), 261–265 (2009).
[CrossRef]

Galagan, B.

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg-Al-Si oxide glass system,” Appl. Phys. B.95(4), 801–805 (2009).
[CrossRef]

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “The IR emitting centers in Bi-doped Mg-Al-Si oxide glasses,” Laser Phys.19(5), 1105–1111 (2009).
[CrossRef]

Galagan, B. I.

B. I. Denker, B. I. Galagan, V. V. Osiko, I. L. Shulman, S. E. Sverchkov, and E. M. Dianov, “Factors affecting the formation of near infrared-emitting optical centers in Bi-doped glasses,”Appl. Phys. B.98(2-3), 455–458 (2010).
[CrossRef]

Gopal, E. S. R.

K. L. Bhatia, D. P. Gosain, G. Parthasarathy, and E. S. R. Gopal, “On the structural features of doped amorphous chalcogenide semiconductors,” J. Non-Cryst. Solids86(1-2), 65–71 (1986).
[CrossRef]

Gosain, D. P.

K. L. Bhatia, D. P. Gosain, G. Parthasarathy, and E. S. R. Gopal, “On the structural features of doped amorphous chalcogenide semiconductors,” J. Non-Cryst. Solids86(1-2), 65–71 (1986).
[CrossRef]

Guina, M.

S. Kivisto, J. Puustinen, M. Guina, O. G. Okhotnikov, and E. M. Dianov, “Tunable modelocked bismuth-doped soliton fibre laser,” Electron. Lett.44(25), 1456–1458 (2008).
[CrossRef]

Guryanov, A. N.

S. V. Firstov, A. V. Shubin, V. F. Khopin, M. A. Mel'kumov, I. A. Bufetov, O. I. Medvedkov, A. N. Guryanov, and E. M. Dianov, “Bismuth-doped germanosilicate fibre laser with 20-W output power at 1460 nm,” Quantum Electron.41(7), 581–583 (2011).
[CrossRef]

Hamstra, M. A.

M. A. Hamstra, H. F. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349 (1994).
[CrossRef]

Haula, E. V.

Hewak, D. W.

Hiraki, A.

S. Okano, H. Yamakawa, M. Suzuki, and A. Hiraki, “Fabrication of Chalcogenide Amorphous Semiconductor Diodes Using Low Temperature Thermal Diffusion Techniques,” Jpn. J. Appl. Phys.26(Part 1, No. 7), 1102–1106 (1987).
[CrossRef]

S. Okano, M. Suzuki, T. Imura, and A. Hiraki, “Chalcogenide amorphous-semiconductor diodes,” Jpn. J. Appl. Phys. Part 2 Lett24, L445–L448 (1985).

Hu, L.

M. Qian, C. Yu, J. Cheng, K. Li, and L. Hu, “The broadband NIR emission properties of Bi doped La2O3–Al2O3–SiO2 glass,” J. Lumin.132(10), 2634–2638 (2012).
[CrossRef]

Hughes, M.

M. Hughes, T. Suzuki, and Y. Ohishi, “Towards a high-performance optical gain medium based on bismuth and aluminum co-doped germanate glass,” J. Non-Cryst. Solids356(6-8), 407–418 (2010).
[CrossRef]

M. Hughes, T. Suzuki, and Y. Ohishi, “Advanced bismuth doped lead-germanate glass for broadband optical gain devices,” J. Opt. Soc. Am. B25(8), 1380–1386 (2008).
[CrossRef]

Hughes, M. A.

M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional dependence of the optical properties of bismuth doped lead-aluminum-germanate glass,” Opt. Mater.32(9), 1028–1034 (2010).
[CrossRef]

M. A. Hughes, T. Suzuki, and Y. Ohishi, “Spectroscopy of bismuth doped lead-aluminum-germanate glass and yttrium-aluminum-silicate glass,” J. Non-Cryst. Solids356(44-49), 2302–2309 (2010).
[CrossRef]

M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria-alumina-silica glass,” Opt. Mater.32(2), 368–373 (2009).
[CrossRef]

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express17(22), 19345–19355 (2009).
[CrossRef] [PubMed]

Imura, T.

S. Okano, M. Suzuki, T. Imura, and A. Hiraki, “Chalcogenide amorphous-semiconductor diodes,” Jpn. J. Appl. Phys. Part 2 Lett24, L445–L448 (1985).

Jeong, E. J.

Y. Kim, J. H. Baeck, M.-H. Cho, E. J. Jeong, and D.-H. Ko, “Effects of N2+ ion implantation on phase transition in Ge2Sb2Te5 films,” J. Appl. Phys.100(8), 083502 (2006).
[CrossRef]

Jha, A.

X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater.33(1), 14–18 (2010).
[CrossRef]

Jiang, X.

X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater.33(1), 14–18 (2010).
[CrossRef]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater.29(5), 556–561 (2007).
[CrossRef]

J. Ren, Y. Qiao, C. Zhu, X. Jiang, and J. Qiu, “Optical amplification near 1300 nm in bismuth-doped strontium germanate glass,” J. Opt. Soc. Am. B24(10), 2597–2600 (2007).
[CrossRef]

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res.22(07), 1954–1958 (2007).
[CrossRef]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids351(30-32), 2388–2393 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett.29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Jiang, X. W.

Kastner, M.

H. Fritzsche and M. Kastner, “The effect of charged additives on the carrier concentrations in lone-pair semiconductors,” Philos. Mag. B37(3), 285–292 (1978).
[CrossRef]

Kazin, P. E.

Khonthon, S.

S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence Characteristics of Te- and Bi-Doped Glasses and Glass-Ceramics,” J. Ceram. Soc. Jpn.115(1340), 259–263 (2007).
[CrossRef]

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett.90(26), 261110 (2007).
[CrossRef]

Khopin, V. F.

S. V. Firstov, A. V. Shubin, V. F. Khopin, M. A. Mel'kumov, I. A. Bufetov, O. I. Medvedkov, A. N. Guryanov, and E. M. Dianov, “Bismuth-doped germanosilicate fibre laser with 20-W output power at 1460 nm,” Quantum Electron.41(7), 581–583 (2011).
[CrossRef]

Kim, Y.

Y. Kim, J. H. Baeck, M.-H. Cho, E. J. Jeong, and D.-H. Ko, “Effects of N2+ ion implantation on phase transition in Ge2Sb2Te5 films,” J. Appl. Phys.100(8), 083502 (2006).
[CrossRef]

Kivisto, S.

S. Kivisto, J. Puustinen, M. Guina, O. G. Okhotnikov, and E. M. Dianov, “Tunable modelocked bismuth-doped soliton fibre laser,” Electron. Lett.44(25), 1456–1458 (2008).
[CrossRef]

Klikorka, J.

J. Málek, J. Klikorka, L. Beneš, L. Tichý, and A. Tříska, “Electrical and optical properties of Ge20Sb15−xBixBi65 glasses,” J. Mater. Sci.21(2), 488–492 (1986).
[CrossRef]

Ko, D.-H.

Y. Kim, J. H. Baeck, M.-H. Cho, E. J. Jeong, and D.-H. Ko, “Effects of N2+ ion implantation on phase transition in Ge2Sb2Te5 films,” J. Appl. Phys.100(8), 083502 (2006).
[CrossRef]

Korchak, V. N.

Kounavis, P.

P. Kounavis, E. Mytilineou, and M. Roilos, “p-n junctions from sputtered Ge25Se75 - xBix films,” J. Appl. Phys.66(2), 708–710 (1989).
[CrossRef]

Lebouteiller, A.

A. Lebouteiller and P. Courtine, “Improvement of a bulk optical basicity table for oxidic systems,” J. Solid State Chem.137(1), 94–103 (1998).
[CrossRef]

Li, K.

M. Qian, C. Yu, J. Cheng, K. Li, and L. Hu, “The broadband NIR emission properties of Bi doped La2O3–Al2O3–SiO2 glass,” J. Lumin.132(10), 2634–2638 (2012).
[CrossRef]

Lin, C. G.

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, and X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett.25(5), 1891–1894 (2008).
[CrossRef]

Liu, X. F.

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, and X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett.25(5), 1891–1894 (2008).
[CrossRef]

Ma, Z.

Málek, J.

J. Málek, J. Klikorka, L. Beneš, L. Tichý, and A. Tříska, “Electrical and optical properties of Ge20Sb15−xBixBi65 glasses,” J. Mater. Sci.21(2), 488–492 (1986).
[CrossRef]

Manning, S.

Masai, H.

H. Masai, Y. Takahashi, and T. Fujiwara, “Addition effect of SnO in optical property of Bi2O3-containing aluminoborate glass,” J. Appl. Phys.105(8), 4 (2009).
[CrossRef]

Mashinsky, V. M.

V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient Bismuth-Doped Fiber Lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008).
[CrossRef]

Medvedkov, O. I.

S. V. Firstov, A. V. Shubin, V. F. Khopin, M. A. Mel'kumov, I. A. Bufetov, O. I. Medvedkov, A. N. Guryanov, and E. M. Dianov, “Bismuth-doped germanosilicate fibre laser with 20-W output power at 1460 nm,” Quantum Electron.41(7), 581–583 (2011).
[CrossRef]

Mel'kumov, M. A.

S. V. Firstov, A. V. Shubin, V. F. Khopin, M. A. Mel'kumov, I. A. Bufetov, O. I. Medvedkov, A. N. Guryanov, and E. M. Dianov, “Bismuth-doped germanosilicate fibre laser with 20-W output power at 1460 nm,” Quantum Electron.41(7), 581–583 (2011).
[CrossRef]

Meng, X.

Meng, X. G.

Minami, T.

N. Tohge, T. Minami, Y. Yamamoto, and M. Tanaka, “Electrical and optical properties of n-type semiconducting chalcogenide glasses in the system Ge-Bi-Se,” J. Appl. Phys.51(2), 1048–1053 (1980).
[CrossRef]

Morimoto, S.

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett.90(26), 261110 (2007).
[CrossRef]

S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence Characteristics of Te- and Bi-Doped Glasses and Glass-Ceramics,” J. Ceram. Soc. Jpn.115(1340), 259–263 (2007).
[CrossRef]

Mytilineou, E.

P. Kounavis, E. Mytilineou, and M. Roilos, “p-n junctions from sputtered Ge25Se75 - xBix films,” J. Appl. Phys.66(2), 708–710 (1989).
[CrossRef]

Nagels, P.

L. Tichý, H. Tichá, A. Třiska, and P. Nagels, “Is the n-type conductivity in some Bi-doped chalcogenide glasses controlled by percolation?” Solid State Commun.53(4), 399–402 (1985).
[CrossRef]

Nakatsuka, M.

Y. Fujimoto and M. Nakatsuka, “Infrared Luminescence from Bismuth-Doped Silica Glass,” Jpn. J. Appl. Phys. Part 2 Lett40, L279–L281 (2001).

Ohishi, Y.

M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional dependence of the optical properties of bismuth doped lead-aluminum-germanate glass,” Opt. Mater.32(9), 1028–1034 (2010).
[CrossRef]

M. Hughes, T. Suzuki, and Y. Ohishi, “Towards a high-performance optical gain medium based on bismuth and aluminum co-doped germanate glass,” J. Non-Cryst. Solids356(6-8), 407–418 (2010).
[CrossRef]

M. A. Hughes, T. Suzuki, and Y. Ohishi, “Spectroscopy of bismuth doped lead-aluminum-germanate glass and yttrium-aluminum-silicate glass,” J. Non-Cryst. Solids356(44-49), 2302–2309 (2010).
[CrossRef]

M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria-alumina-silica glass,” Opt. Mater.32(2), 368–373 (2009).
[CrossRef]

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express17(22), 19345–19355 (2009).
[CrossRef] [PubMed]

M. Hughes, T. Suzuki, and Y. Ohishi, “Advanced bismuth doped lead-germanate glass for broadband optical gain devices,” J. Opt. Soc. Am. B25(8), 1380–1386 (2008).
[CrossRef]

S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence Characteristics of Te- and Bi-Doped Glasses and Glass-Ceramics,” J. Ceram. Soc. Jpn.115(1340), 259–263 (2007).
[CrossRef]

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett.90(26), 261110 (2007).
[CrossRef]

T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett.88(19), 191912 (2006).
[CrossRef]

Okano, S.

S. Okano, H. Yamakawa, M. Suzuki, and A. Hiraki, “Fabrication of Chalcogenide Amorphous Semiconductor Diodes Using Low Temperature Thermal Diffusion Techniques,” Jpn. J. Appl. Phys.26(Part 1, No. 7), 1102–1106 (1987).
[CrossRef]

S. Okano, M. Suzuki, T. Imura, and A. Hiraki, “Chalcogenide amorphous-semiconductor diodes,” Jpn. J. Appl. Phys. Part 2 Lett24, L445–L448 (1985).

S. Okano, M. Suzuki, and M. Suzuki, “Electrical contact properties of metal-chalcogenide amorphous-semiconductor systems,” Jpn. J. Appl. Phys.20(9), 1635–1640 (1981).
[CrossRef]

Okhotnikov, O. G.

S. Kivisto, J. Puustinen, M. Guina, O. G. Okhotnikov, and E. M. Dianov, “Tunable modelocked bismuth-doped soliton fibre laser,” Electron. Lett.44(25), 1456–1458 (2008).
[CrossRef]

Osiko, V.

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg-Al-Si oxide glass system,” Appl. Phys. B.95(4), 801–805 (2009).
[CrossRef]

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “The IR emitting centers in Bi-doped Mg-Al-Si oxide glasses,” Laser Phys.19(5), 1105–1111 (2009).
[CrossRef]

Osiko, V. V.

B. I. Denker, B. I. Galagan, V. V. Osiko, I. L. Shulman, S. E. Sverchkov, and E. M. Dianov, “Factors affecting the formation of near infrared-emitting optical centers in Bi-doped glasses,”Appl. Phys. B.98(2-3), 455–458 (2010).
[CrossRef]

Parke, S.

S. Parke and R. S. Webb, “The optical properties of thallium, lead and bismuth in oxide glasses,” J. Phys. Chem. Solids34(1), 85–95 (1973).
[CrossRef]

Parthasarathy, G.

K. L. Bhatia, D. P. Gosain, G. Parthasarathy, and E. S. R. Gopal, “On the structural features of doped amorphous chalcogenide semiconductors,” J. Non-Cryst. Solids86(1-2), 65–71 (1986).
[CrossRef]

Peng, M.

W. Xu, M. Peng, Z. Ma, G. Dong, and J. Qiu, “A new study on bismuth doped oxide glasses,” Opt. Express20(14), 15692–15702 (2012).
[CrossRef] [PubMed]

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008).
[CrossRef]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater.29(5), 556–561 (2007).
[CrossRef]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids351(30-32), 2388–2393 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett.30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett.29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Peng, M. Y.

Petricevic, V.

Phillips, J. C.

J. C. Phillips, “Constraint theory and carrier-type reversal in Bi-Ge chalcogenide alloy glasses,” Phys. Rev. B Condens. Matter36(8), 4265–4270 (1987).
[CrossRef] [PubMed]

Plotnichenko, V. G.

Popov, S. V.

Puustinen, J.

S. Kivisto, J. Puustinen, M. Guina, O. G. Okhotnikov, and E. M. Dianov, “Tunable modelocked bismuth-doped soliton fibre laser,” Electron. Lett.44(25), 1456–1458 (2008).
[CrossRef]

Qian, M.

M. Qian, C. Yu, J. Cheng, K. Li, and L. Hu, “The broadband NIR emission properties of Bi doped La2O3–Al2O3–SiO2 glass,” J. Lumin.132(10), 2634–2638 (2012).
[CrossRef]

Qiao, Y.

Qiu, J.

W. Xu, M. Peng, Z. Ma, G. Dong, and J. Qiu, “A new study on bismuth doped oxide glasses,” Opt. Express20(14), 15692–15702 (2012).
[CrossRef] [PubMed]

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008).
[CrossRef]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater.29(5), 556–561 (2007).
[CrossRef]

J. Ren, J. Qiu, B. Wu, and D. Chen, “Ultrabroad infrared luminescence from Bi-doped alkaline earth metal germanate glasses,” J. Mater. Res.22(06), 1574–1578 (2007).
[CrossRef]

J. Ren, Y. Qiao, C. Zhu, X. Jiang, and J. Qiu, “Optical amplification near 1300 nm in bismuth-doped strontium germanate glass,” J. Opt. Soc. Am. B24(10), 2597–2600 (2007).
[CrossRef]

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res.22(07), 1954–1958 (2007).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett.30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids351(30-32), 2388–2393 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett.29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Qiu, J. B.

G. W. Chi, D. C. Zhou, Z. G. Song, and J. B. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater.31(6), 945–948 (2009).
[CrossRef]

Qiu, J. R.

Razdobreev, I.

Ren, J.

J. Ren, Y. Qiao, C. Zhu, X. Jiang, and J. Qiu, “Optical amplification near 1300 nm in bismuth-doped strontium germanate glass,” J. Opt. Soc. Am. B24(10), 2597–2600 (2007).
[CrossRef]

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res.22(07), 1954–1958 (2007).
[CrossRef]

J. Ren, J. Qiu, B. Wu, and D. Chen, “Ultrabroad infrared luminescence from Bi-doped alkaline earth metal germanate glasses,” J. Mater. Res.22(06), 1574–1578 (2007).
[CrossRef]

Ren, J. J.

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, and X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett.25(5), 1891–1894 (2008).
[CrossRef]

Roilos, M.

P. Kounavis, E. Mytilineou, and M. Roilos, “p-n junctions from sputtered Ge25Se75 - xBix films,” J. Appl. Phys.66(2), 708–710 (1989).
[CrossRef]

Romanov, A. N.

Ruan, J.

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, and X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett.25(5), 1891–1894 (2008).
[CrossRef]

Rulkov, A. B.

Sakka, S.

V. Dimitrov and S. Sakka, “Electronic oxide polarizability and optical basicity of simple oxides. I,” J. Appl. Phys.79(3), 1736–1740 (1996).
[CrossRef]

Sharonov, M. Y.

Shubin, A. V.

S. V. Firstov, A. V. Shubin, V. F. Khopin, M. A. Mel'kumov, I. A. Bufetov, O. I. Medvedkov, A. N. Guryanov, and E. M. Dianov, “Bismuth-doped germanosilicate fibre laser with 20-W output power at 1460 nm,” Quantum Electron.41(7), 581–583 (2011).
[CrossRef]

Shulman, I.

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “The IR emitting centers in Bi-doped Mg-Al-Si oxide glasses,” Laser Phys.19(5), 1105–1111 (2009).
[CrossRef]

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg-Al-Si oxide glass system,” Appl. Phys. B.95(4), 801–805 (2009).
[CrossRef]

Shulman, I. L.

B. I. Denker, B. I. Galagan, V. V. Osiko, I. L. Shulman, S. E. Sverchkov, and E. M. Dianov, “Factors affecting the formation of near infrared-emitting optical centers in Bi-doped glasses,”Appl. Phys. B.98(2-3), 455–458 (2010).
[CrossRef]

Sokolov, V. O.

Song, Z. G.

G. W. Chi, D. C. Zhou, Z. G. Song, and J. B. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater.31(6), 945–948 (2009).
[CrossRef]

Steel, A. T.

S. R. Elliott and A. T. Steel, “Mechanism for Doping in Bi Chalcogenide Glasses,” Phys. Rev. Lett.57(11), 1316–1319 (1986).
[CrossRef] [PubMed]

Sulimov, V. B.

Suzuki, M.

S. Okano, H. Yamakawa, M. Suzuki, and A. Hiraki, “Fabrication of Chalcogenide Amorphous Semiconductor Diodes Using Low Temperature Thermal Diffusion Techniques,” Jpn. J. Appl. Phys.26(Part 1, No. 7), 1102–1106 (1987).
[CrossRef]

S. Okano, M. Suzuki, T. Imura, and A. Hiraki, “Chalcogenide amorphous-semiconductor diodes,” Jpn. J. Appl. Phys. Part 2 Lett24, L445–L448 (1985).

S. Okano, M. Suzuki, and M. Suzuki, “Electrical contact properties of metal-chalcogenide amorphous-semiconductor systems,” Jpn. J. Appl. Phys.20(9), 1635–1640 (1981).
[CrossRef]

S. Okano, M. Suzuki, and M. Suzuki, “Electrical contact properties of metal-chalcogenide amorphous-semiconductor systems,” Jpn. J. Appl. Phys.20(9), 1635–1640 (1981).
[CrossRef]

Suzuki, T.

M. A. Hughes, T. Suzuki, and Y. Ohishi, “Spectroscopy of bismuth doped lead-aluminum-germanate glass and yttrium-aluminum-silicate glass,” J. Non-Cryst. Solids356(44-49), 2302–2309 (2010).
[CrossRef]

M. Hughes, T. Suzuki, and Y. Ohishi, “Towards a high-performance optical gain medium based on bismuth and aluminum co-doped germanate glass,” J. Non-Cryst. Solids356(6-8), 407–418 (2010).
[CrossRef]

M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional dependence of the optical properties of bismuth doped lead-aluminum-germanate glass,” Opt. Mater.32(9), 1028–1034 (2010).
[CrossRef]

M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria-alumina-silica glass,” Opt. Mater.32(2), 368–373 (2009).
[CrossRef]

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express17(22), 19345–19355 (2009).
[CrossRef] [PubMed]

M. Hughes, T. Suzuki, and Y. Ohishi, “Advanced bismuth doped lead-germanate glass for broadband optical gain devices,” J. Opt. Soc. Am. B25(8), 1380–1386 (2008).
[CrossRef]

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett.90(26), 261110 (2007).
[CrossRef]

T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett.88(19), 191912 (2006).
[CrossRef]

Sverchkov, S.

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg-Al-Si oxide glass system,” Appl. Phys. B.95(4), 801–805 (2009).
[CrossRef]

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “The IR emitting centers in Bi-doped Mg-Al-Si oxide glasses,” Laser Phys.19(5), 1105–1111 (2009).
[CrossRef]

Sverchkov, S. E.

B. I. Denker, B. I. Galagan, V. V. Osiko, I. L. Shulman, S. E. Sverchkov, and E. M. Dianov, “Factors affecting the formation of near infrared-emitting optical centers in Bi-doped glasses,”Appl. Phys. B.98(2-3), 455–458 (2010).
[CrossRef]

Takahashi, Y.

H. Masai, Y. Takahashi, and T. Fujiwara, “Addition effect of SnO in optical property of Bi2O3-containing aluminoborate glass,” J. Appl. Phys.105(8), 4 (2009).
[CrossRef]

Tanaka, M.

N. Tohge, T. Minami, Y. Yamamoto, and M. Tanaka, “Electrical and optical properties of n-type semiconducting chalcogenide glasses in the system Ge-Bi-Se,” J. Appl. Phys.51(2), 1048–1053 (1980).
[CrossRef]

Tao, H. Z.

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, and X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett.25(5), 1891–1894 (2008).
[CrossRef]

Taylor, J. R.

Tichá, H.

L. Tichý, H. Tichá, A. Třiska, and P. Nagels, “Is the n-type conductivity in some Bi-doped chalcogenide glasses controlled by percolation?” Solid State Commun.53(4), 399–402 (1985).
[CrossRef]

Tichý, L.

J. Málek, J. Klikorka, L. Beneš, L. Tichý, and A. Tříska, “Electrical and optical properties of Ge20Sb15−xBixBi65 glasses,” J. Mater. Sci.21(2), 488–492 (1986).
[CrossRef]

L. Tichý, H. Tichá, A. Třiska, and P. Nagels, “Is the n-type conductivity in some Bi-doped chalcogenide glasses controlled by percolation?” Solid State Commun.53(4), 399–402 (1985).
[CrossRef]

Tohge, N.

N. Tohge, T. Minami, Y. Yamamoto, and M. Tanaka, “Electrical and optical properties of n-type semiconducting chalcogenide glasses in the system Ge-Bi-Se,” J. Appl. Phys.51(2), 1048–1053 (1980).
[CrossRef]

Triska, A.

L. Tichý, H. Tichá, A. Třiska, and P. Nagels, “Is the n-type conductivity in some Bi-doped chalcogenide glasses controlled by percolation?” Solid State Commun.53(4), 399–402 (1985).
[CrossRef]

Tríska, A.

J. Málek, J. Klikorka, L. Beneš, L. Tichý, and A. Tříska, “Electrical and optical properties of Ge20Sb15−xBixBi65 glasses,” J. Mater. Sci.21(2), 488–492 (1986).
[CrossRef]

Trusov, L. A.

Tsvetkov, V. B.

Usovich, O. V.

Veber, A. A.

Wang, C.

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008).
[CrossRef]

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res.22(07), 1954–1958 (2007).
[CrossRef]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids351(30-32), 2388–2393 (2005).
[CrossRef]

Wang, J.

Y. Zhou, N. Gai, and J. Wang, “Comparative investigation on spectroscopic properties of Er3+ between Ce3+-doped and B2O3-added bismuth glasses,” J. Phys. Chem. Solids70(2), 261–265 (2009).
[CrossRef]

Wang, X.

X. Wang and H. Xia, “Infrared superbroadband emission of Bi ion doped germanium-aluminum-sodium glass,” Opt. Commun.268(1), 75–78 (2006).
[CrossRef]

Webb, R. S.

S. Parke and R. S. Webb, “The optical properties of thallium, lead and bismuth in oxide glasses,” J. Phys. Chem. Solids34(1), 85–95 (1973).
[CrossRef]

Winterstein, A.

Wondraczek, L.

Wu, B.

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008).
[CrossRef]

J. Ren, J. Qiu, B. Wu, and D. Chen, “Ultrabroad infrared luminescence from Bi-doped alkaline earth metal germanate glasses,” J. Mater. Res.22(06), 1574–1578 (2007).
[CrossRef]

Xia, H.

X. Wang and H. Xia, “Infrared superbroadband emission of Bi ion doped germanium-aluminum-sodium glass,” Opt. Commun.268(1), 75–78 (2006).
[CrossRef]

Xiao, X. D.

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, and X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett.25(5), 1891–1894 (2008).
[CrossRef]

Xu, W.

Yamakawa, H.

S. Okano, H. Yamakawa, M. Suzuki, and A. Hiraki, “Fabrication of Chalcogenide Amorphous Semiconductor Diodes Using Low Temperature Thermal Diffusion Techniques,” Jpn. J. Appl. Phys.26(Part 1, No. 7), 1102–1106 (1987).
[CrossRef]

Yamamoto, Y.

N. Tohge, T. Minami, Y. Yamamoto, and M. Tanaka, “Electrical and optical properties of n-type semiconducting chalcogenide glasses in the system Ge-Bi-Se,” J. Appl. Phys.51(2), 1048–1053 (1980).
[CrossRef]

Yang, I.

Yu, C.

M. Qian, C. Yu, J. Cheng, K. Li, and L. Hu, “The broadband NIR emission properties of Bi doped La2O3–Al2O3–SiO2 glass,” J. Lumin.132(10), 2634–2638 (2012).
[CrossRef]

Zhao, Q. Z.

Zhao, X. J.

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, and X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett.25(5), 1891–1894 (2008).
[CrossRef]

Zhou, D. C.

G. W. Chi, D. C. Zhou, Z. G. Song, and J. B. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater.31(6), 945–948 (2009).
[CrossRef]

Zhou, Y.

Y. Zhou, N. Gai, and J. Wang, “Comparative investigation on spectroscopic properties of Er3+ between Ce3+-doped and B2O3-added bismuth glasses,” J. Phys. Chem. Solids70(2), 261–265 (2009).
[CrossRef]

Zhu, C.

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008).
[CrossRef]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater.29(5), 556–561 (2007).
[CrossRef]

J. Ren, Y. Qiao, C. Zhu, X. Jiang, and J. Qiu, “Optical amplification near 1300 nm in bismuth-doped strontium germanate glass,” J. Opt. Soc. Am. B24(10), 2597–2600 (2007).
[CrossRef]

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res.22(07), 1954–1958 (2007).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett.30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids351(30-32), 2388–2393 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett.29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Zhu, C. S.

Appl. Phys. B. (2)

B. I. Denker, B. I. Galagan, V. V. Osiko, I. L. Shulman, S. E. Sverchkov, and E. M. Dianov, “Factors affecting the formation of near infrared-emitting optical centers in Bi-doped glasses,”Appl. Phys. B.98(2-3), 455–458 (2010).
[CrossRef]

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg-Al-Si oxide glass system,” Appl. Phys. B.95(4), 801–805 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett.90(26), 261110 (2007).
[CrossRef]

T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett.88(19), 191912 (2006).
[CrossRef]

Chin. Phys. Lett. (1)

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, and X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett.25(5), 1891–1894 (2008).
[CrossRef]

Electron. Lett. (1)

S. Kivisto, J. Puustinen, M. Guina, O. G. Okhotnikov, and E. M. Dianov, “Tunable modelocked bismuth-doped soliton fibre laser,” Electron. Lett.44(25), 1456–1458 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient Bismuth-Doped Fiber Lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008).
[CrossRef]

J. Appl. Phys. (5)

P. Kounavis, E. Mytilineou, and M. Roilos, “p-n junctions from sputtered Ge25Se75 - xBix films,” J. Appl. Phys.66(2), 708–710 (1989).
[CrossRef]

Y. Kim, J. H. Baeck, M.-H. Cho, E. J. Jeong, and D.-H. Ko, “Effects of N2+ ion implantation on phase transition in Ge2Sb2Te5 films,” J. Appl. Phys.100(8), 083502 (2006).
[CrossRef]

N. Tohge, T. Minami, Y. Yamamoto, and M. Tanaka, “Electrical and optical properties of n-type semiconducting chalcogenide glasses in the system Ge-Bi-Se,” J. Appl. Phys.51(2), 1048–1053 (1980).
[CrossRef]

H. Masai, Y. Takahashi, and T. Fujiwara, “Addition effect of SnO in optical property of Bi2O3-containing aluminoborate glass,” J. Appl. Phys.105(8), 4 (2009).
[CrossRef]

V. Dimitrov and S. Sakka, “Electronic oxide polarizability and optical basicity of simple oxides. I,” J. Appl. Phys.79(3), 1736–1740 (1996).
[CrossRef]

J. Ceram. Soc. Jpn. (1)

S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence Characteristics of Te- and Bi-Doped Glasses and Glass-Ceramics,” J. Ceram. Soc. Jpn.115(1340), 259–263 (2007).
[CrossRef]

J. Lumin. (1)

M. Qian, C. Yu, J. Cheng, K. Li, and L. Hu, “The broadband NIR emission properties of Bi doped La2O3–Al2O3–SiO2 glass,” J. Lumin.132(10), 2634–2638 (2012).
[CrossRef]

J. Mater. Chem. (1)

M. A. Hamstra, H. F. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349 (1994).
[CrossRef]

J. Mater. Res. (2)

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res.22(07), 1954–1958 (2007).
[CrossRef]

J. Ren, J. Qiu, B. Wu, and D. Chen, “Ultrabroad infrared luminescence from Bi-doped alkaline earth metal germanate glasses,” J. Mater. Res.22(06), 1574–1578 (2007).
[CrossRef]

J. Mater. Sci. (1)

J. Málek, J. Klikorka, L. Beneš, L. Tichý, and A. Tříska, “Electrical and optical properties of Ge20Sb15−xBixBi65 glasses,” J. Mater. Sci.21(2), 488–492 (1986).
[CrossRef]

J. Non-Cryst. Solids (6)

M. A. Hughes, T. Suzuki, and Y. Ohishi, “Spectroscopy of bismuth doped lead-aluminum-germanate glass and yttrium-aluminum-silicate glass,” J. Non-Cryst. Solids356(44-49), 2302–2309 (2010).
[CrossRef]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids351(30-32), 2388–2393 (2005).
[CrossRef]

M. Hughes, T. Suzuki, and Y. Ohishi, “Towards a high-performance optical gain medium based on bismuth and aluminum co-doped germanate glass,” J. Non-Cryst. Solids356(6-8), 407–418 (2010).
[CrossRef]

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008).
[CrossRef]

K. L. Bhatia, D. P. Gosain, G. Parthasarathy, and E. S. R. Gopal, “On the structural features of doped amorphous chalcogenide semiconductors,” J. Non-Cryst. Solids86(1-2), 65–71 (1986).
[CrossRef]

V. K. Bhatnagar and K. L. Bhatia, “Frequency dependent electrical transport in bismuth-modified amorphous germanium sulfide semiconductors,” J. Non-Cryst. Solids119(2), 214–231 (1990).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. Solids (2)

Y. Zhou, N. Gai, and J. Wang, “Comparative investigation on spectroscopic properties of Er3+ between Ce3+-doped and B2O3-added bismuth glasses,” J. Phys. Chem. Solids70(2), 261–265 (2009).
[CrossRef]

S. Parke and R. S. Webb, “The optical properties of thallium, lead and bismuth in oxide glasses,” J. Phys. Chem. Solids34(1), 85–95 (1973).
[CrossRef]

J. Solid State Chem. (1)

A. Lebouteiller and P. Courtine, “Improvement of a bulk optical basicity table for oxidic systems,” J. Solid State Chem.137(1), 94–103 (1998).
[CrossRef]

Jpn. J. Appl. Phys. (2)

S. Okano, M. Suzuki, and M. Suzuki, “Electrical contact properties of metal-chalcogenide amorphous-semiconductor systems,” Jpn. J. Appl. Phys.20(9), 1635–1640 (1981).
[CrossRef]

S. Okano, H. Yamakawa, M. Suzuki, and A. Hiraki, “Fabrication of Chalcogenide Amorphous Semiconductor Diodes Using Low Temperature Thermal Diffusion Techniques,” Jpn. J. Appl. Phys.26(Part 1, No. 7), 1102–1106 (1987).
[CrossRef]

Jpn. J. Appl. Phys. Part 2 Lett (2)

S. Okano, M. Suzuki, T. Imura, and A. Hiraki, “Chalcogenide amorphous-semiconductor diodes,” Jpn. J. Appl. Phys. Part 2 Lett24, L445–L448 (1985).

Y. Fujimoto and M. Nakatsuka, “Infrared Luminescence from Bismuth-Doped Silica Glass,” Jpn. J. Appl. Phys. Part 2 Lett40, L279–L281 (2001).

Laser Phys. (1)

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “The IR emitting centers in Bi-doped Mg-Al-Si oxide glasses,” Laser Phys.19(5), 1105–1111 (2009).
[CrossRef]

Laser Phys. Lett. (1)

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett.6(7), 487–504 (2009).
[CrossRef]

Opt. Commun. (1)

X. Wang and H. Xia, “Infrared superbroadband emission of Bi ion doped germanium-aluminum-sodium glass,” Opt. Commun.268(1), 75–78 (2006).
[CrossRef]

Opt. Express (6)

Opt. Lett. (4)

Opt. Mater. (5)

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater.29(5), 556–561 (2007).
[CrossRef]

G. W. Chi, D. C. Zhou, Z. G. Song, and J. B. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater.31(6), 945–948 (2009).
[CrossRef]

M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional dependence of the optical properties of bismuth doped lead-aluminum-germanate glass,” Opt. Mater.32(9), 1028–1034 (2010).
[CrossRef]

X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater.33(1), 14–18 (2010).
[CrossRef]

M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria-alumina-silica glass,” Opt. Mater.32(2), 368–373 (2009).
[CrossRef]

Opt. Mater. Express (1)

Philos. Mag. B (1)

H. Fritzsche and M. Kastner, “The effect of charged additives on the carrier concentrations in lone-pair semiconductors,” Philos. Mag. B37(3), 285–292 (1978).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

J. C. Phillips, “Constraint theory and carrier-type reversal in Bi-Ge chalcogenide alloy glasses,” Phys. Rev. B Condens. Matter36(8), 4265–4270 (1987).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

S. R. Elliott and A. T. Steel, “Mechanism for Doping in Bi Chalcogenide Glasses,” Phys. Rev. Lett.57(11), 1316–1319 (1986).
[CrossRef] [PubMed]

Quantum Electron. (1)

S. V. Firstov, A. V. Shubin, V. F. Khopin, M. A. Mel'kumov, I. A. Bufetov, O. I. Medvedkov, A. N. Guryanov, and E. M. Dianov, “Bismuth-doped germanosilicate fibre laser with 20-W output power at 1460 nm,” Quantum Electron.41(7), 581–583 (2011).
[CrossRef]

Solid State Commun. (1)

L. Tichý, H. Tichá, A. Třiska, and P. Nagels, “Is the n-type conductivity in some Bi-doped chalcogenide glasses controlled by percolation?” Solid State Commun.53(4), 399–402 (1985).
[CrossRef]

Other (4)

S. Yoo, M. P. Kalita, J. Sahu, J. Nilsson, and D. Payne, “Bismuth-doped fiber laser at 1.16 mm,” in Lasers and Electro-Optics, Conference on Quantum Electronics and Laser Science. CLEO/QELS, 2008), 1–2.

H. Bach, F. K. G. Baucke, and D. Krause, Electrochemistry of Glasses and Glass Melts, Including Glass Electrodes (Springer, 2000).

Y. Ohishi, “Novel photonics materials for broadband lightwave processing,” in Optical Components and Materials IV, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) 2007, 646908.
[CrossRef]

S. Sumimiya, T. Nanba, Y. Miura, and S. Sakida, “Optical Properties of Bi2O3-La2O3-Al2O3-B2O3 Glasses,” in Advances in Glass and Optical Materials II (John Wiley & Sons, Inc., 2006), pp. 127–133.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Contour plots of PL emission from Bi-doped GLSO, after [12], and Bi- and Pb-doped germanate bulk glasses, after [15]. The intensity is plotted on a log scale.

Fig. 2
Fig. 2

Log-log plot of the absorption coefficient of the Bi-related 500 nm absorption band as a function of Bi2O3 doping concentration for various oxide glasses. Solid lines are linear fits. The inset shows the gradient of the fits as a function of the optical basicity of the glass hosts; errors were estimated from the R2 value of the linear fits.

Fig. 3
Fig. 3

DTA scan of Bi-doped lead germanate glasses.

Fig. 4
Fig. 4

TRIM simulation of Bi- and Pb-implanted GLSO, GeS and GaGeS glass at various doses and energies, and RBS profile of Pb implanted in GLSO thin film. Inset shows a close-up of the lower dose samples.

Fig. 5
Fig. 5

(a) PL spectra of Bi- and Pb-implanted GLSO thin films at various doses. Excitation was at 782 nm. The inset shows a close-up of low PL intensities. (b) log-log plot showing the integrated PL intensity against Bi2O3 content in La2O3-Al2O3-SiO2 glass, after [58], and dose in Bi-implanted GLSO thin films.

Fig. 6
Fig. 6

PL spectra of Pb-implanted GLSO thin film, compared to various Pb- and Bi-doped germanate and GLSO bulk glasses, excited at around 800 nm. Spectra for Ge28O56F12A14Pb0.3 and Ge28O56F11A14Bi0.6 are after [15]

Fig. 7
Fig. 7

PL spectra of Bi- and Pb-implanted GLSO films at various doses, and bulk Bi-doped GLSO and LAS glass, excited at 514 nm. The PL intensities of the implanted films are plotted relative to each other, the bulk samples are not. The upper inset shows a close-up of the lower intensity spectra. The lower inset shows a log-log plot showing the integrated PL intensity against Bi dose.

Fig. 8
Fig. 8

(a) PL spectra of Bi-doped GeGaS, after [11], and Bi-doped germanate glass, with 808 nm excitation. (b) Thermopower as a function of Bi content in GeS glass, after [26], and in GeSbS glass, after [61].

Fig. 9
Fig. 9

PL from Bi-implanted bulk GeS and GaGeS glass, excited at 514 nm

Tables (2)

Tables Icon

Table 1 Positions of absorption/PL bands (nm) for Bi:GLSO, Bi:GeAlFO and Pb:GeAlFO

Tables Icon

Table 2 Power-law factor relating absorption to Bi2O3 doping concentration in oxide glasses

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Λ= X A Λ(A)+ X B Λ(B)+...
nB i 2 O 3 2nBiO+ n 2 O 2
2nBiO2nB i 2+ + n 2 O 2
2nB i 2+ B i 2n

Metrics