M. Fakhry, Y. Granik, K. Adam, and K. Lai, “Total source mask optimization: high-capacity, resist modeling, and production-ready mask solution,” in Photomask Technology 2011, W. Maurer and F. E. Abboud, eds. (2011), vol. 8166 of Proc. SPIE, p. 81663M.

K. Iwase, P. D. Bisschop, B. Laenens, Z. Li, K. Gronlund, P. V. Adrichem, and S. Hsu, “A new source optimization approach for 2X node logic,” in Photomask Technology 2011, W. Maurer and F. E. Abboud, eds. (2011), vol. 8166 of Proc. SPIE, p. 81662A.

M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems,” IEEE Trans. Image Process.20, 681–695 (2011).

[CrossRef]

M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “Fast image recovery using variable splitting and constrained optimization,” IEEE Trans. Image Process.19, 2345–2356 (2010).

[CrossRef]
[PubMed]

D. Zhang, G. Chua, Y. Foong, Y. Zou, S. Hsu, S. Baron, M. Feng, H.-Y. Liu, Z. Li, S. Jessy, T. Yun, C. Babcock, C. B. IL, R. Stefan, A. Navarra, T. Fischer, A. Leschok, X. Liu, W. Shi, J. Qiu, and R. Dover, “Source mask optimization methodology (SMO) and application to real full chip optical proximity correction,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83261V.

L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Considering MEEF in inverse lithography technology (ILT) and source mask optimization (SMO),” in Photomask Technology, H. Kawahira and L. S. Zurbrick, eds. (2008), vol. 7122 of Proc. SPIE, p. 71221W.

D. Zhang, G. Chua, Y. Foong, Y. Zou, S. Hsu, S. Baron, M. Feng, H.-Y. Liu, Z. Li, S. Jessy, T. Yun, C. Babcock, C. B. IL, R. Stefan, A. Navarra, T. Fischer, A. Leschok, X. Liu, W. Shi, J. Qiu, and R. Dover, “Source mask optimization methodology (SMO) and application to real full chip optical proximity correction,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83261V.

D. K. Bertsekas, Constrained Optimization and Lagrange Multiplier Method (Academic, 1982).

M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems,” IEEE Trans. Image Process.20, 681–695 (2011).

[CrossRef]

M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “Fast image recovery using variable splitting and constrained optimization,” IEEE Trans. Image Process.19, 2345–2356 (2010).

[CrossRef]
[PubMed]

K. Iwase, P. D. Bisschop, B. Laenens, Z. Li, K. Gronlund, P. V. Adrichem, and S. Hsu, “A new source optimization approach for 2X node logic,” in Photomask Technology 2011, W. Maurer and F. E. Abboud, eds. (2011), vol. 8166 of Proc. SPIE, p. 81662A.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn.3, 1–124 (2011).

[CrossRef]

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds. (2010), vol. 7640 of Proc. SPIE, p. 7640J.

L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Considering MEEF in inverse lithography technology (ILT) and source mask optimization (SMO),” in Photomask Technology, H. Kawahira and L. S. Zurbrick, eds. (2008), vol. 7122 of Proc. SPIE, p. 71221W.

S. H. Chan, R. Khoshabeh, K. B. Gibson, P. E. Gill, and T. Q. Nguyen, “An augmented Lagrangian method for total variation video restoration,” IEEE Trans. Image Process.20, 14746–14760 (2011).

[CrossRef]

S. H. Chan, A. K. Wong, and E. Y. Lam, “Initialization for robust inverse synthesis of phase-shifting masks in optical projection lithography,” Opt. Express16, 14746–14760 (2008).

[CrossRef]
[PubMed]

S. H. Chan and E. Y. Lam, “Inverse image problem of designing phase shifting masks in optical lithography,” in IEEE International Conference on Image Processing, (2008), p. 1832–1835.

S. K. Choy, N. Jia, C. S. Tong, M. L. Tang, and E. Y. Lam, “A robust computational algorithm for inverse photomask synthesis in optical projection lithography,” SIAM J. Imaging Sciences5, 625–651 (2012).

[CrossRef]

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn.3, 1–124 (2011).

[CrossRef]

D. Zhang, G. Chua, Y. Foong, Y. Zou, S. Hsu, S. Baron, M. Feng, H.-Y. Liu, Z. Li, S. Jessy, T. Yun, C. Babcock, C. B. IL, R. Stefan, A. Navarra, T. Fischer, A. Leschok, X. Liu, W. Shi, J. Qiu, and R. Dover, “Source mask optimization methodology (SMO) and application to real full chip optical proximity correction,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83261V.

N. B. Cobb, “Fast optical and process proximity correction algorithms for integrated circuit manufacturing,” Ph.D. thesis, Univ. of California at Berkeley, Berkeley, California (1998).

L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Considering MEEF in inverse lithography technology (ILT) and source mask optimization (SMO),” in Photomask Technology, H. Kawahira and L. S. Zurbrick, eds. (2008), vol. 7122 of Proc. SPIE, p. 71221W.

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds. (2010), vol. 7640 of Proc. SPIE, p. 7640J.

B. Küchler, A. Shamsuarov, T. Mülders, U. Klostermann, S.-H. Yang, S. Moon, V. Domnenko, and S.-W. Park, “Computational process optimization of array edges,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83260H.

D. Zhang, G. Chua, Y. Foong, Y. Zou, S. Hsu, S. Baron, M. Feng, H.-Y. Liu, Z. Li, S. Jessy, T. Yun, C. Babcock, C. B. IL, R. Stefan, A. Navarra, T. Fischer, A. Leschok, X. Liu, W. Shi, J. Qiu, and R. Dover, “Source mask optimization methodology (SMO) and application to real full chip optical proximity correction,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83261V.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn.3, 1–124 (2011).

[CrossRef]

M. Fakhry, Y. Granik, K. Adam, and K. Lai, “Total source mask optimization: high-capacity, resist modeling, and production-ready mask solution,” in Photomask Technology 2011, W. Maurer and F. E. Abboud, eds. (2011), vol. 8166 of Proc. SPIE, p. 81663M.

D. Zhang, G. Chua, Y. Foong, Y. Zou, S. Hsu, S. Baron, M. Feng, H.-Y. Liu, Z. Li, S. Jessy, T. Yun, C. Babcock, C. B. IL, R. Stefan, A. Navarra, T. Fischer, A. Leschok, X. Liu, W. Shi, J. Qiu, and R. Dover, “Source mask optimization methodology (SMO) and application to real full chip optical proximity correction,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83261V.

S. Ramani and J. A. Fessler, “Parallel MR image reconstruction using augmented Lagrangian methods,” IEEE Trans. Image Process.30, 694–706 (2011).

[CrossRef]

M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems,” IEEE Trans. Image Process.20, 681–695 (2011).

[CrossRef]

M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “Fast image recovery using variable splitting and constrained optimization,” IEEE Trans. Image Process.19, 2345–2356 (2010).

[CrossRef]
[PubMed]

D. Zhang, G. Chua, Y. Foong, Y. Zou, S. Hsu, S. Baron, M. Feng, H.-Y. Liu, Z. Li, S. Jessy, T. Yun, C. Babcock, C. B. IL, R. Stefan, A. Navarra, T. Fischer, A. Leschok, X. Liu, W. Shi, J. Qiu, and R. Dover, “Source mask optimization methodology (SMO) and application to real full chip optical proximity correction,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83261V.

D. Zhang, G. Chua, Y. Foong, Y. Zou, S. Hsu, S. Baron, M. Feng, H.-Y. Liu, Z. Li, S. Jessy, T. Yun, C. Babcock, C. B. IL, R. Stefan, A. Navarra, T. Fischer, A. Leschok, X. Liu, W. Shi, J. Qiu, and R. Dover, “Source mask optimization methodology (SMO) and application to real full chip optical proximity correction,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83261V.

S. H. Chan, R. Khoshabeh, K. B. Gibson, P. E. Gill, and T. Q. Nguyen, “An augmented Lagrangian method for total variation video restoration,” IEEE Trans. Image Process.20, 14746–14760 (2011).

[CrossRef]

S. H. Chan, R. Khoshabeh, K. B. Gibson, P. E. Gill, and T. Q. Nguyen, “An augmented Lagrangian method for total variation video restoration,” IEEE Trans. Image Process.20, 14746–14760 (2011).

[CrossRef]

L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Considering MEEF in inverse lithography technology (ILT) and source mask optimization (SMO),” in Photomask Technology, H. Kawahira and L. S. Zurbrick, eds. (2008), vol. 7122 of Proc. SPIE, p. 71221W.

T. Goldstein and S. Osher, “The split Bregman algorithm for l1 regularized problems,” SIAM J. Imaging Sciences2, 323–343 (2009).

[CrossRef]

M. Fakhry, Y. Granik, K. Adam, and K. Lai, “Total source mask optimization: high-capacity, resist modeling, and production-ready mask solution,” in Photomask Technology 2011, W. Maurer and F. E. Abboud, eds. (2011), vol. 8166 of Proc. SPIE, p. 81663M.

K. Iwase, P. D. Bisschop, B. Laenens, Z. Li, K. Gronlund, P. V. Adrichem, and S. Hsu, “A new source optimization approach for 2X node logic,” in Photomask Technology 2011, W. Maurer and F. E. Abboud, eds. (2011), vol. 8166 of Proc. SPIE, p. 81662A.

M. R. Hestenes, “Multiplier and gradient methods,” J. Optimiz. Theory App.4, 303–320 (1969).

[CrossRef]

D. Zhang, G. Chua, Y. Foong, Y. Zou, S. Hsu, S. Baron, M. Feng, H.-Y. Liu, Z. Li, S. Jessy, T. Yun, C. Babcock, C. B. IL, R. Stefan, A. Navarra, T. Fischer, A. Leschok, X. Liu, W. Shi, J. Qiu, and R. Dover, “Source mask optimization methodology (SMO) and application to real full chip optical proximity correction,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83261V.

K. Iwase, P. D. Bisschop, B. Laenens, Z. Li, K. Gronlund, P. V. Adrichem, and S. Hsu, “A new source optimization approach for 2X node logic,” in Photomask Technology 2011, W. Maurer and F. E. Abboud, eds. (2011), vol. 8166 of Proc. SPIE, p. 81662A.

L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Considering MEEF in inverse lithography technology (ILT) and source mask optimization (SMO),” in Photomask Technology, H. Kawahira and L. S. Zurbrick, eds. (2008), vol. 7122 of Proc. SPIE, p. 71221W.

D. Zhang, G. Chua, Y. Foong, Y. Zou, S. Hsu, S. Baron, M. Feng, H.-Y. Liu, Z. Li, S. Jessy, T. Yun, C. Babcock, C. B. IL, R. Stefan, A. Navarra, T. Fischer, A. Leschok, X. Liu, W. Shi, J. Qiu, and R. Dover, “Source mask optimization methodology (SMO) and application to real full chip optical proximity correction,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83261V.

K. Iwase, P. D. Bisschop, B. Laenens, Z. Li, K. Gronlund, P. V. Adrichem, and S. Hsu, “A new source optimization approach for 2X node logic,” in Photomask Technology 2011, W. Maurer and F. E. Abboud, eds. (2011), vol. 8166 of Proc. SPIE, p. 81662A.

D. Zhang, G. Chua, Y. Foong, Y. Zou, S. Hsu, S. Baron, M. Feng, H.-Y. Liu, Z. Li, S. Jessy, T. Yun, C. Babcock, C. B. IL, R. Stefan, A. Navarra, T. Fischer, A. Leschok, X. Liu, W. Shi, J. Qiu, and R. Dover, “Source mask optimization methodology (SMO) and application to real full chip optical proximity correction,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83261V.

S. K. Choy, N. Jia, C. S. Tong, M. L. Tang, and E. Y. Lam, “A robust computational algorithm for inverse photomask synthesis in optical projection lithography,” SIAM J. Imaging Sciences5, 625–651 (2012).

[CrossRef]

Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust level-set-based inverse lithography,” Opt. Express19, 5511–5521 (2011).

[CrossRef]
[PubMed]

N. Jia and E. Y. Lam, “Pixelated source mask optimization for process robustness in optical lithography,” Opt. Express19, 19384–19398 (2011).

[CrossRef]
[PubMed]

N. Jia and E. Y. Lam, “Machine learning for inverse lithography: using stochastic gradient descent for robust photomask synthesis,” J. Opt.12, 045601 (2010).

[CrossRef]

S. H. Chan, R. Khoshabeh, K. B. Gibson, P. E. Gill, and T. Q. Nguyen, “An augmented Lagrangian method for total variation video restoration,” IEEE Trans. Image Process.20, 14746–14760 (2011).

[CrossRef]

B. Küchler, A. Shamsuarov, T. Mülders, U. Klostermann, S.-H. Yang, S. Moon, V. Domnenko, and S.-W. Park, “Computational process optimization of array edges,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83260H.

B. Küchler, A. Shamsuarov, T. Mülders, U. Klostermann, S.-H. Yang, S. Moon, V. Domnenko, and S.-W. Park, “Computational process optimization of array edges,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83260H.

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds. (2010), vol. 7640 of Proc. SPIE, p. 7640J.

K. Iwase, P. D. Bisschop, B. Laenens, Z. Li, K. Gronlund, P. V. Adrichem, and S. Hsu, “A new source optimization approach for 2X node logic,” in Photomask Technology 2011, W. Maurer and F. E. Abboud, eds. (2011), vol. 8166 of Proc. SPIE, p. 81662A.

M. Fakhry, Y. Granik, K. Adam, and K. Lai, “Total source mask optimization: high-capacity, resist modeling, and production-ready mask solution,” in Photomask Technology 2011, W. Maurer and F. E. Abboud, eds. (2011), vol. 8166 of Proc. SPIE, p. 81663M.

S. K. Choy, N. Jia, C. S. Tong, M. L. Tang, and E. Y. Lam, “A robust computational algorithm for inverse photomask synthesis in optical projection lithography,” SIAM J. Imaging Sciences5, 625–651 (2012).

[CrossRef]

J. Li, Y. Shen, and E. Y. Lam, “Hotspot-aware fast source and mask optimization,” Opt. Express20, 21792–21804 (2012).

[CrossRef]
[PubMed]

N. Jia and E. Y. Lam, “Pixelated source mask optimization for process robustness in optical lithography,” Opt. Express19, 19384–19398 (2011).

[CrossRef]
[PubMed]

Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust level-set-based inverse lithography,” Opt. Express19, 5511–5521 (2011).

[CrossRef]
[PubMed]

N. Jia and E. Y. Lam, “Machine learning for inverse lithography: using stochastic gradient descent for robust photomask synthesis,” J. Opt.12, 045601 (2010).

[CrossRef]

E. Y. Lam and A. K. Wong, “Nebulous hotspot and algorithm variability in computation lithography,” J. Micro/Nanolith., MEMS, MOEMS9, 033002 (2010).

E. Y. Lam and A. K. Wong, “Computation lithography: Virtual reality and virtual virtuality,” Opt. Express17, 12259–12268 (2009).

[CrossRef]
[PubMed]

Y. Shen, N. Wong, and E. Y. Lam, “Level-set-based inverse lithography for photomask synthesis,” Opt. Express17, 23690–23701 (2009).

[CrossRef]

S. H. Chan, A. K. Wong, and E. Y. Lam, “Initialization for robust inverse synthesis of phase-shifting masks in optical projection lithography,” Opt. Express16, 14746–14760 (2008).

[CrossRef]
[PubMed]

S. H. Chan and E. Y. Lam, “Inverse image problem of designing phase shifting masks in optical lithography,” in IEEE International Conference on Image Processing, (2008), p. 1832–1835.

D. Zhang, G. Chua, Y. Foong, Y. Zou, S. Hsu, S. Baron, M. Feng, H.-Y. Liu, Z. Li, S. Jessy, T. Yun, C. Babcock, C. B. IL, R. Stefan, A. Navarra, T. Fischer, A. Leschok, X. Liu, W. Shi, J. Qiu, and R. Dover, “Source mask optimization methodology (SMO) and application to real full chip optical proximity correction,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83261V.

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds. (2010), vol. 7640 of Proc. SPIE, p. 7640J.

D. Zhang, G. Chua, Y. Foong, Y. Zou, S. Hsu, S. Baron, M. Feng, H.-Y. Liu, Z. Li, S. Jessy, T. Yun, C. Babcock, C. B. IL, R. Stefan, A. Navarra, T. Fischer, A. Leschok, X. Liu, W. Shi, J. Qiu, and R. Dover, “Source mask optimization methodology (SMO) and application to real full chip optical proximity correction,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83261V.

K. Iwase, P. D. Bisschop, B. Laenens, Z. Li, K. Gronlund, P. V. Adrichem, and S. Hsu, “A new source optimization approach for 2X node logic,” in Photomask Technology 2011, W. Maurer and F. E. Abboud, eds. (2011), vol. 8166 of Proc. SPIE, p. 81662A.

D. Zhang, G. Chua, Y. Foong, Y. Zou, S. Hsu, S. Baron, M. Feng, H.-Y. Liu, Z. Li, S. Jessy, T. Yun, C. Babcock, C. B. IL, R. Stefan, A. Navarra, T. Fischer, A. Leschok, X. Liu, W. Shi, J. Qiu, and R. Dover, “Source mask optimization methodology (SMO) and application to real full chip optical proximity correction,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83261V.

D. Zhang, G. Chua, Y. Foong, Y. Zou, S. Hsu, S. Baron, M. Feng, H.-Y. Liu, Z. Li, S. Jessy, T. Yun, C. Babcock, C. B. IL, R. Stefan, A. Navarra, T. Fischer, A. Leschok, X. Liu, W. Shi, J. Qiu, and R. Dover, “Source mask optimization methodology (SMO) and application to real full chip optical proximity correction,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83261V.

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds. (2010), vol. 7640 of Proc. SPIE, p. 7640J.

A. Poonawala and P. Milanfar, “Mask design for optical microlithography— an inverse imaging problem,” IEEE Trans. Image Process.16, 774–788 (2007).

[CrossRef]
[PubMed]

B. Küchler, A. Shamsuarov, T. Mülders, U. Klostermann, S.-H. Yang, S. Moon, V. Domnenko, and S.-W. Park, “Computational process optimization of array edges,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83260H.

J. L. Morales and J. Nocedal, “Remark on ‘algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization’,” ACM Trans. Math Software23, 550–560 (2011).

B. Küchler, A. Shamsuarov, T. Mülders, U. Klostermann, S.-H. Yang, S. Moon, V. Domnenko, and S.-W. Park, “Computational process optimization of array edges,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83260H.

D. Zhang, G. Chua, Y. Foong, Y. Zou, S. Hsu, S. Baron, M. Feng, H.-Y. Liu, Z. Li, S. Jessy, T. Yun, C. Babcock, C. B. IL, R. Stefan, A. Navarra, T. Fischer, A. Leschok, X. Liu, W. Shi, J. Qiu, and R. Dover, “Source mask optimization methodology (SMO) and application to real full chip optical proximity correction,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83261V.

S. H. Chan, R. Khoshabeh, K. B. Gibson, P. E. Gill, and T. Q. Nguyen, “An augmented Lagrangian method for total variation video restoration,” IEEE Trans. Image Process.20, 14746–14760 (2011).

[CrossRef]

J. L. Morales and J. Nocedal, “Remark on ‘algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization’,” ACM Trans. Math Software23, 550–560 (2011).

J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. (Springer, 2006).

D. Noll, “Local convergence of an augmented Lagrangian method for matrix inequality constrained programming,” Optim. Method Softw.22, 777–802 (2007).

[CrossRef]

T. Goldstein and S. Osher, “The split Bregman algorithm for l1 regularized problems,” SIAM J. Imaging Sciences2, 323–343 (2009).

[CrossRef]

L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Considering MEEF in inverse lithography technology (ILT) and source mask optimization (SMO),” in Photomask Technology, H. Kawahira and L. S. Zurbrick, eds. (2008), vol. 7122 of Proc. SPIE, p. 71221W.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn.3, 1–124 (2011).

[CrossRef]

B. Küchler, A. Shamsuarov, T. Mülders, U. Klostermann, S.-H. Yang, S. Moon, V. Domnenko, and S.-W. Park, “Computational process optimization of array edges,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83260H.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn.3, 1–124 (2011).

[CrossRef]

Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process.20, 2856–2864 (2011).

[CrossRef]
[PubMed]

A. Poonawala and P. Milanfar, “Mask design for optical microlithography— an inverse imaging problem,” IEEE Trans. Image Process.16, 774–788 (2007).

[CrossRef]
[PubMed]

M. Powell, “A method for nonlinear constraints in minimization problems,” in Optimization, R. Fletcher, ed. (1969), Academic, p. 283–298.

D. Zhang, G. Chua, Y. Foong, Y. Zou, S. Hsu, S. Baron, M. Feng, H.-Y. Liu, Z. Li, S. Jessy, T. Yun, C. Babcock, C. B. IL, R. Stefan, A. Navarra, T. Fischer, A. Leschok, X. Liu, W. Shi, J. Qiu, and R. Dover, “Source mask optimization methodology (SMO) and application to real full chip optical proximity correction,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83261V.

S. Ramani and J. A. Fessler, “Parallel MR image reconstruction using augmented Lagrangian methods,” IEEE Trans. Image Process.30, 694–706 (2011).

[CrossRef]

R. T. Rockafellar, “Augmented Lagrange multiplier functions and duality in nonconvex programming,” SIAM J. Control12, 268–285 (1974).

[CrossRef]

B. Küchler, A. Shamsuarov, T. Mülders, U. Klostermann, S.-H. Yang, S. Moon, V. Domnenko, and S.-W. Park, “Computational process optimization of array edges,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83260H.

J. Li, Y. Shen, and E. Y. Lam, “Hotspot-aware fast source and mask optimization,” Opt. Express20, 21792–21804 (2012).

[CrossRef]
[PubMed]

Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust level-set-based inverse lithography,” Opt. Express19, 5511–5521 (2011).

[CrossRef]
[PubMed]

Y. Shen, N. Wong, and E. Y. Lam, “Level-set-based inverse lithography for photomask synthesis,” Opt. Express17, 23690–23701 (2009).

[CrossRef]

D. Zhang, G. Chua, Y. Foong, Y. Zou, S. Hsu, S. Baron, M. Feng, H.-Y. Liu, Z. Li, S. Jessy, T. Yun, C. Babcock, C. B. IL, R. Stefan, A. Navarra, T. Fischer, A. Leschok, X. Liu, W. Shi, J. Qiu, and R. Dover, “Source mask optimization methodology (SMO) and application to real full chip optical proximity correction,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83261V.

D. Zhang, G. Chua, Y. Foong, Y. Zou, S. Hsu, S. Baron, M. Feng, H.-Y. Liu, Z. Li, S. Jessy, T. Yun, C. Babcock, C. B. IL, R. Stefan, A. Navarra, T. Fischer, A. Leschok, X. Liu, W. Shi, J. Qiu, and R. Dover, “Source mask optimization methodology (SMO) and application to real full chip optical proximity correction,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83261V.

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds. (2010), vol. 7640 of Proc. SPIE, p. 7640J.

S. K. Choy, N. Jia, C. S. Tong, M. L. Tang, and E. Y. Lam, “A robust computational algorithm for inverse photomask synthesis in optical projection lithography,” SIAM J. Imaging Sciences5, 625–651 (2012).

[CrossRef]

L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Considering MEEF in inverse lithography technology (ILT) and source mask optimization (SMO),” in Photomask Technology, H. Kawahira and L. S. Zurbrick, eds. (2008), vol. 7122 of Proc. SPIE, p. 71221W.

S. K. Choy, N. Jia, C. S. Tong, M. L. Tang, and E. Y. Lam, “A robust computational algorithm for inverse photomask synthesis in optical projection lithography,” SIAM J. Imaging Sciences5, 625–651 (2012).

[CrossRef]

Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process.20, 2856–2864 (2011).

[CrossRef]
[PubMed]

E. Y. Lam and A. K. Wong, “Nebulous hotspot and algorithm variability in computation lithography,” J. Micro/Nanolith., MEMS, MOEMS9, 033002 (2010).

E. Y. Lam and A. K. Wong, “Computation lithography: Virtual reality and virtual virtuality,” Opt. Express17, 12259–12268 (2009).

[CrossRef]
[PubMed]

S. H. Chan, A. K. Wong, and E. Y. Lam, “Initialization for robust inverse synthesis of phase-shifting masks in optical projection lithography,” Opt. Express16, 14746–14760 (2008).

[CrossRef]
[PubMed]

A. K. Wong, Optical Imaging in Projection Microlithography (SPIE, 2005).

Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust level-set-based inverse lithography,” Opt. Express19, 5511–5521 (2011).

[CrossRef]
[PubMed]

Y. Shen, N. Wong, and E. Y. Lam, “Level-set-based inverse lithography for photomask synthesis,” Opt. Express17, 23690–23701 (2009).

[CrossRef]

J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. (Springer, 2006).

L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Considering MEEF in inverse lithography technology (ILT) and source mask optimization (SMO),” in Photomask Technology, H. Kawahira and L. S. Zurbrick, eds. (2008), vol. 7122 of Proc. SPIE, p. 71221W.

B. Küchler, A. Shamsuarov, T. Mülders, U. Klostermann, S.-H. Yang, S. Moon, V. Domnenko, and S.-W. Park, “Computational process optimization of array edges,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83260H.

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds. (2010), vol. 7640 of Proc. SPIE, p. 7640J.

J.-C. Yu, P. Yu, and H.-Y. Chao, “Fast source optimization involving quadratic line-contour objectives for the resist image,” Opt. Express20, 8161–8174 (2012).

[CrossRef]
[PubMed]

J.-C. Yu and P. Yu, “Gradient-based fast source mask optimization (SMO),” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 797320.

J.-C. Yu, P. Yu, and H.-Y. Chao, “Fast source optimization involving quadratic line-contour objectives for the resist image,” Opt. Express20, 8161–8174 (2012).

[CrossRef]
[PubMed]

J.-C. Yu and P. Yu, “Gradient-based fast source mask optimization (SMO),” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 797320.

Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process.20, 2856–2864 (2011).

[CrossRef]
[PubMed]

D. Zhang, G. Chua, Y. Foong, Y. Zou, S. Hsu, S. Baron, M. Feng, H.-Y. Liu, Z. Li, S. Jessy, T. Yun, C. Babcock, C. B. IL, R. Stefan, A. Navarra, T. Fischer, A. Leschok, X. Liu, W. Shi, J. Qiu, and R. Dover, “Source mask optimization methodology (SMO) and application to real full chip optical proximity correction,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83261V.

D. Zhang, G. Chua, Y. Foong, Y. Zou, S. Hsu, S. Baron, M. Feng, H.-Y. Liu, Z. Li, S. Jessy, T. Yun, C. Babcock, C. B. IL, R. Stefan, A. Navarra, T. Fischer, A. Leschok, X. Liu, W. Shi, J. Qiu, and R. Dover, “Source mask optimization methodology (SMO) and application to real full chip optical proximity correction,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83261V.

Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process.20, 2856–2864 (2011).

[CrossRef]
[PubMed]

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds. (2010), vol. 7640 of Proc. SPIE, p. 7640J.

D. Zhang, G. Chua, Y. Foong, Y. Zou, S. Hsu, S. Baron, M. Feng, H.-Y. Liu, Z. Li, S. Jessy, T. Yun, C. Babcock, C. B. IL, R. Stefan, A. Navarra, T. Fischer, A. Leschok, X. Liu, W. Shi, J. Qiu, and R. Dover, “Source mask optimization methodology (SMO) and application to real full chip optical proximity correction,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83261V.