Abstract

Current pulse measurement methods have proven inadequate to fully understand the characteristics of passively mode-locked quantum-dot diode lasers. These devices are very difficult to characterize because of their low peak powers, high bandwidth, large time-bandwidth product, and large timing jitter. In this paper, we discuss the origin for the inadequacies of current pulse measurement techniques while presenting new ways of examining frequency-resolved optical gating (FROG) data to provide insight into the operation of these devices. Under the assumptions of a partial coherence model for the pulsed laser, it is shown that simultaneous time-frequency characterization is a necessary and sufficient condition for characterization of mode-locking. Full pulse characterization of quantum dot passively mode-locked lasers (QD MLLs) was done using FROG in a collinear configuration using an aperiodically poled lithium niobate waveguide-based FROG pulse measurement system.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1(7), 395–401 (2007).
    [CrossRef]
  2. D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs quantum-dot Lasers,” IEEE J. Sel. Top. Quantum Electron.3(2), 196–205 (1997).
    [CrossRef]
  3. X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3-µm two-section InAs quantum dot lasers,” Appl. Phys. Lett.78(19), 2825–2827 (2001).
    [CrossRef]
  4. Y.-C. Xin, Y. Li, V. Kovanis, A. L. Gray, L. Zhang, and L. F. Lester, “Reconfigurable quantum dot monolithic multisection passive mode-locked lasers,” Opt. Express15(12), 7623–7633 (2007).
    [CrossRef] [PubMed]
  5. C.-Y. Lin, Y.-C. Xin, Y. Li, F. L. Chiragh, and L. F. Lester, “Cavity design and characteristics of monolithic long-wavelength InAs/InP quantum dash passively mode-locked lasers,” Opt. Express17(22), 19739–19748 (2009).
    [CrossRef] [PubMed]
  6. D. B. Malins, A. Gomez-Iglesias, S. J. White, W. Sibbett, A. Miller, and E. U. Rafailov, “Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm,” Appl. Phys. Lett.89(17), 171111 (2006).
    [CrossRef]
  7. M. G. Thompson, A. R. Rae, R. V. Mo Xia, Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron.15(3), 661–672 (2009).
    [CrossRef]
  8. D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kop’ev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films267(1-2), 32–36 (1995).
    [CrossRef]
  9. D. Bimberg, “Quantum dot based nanophotonics and nanoelectronics,” Electron. Lett.44(3), 168–171 (2008).
    [CrossRef]
  10. L. Zhang, L.-S. Cheng, A. L. Gray, H. Huang, S. Kutty, H. Li, J. Nagyvary, F. Nabulsi, L. Olona, E. Pease, Q. Sun, C. Wiggins, J. C. Zilko, Z. Zou, and P. M. Varangis, “High-power low-jitter quantum-dot passively modelocked lasers,” Proc. SPIE6115, 611502, 611502-8 (2006).
    [CrossRef]
  11. G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron.9(2), 477–485 (2003).
    [CrossRef]
  12. A. A. Aboketaf, A. W. Elshaari, and S. F. Preble, “Optical time division multiplexer on silicon chip,” Opt. Express18(13), 13529–13535 (2010).
    [CrossRef] [PubMed]
  13. M. Mielke, G. A. Alphonse, and P. J. Delfyett, “168 channels x 6 GHz from a multiwavelength mode-locked semiconductor laser,” IEEE Photon. Technol. Lett.15(4), 501–503 (2003).
    [CrossRef]
  14. Y. Li, F. L. Chiragh, Y.-C. Xin, C.-Y. Lin, J. Kim, C. G. Christodoulou, and L. F. Lester, “Harmonic mode-locking using the double interval technique in quantum dot lasers,” Opt. Express15, 7623–7633 (2010).
    [CrossRef] [PubMed]
  15. C.-Y. Lin, Y.-C. Xin, J. H. Kim, C. G. Christodoulou, and L. F. Lester, “Compact optical generation of microwave signals using a monolithic quantum dot passively mode-locked laser,” IEEE Photon. Journal1(4), 236–244 (2009).
    [CrossRef]
  16. M. Xia, M. G. Thompson, R. V. Penty, and I. H. White, “External-cavity mode-locked quantum-dot lasers for low repetition rate, sub-picosecond pulse generation,” presented at the Lasers Elect.-Opt. (CLEO) Conf. San Jose, CA, 2008.
    [CrossRef]
  17. C.-Y. Lin, F. Grillot, Y. Li, R. Raghunathan, and L. F. Lester, “Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser,” Opt. Express18(21), 21932–21937 (2010).
    [CrossRef] [PubMed]
  18. M. G. Thompson, R. V. Penty, and I. H. White, “Regimes of modelocking in tapered quantum dot laser diodes,” in Proc. Semicond. Laser Conf. (ISLC), Sorrento, Italy, Sep. 2008, pp. 27–28.
  19. Y.-C. Xin, D. J. Kane, and L. F. Lester, “Frequency-resolved optical gating characterisation of passively modelocked quantum-dot laser,” Electron. Lett.44(21), 1255–1256 (2008).
    [CrossRef]
  20. H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg, “Complete pulse characterization of quantum dot mode-locked lasers suitable for optical communication up to 160 Gbit/s,” Opt. Express18(4), 3415–3425 (2010).
    [CrossRef] [PubMed]
  21. G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijevic, S. Liebich, M. Laemmlin, M. Kuntz, and D. Bimberg, “Quantum-dot semiconductor mode-locked lasers and amplifiers at 40 GHz,” IEEE J. Quantum Electron.45(11), 1429–1435 (2009).
    [CrossRef]
  22. N. Rebrova, T. Habruseva, G. Huyet, and S. P. Hegarty, “Stabilization of a passively mode-locked laser by continuous wave optical injection,” Appl. Phys. Lett.97(10), 101105 (2010).
    [CrossRef]
  23. T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. P. Barry, D. Rachinskii, G. Huyet, and S. P. Hegarty, “Quantum-dot mode-locked lasers with dual-mode optical injection,” IEEE Photon. Technol. Lett.22(6), 359–361 (2010).
    [CrossRef]
  24. J. Ratner, G. Steinmeyer, T. C. Wong, R. Bartels, and R. Trebino, “Coherent artifact in modern pulse measurements,” Opt. Lett.37(14), 2874–2876 (2012).
    [CrossRef] [PubMed]
  25. D. J. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency -resolved optical gating,” IEEE J. Quantum Electron.29(2), 571–579 (1993).
    [CrossRef]
  26. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum.68(9), 3277–3295 (1997).
    [CrossRef]
  27. B. Kohler, V. V. Yakovlev, K. R. Wilson, J. Squier, K. W. Delong, and R. Trebino, “Phase and intensity characterization of femtosecond pulses from a chirped-pulse amplifier by frequency-resolved optical gating,” Opt. Lett.20(5), 483–485 (1995).
    [CrossRef] [PubMed]
  28. M. Photonics, “FROG scan screen captures of shaped pulses,” http://www.mesaphotonics.com/products-2/pulse-measurement/frogscan-data/ .
  29. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2000).
  30. T. Pfeifer, Y. Jiang, S. Düsterer, R. Moshammer, and J. Ullrich, “Partial-coherence method to model experimental free-electron laser pulse statistics,” Opt. Lett.35(20), 3441–3443 (2010).
    [CrossRef] [PubMed]
  31. S.-D. Yang, A. M. Weiner, K. R. Parameswaran, and M. M. Fejer, “Ultrasensitive second-harmonic generation frequency-resolved optical gating by aperiodically poled LiNbO3 waveguides at 1.5 microm,” Opt. Lett.30(16), 2164–2166 (2005).
    [CrossRef] [PubMed]
  32. I. Amat-Roldán, I. G. Cormack, P. Loza-Alvarez, E. Gualda, and D. Artigas, “Ultrashort pulse characterisation with SHG collinear-FROG,” Opt. Express12(6), 1169–1178 (2004).
    [CrossRef] [PubMed]

2012 (1)

2010 (7)

H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg, “Complete pulse characterization of quantum dot mode-locked lasers suitable for optical communication up to 160 Gbit/s,” Opt. Express18(4), 3415–3425 (2010).
[CrossRef] [PubMed]

N. Rebrova, T. Habruseva, G. Huyet, and S. P. Hegarty, “Stabilization of a passively mode-locked laser by continuous wave optical injection,” Appl. Phys. Lett.97(10), 101105 (2010).
[CrossRef]

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. P. Barry, D. Rachinskii, G. Huyet, and S. P. Hegarty, “Quantum-dot mode-locked lasers with dual-mode optical injection,” IEEE Photon. Technol. Lett.22(6), 359–361 (2010).
[CrossRef]

T. Pfeifer, Y. Jiang, S. Düsterer, R. Moshammer, and J. Ullrich, “Partial-coherence method to model experimental free-electron laser pulse statistics,” Opt. Lett.35(20), 3441–3443 (2010).
[CrossRef] [PubMed]

A. A. Aboketaf, A. W. Elshaari, and S. F. Preble, “Optical time division multiplexer on silicon chip,” Opt. Express18(13), 13529–13535 (2010).
[CrossRef] [PubMed]

Y. Li, F. L. Chiragh, Y.-C. Xin, C.-Y. Lin, J. Kim, C. G. Christodoulou, and L. F. Lester, “Harmonic mode-locking using the double interval technique in quantum dot lasers,” Opt. Express15, 7623–7633 (2010).
[CrossRef] [PubMed]

C.-Y. Lin, F. Grillot, Y. Li, R. Raghunathan, and L. F. Lester, “Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser,” Opt. Express18(21), 21932–21937 (2010).
[CrossRef] [PubMed]

2009 (4)

C.-Y. Lin, Y.-C. Xin, J. H. Kim, C. G. Christodoulou, and L. F. Lester, “Compact optical generation of microwave signals using a monolithic quantum dot passively mode-locked laser,” IEEE Photon. Journal1(4), 236–244 (2009).
[CrossRef]

C.-Y. Lin, Y.-C. Xin, Y. Li, F. L. Chiragh, and L. F. Lester, “Cavity design and characteristics of monolithic long-wavelength InAs/InP quantum dash passively mode-locked lasers,” Opt. Express17(22), 19739–19748 (2009).
[CrossRef] [PubMed]

M. G. Thompson, A. R. Rae, R. V. Mo Xia, Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron.15(3), 661–672 (2009).
[CrossRef]

G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijevic, S. Liebich, M. Laemmlin, M. Kuntz, and D. Bimberg, “Quantum-dot semiconductor mode-locked lasers and amplifiers at 40 GHz,” IEEE J. Quantum Electron.45(11), 1429–1435 (2009).
[CrossRef]

2008 (2)

Y.-C. Xin, D. J. Kane, and L. F. Lester, “Frequency-resolved optical gating characterisation of passively modelocked quantum-dot laser,” Electron. Lett.44(21), 1255–1256 (2008).
[CrossRef]

D. Bimberg, “Quantum dot based nanophotonics and nanoelectronics,” Electron. Lett.44(3), 168–171 (2008).
[CrossRef]

2007 (2)

2006 (2)

D. B. Malins, A. Gomez-Iglesias, S. J. White, W. Sibbett, A. Miller, and E. U. Rafailov, “Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm,” Appl. Phys. Lett.89(17), 171111 (2006).
[CrossRef]

L. Zhang, L.-S. Cheng, A. L. Gray, H. Huang, S. Kutty, H. Li, J. Nagyvary, F. Nabulsi, L. Olona, E. Pease, Q. Sun, C. Wiggins, J. C. Zilko, Z. Zou, and P. M. Varangis, “High-power low-jitter quantum-dot passively modelocked lasers,” Proc. SPIE6115, 611502, 611502-8 (2006).
[CrossRef]

2005 (1)

2004 (1)

2003 (2)

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron.9(2), 477–485 (2003).
[CrossRef]

M. Mielke, G. A. Alphonse, and P. J. Delfyett, “168 channels x 6 GHz from a multiwavelength mode-locked semiconductor laser,” IEEE Photon. Technol. Lett.15(4), 501–503 (2003).
[CrossRef]

2001 (1)

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3-µm two-section InAs quantum dot lasers,” Appl. Phys. Lett.78(19), 2825–2827 (2001).
[CrossRef]

1997 (2)

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs quantum-dot Lasers,” IEEE J. Sel. Top. Quantum Electron.3(2), 196–205 (1997).
[CrossRef]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum.68(9), 3277–3295 (1997).
[CrossRef]

1995 (2)

B. Kohler, V. V. Yakovlev, K. R. Wilson, J. Squier, K. W. Delong, and R. Trebino, “Phase and intensity characterization of femtosecond pulses from a chirped-pulse amplifier by frequency-resolved optical gating,” Opt. Lett.20(5), 483–485 (1995).
[CrossRef] [PubMed]

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kop’ev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films267(1-2), 32–36 (1995).
[CrossRef]

1993 (1)

D. J. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency -resolved optical gating,” IEEE J. Quantum Electron.29(2), 571–579 (1993).
[CrossRef]

Aboketaf, A. A.

Agarwal, D.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron.9(2), 477–485 (2003).
[CrossRef]

Alferov, Z. I.

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kop’ev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films267(1-2), 32–36 (1995).
[CrossRef]

Alferov, Zh. I.

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs quantum-dot Lasers,” IEEE J. Sel. Top. Quantum Electron.3(2), 196–205 (1997).
[CrossRef]

Alphonse, G. A.

M. Mielke, G. A. Alphonse, and P. J. Delfyett, “168 channels x 6 GHz from a multiwavelength mode-locked semiconductor laser,” IEEE Photon. Technol. Lett.15(4), 501–503 (2003).
[CrossRef]

Amat-Roldán, I.

Arsenijevic, D.

H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg, “Complete pulse characterization of quantum dot mode-locked lasers suitable for optical communication up to 160 Gbit/s,” Opt. Express18(4), 3415–3425 (2010).
[CrossRef] [PubMed]

G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijevic, S. Liebich, M. Laemmlin, M. Kuntz, and D. Bimberg, “Quantum-dot semiconductor mode-locked lasers and amplifiers at 40 GHz,” IEEE J. Quantum Electron.45(11), 1429–1435 (2009).
[CrossRef]

Artigas, D.

Barry, L. P.

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. P. Barry, D. Rachinskii, G. Huyet, and S. P. Hegarty, “Quantum-dot mode-locked lasers with dual-mode optical injection,” IEEE Photon. Technol. Lett.22(6), 359–361 (2010).
[CrossRef]

Bartels, R.

Bhatnagar, A.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron.9(2), 477–485 (2003).
[CrossRef]

Bimberg, D.

H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg, “Complete pulse characterization of quantum dot mode-locked lasers suitable for optical communication up to 160 Gbit/s,” Opt. Express18(4), 3415–3425 (2010).
[CrossRef] [PubMed]

G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijevic, S. Liebich, M. Laemmlin, M. Kuntz, and D. Bimberg, “Quantum-dot semiconductor mode-locked lasers and amplifiers at 40 GHz,” IEEE J. Quantum Electron.45(11), 1429–1435 (2009).
[CrossRef]

D. Bimberg, “Quantum dot based nanophotonics and nanoelectronics,” Electron. Lett.44(3), 168–171 (2008).
[CrossRef]

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs quantum-dot Lasers,” IEEE J. Sel. Top. Quantum Electron.3(2), 196–205 (1997).
[CrossRef]

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kop’ev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films267(1-2), 32–36 (1995).
[CrossRef]

Cataluna, M. A.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1(7), 395–401 (2007).
[CrossRef]

Cheng, J.

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3-µm two-section InAs quantum dot lasers,” Appl. Phys. Lett.78(19), 2825–2827 (2001).
[CrossRef]

Cheng, L.-S.

L. Zhang, L.-S. Cheng, A. L. Gray, H. Huang, S. Kutty, H. Li, J. Nagyvary, F. Nabulsi, L. Olona, E. Pease, Q. Sun, C. Wiggins, J. C. Zilko, Z. Zou, and P. M. Varangis, “High-power low-jitter quantum-dot passively modelocked lasers,” Proc. SPIE6115, 611502, 611502-8 (2006).
[CrossRef]

Chiragh, F. L.

Christodoulou, C. G.

Y. Li, F. L. Chiragh, Y.-C. Xin, C.-Y. Lin, J. Kim, C. G. Christodoulou, and L. F. Lester, “Harmonic mode-locking using the double interval technique in quantum dot lasers,” Opt. Express15, 7623–7633 (2010).
[CrossRef] [PubMed]

C.-Y. Lin, Y.-C. Xin, J. H. Kim, C. G. Christodoulou, and L. F. Lester, “Compact optical generation of microwave signals using a monolithic quantum dot passively mode-locked laser,” IEEE Photon. Journal1(4), 236–244 (2009).
[CrossRef]

Cormack, I. G.

Debaes, C.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron.9(2), 477–485 (2003).
[CrossRef]

Delfyett, P. J.

M. Mielke, G. A. Alphonse, and P. J. Delfyett, “168 channels x 6 GHz from a multiwavelength mode-locked semiconductor laser,” IEEE Photon. Technol. Lett.15(4), 501–503 (2003).
[CrossRef]

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum.68(9), 3277–3295 (1997).
[CrossRef]

B. Kohler, V. V. Yakovlev, K. R. Wilson, J. Squier, K. W. Delong, and R. Trebino, “Phase and intensity characterization of femtosecond pulses from a chirped-pulse amplifier by frequency-resolved optical gating,” Opt. Lett.20(5), 483–485 (1995).
[CrossRef] [PubMed]

Düsterer, S.

Elshaari, A. W.

Fejer, M. M.

Fiol, G.

H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg, “Complete pulse characterization of quantum dot mode-locked lasers suitable for optical communication up to 160 Gbit/s,” Opt. Express18(4), 3415–3425 (2010).
[CrossRef] [PubMed]

G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijevic, S. Liebich, M. Laemmlin, M. Kuntz, and D. Bimberg, “Quantum-dot semiconductor mode-locked lasers and amplifiers at 40 GHz,” IEEE J. Quantum Electron.45(11), 1429–1435 (2009).
[CrossRef]

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum.68(9), 3277–3295 (1997).
[CrossRef]

Gomez-Iglesias, A.

D. B. Malins, A. Gomez-Iglesias, S. J. White, W. Sibbett, A. Miller, and E. U. Rafailov, “Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm,” Appl. Phys. Lett.89(17), 171111 (2006).
[CrossRef]

Gray, A. L.

Y.-C. Xin, Y. Li, V. Kovanis, A. L. Gray, L. Zhang, and L. F. Lester, “Reconfigurable quantum dot monolithic multisection passive mode-locked lasers,” Opt. Express15(12), 7623–7633 (2007).
[CrossRef] [PubMed]

L. Zhang, L.-S. Cheng, A. L. Gray, H. Huang, S. Kutty, H. Li, J. Nagyvary, F. Nabulsi, L. Olona, E. Pease, Q. Sun, C. Wiggins, J. C. Zilko, Z. Zou, and P. M. Varangis, “High-power low-jitter quantum-dot passively modelocked lasers,” Proc. SPIE6115, 611502, 611502-8 (2006).
[CrossRef]

Grillot, F.

Grundmann, M.

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kop’ev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films267(1-2), 32–36 (1995).
[CrossRef]

Gualda, E.

Habruseva, T.

N. Rebrova, T. Habruseva, G. Huyet, and S. P. Hegarty, “Stabilization of a passively mode-locked laser by continuous wave optical injection,” Appl. Phys. Lett.97(10), 101105 (2010).
[CrossRef]

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. P. Barry, D. Rachinskii, G. Huyet, and S. P. Hegarty, “Quantum-dot mode-locked lasers with dual-mode optical injection,” IEEE Photon. Technol. Lett.22(6), 359–361 (2010).
[CrossRef]

Hegarty, S. P.

N. Rebrova, T. Habruseva, G. Huyet, and S. P. Hegarty, “Stabilization of a passively mode-locked laser by continuous wave optical injection,” Appl. Phys. Lett.97(10), 101105 (2010).
[CrossRef]

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. P. Barry, D. Rachinskii, G. Huyet, and S. P. Hegarty, “Quantum-dot mode-locked lasers with dual-mode optical injection,” IEEE Photon. Technol. Lett.22(6), 359–361 (2010).
[CrossRef]

Helman, N. C.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron.9(2), 477–485 (2003).
[CrossRef]

Heydenreich, J.

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kop’ev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films267(1-2), 32–36 (1995).
[CrossRef]

Huang, H.

L. Zhang, L.-S. Cheng, A. L. Gray, H. Huang, S. Kutty, H. Li, J. Nagyvary, F. Nabulsi, L. Olona, E. Pease, Q. Sun, C. Wiggins, J. C. Zilko, Z. Zou, and P. M. Varangis, “High-power low-jitter quantum-dot passively modelocked lasers,” Proc. SPIE6115, 611502, 611502-8 (2006).
[CrossRef]

Huang, X. D.

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3-µm two-section InAs quantum dot lasers,” Appl. Phys. Lett.78(19), 2825–2827 (2001).
[CrossRef]

Huyet, G.

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. P. Barry, D. Rachinskii, G. Huyet, and S. P. Hegarty, “Quantum-dot mode-locked lasers with dual-mode optical injection,” IEEE Photon. Technol. Lett.22(6), 359–361 (2010).
[CrossRef]

N. Rebrova, T. Habruseva, G. Huyet, and S. P. Hegarty, “Stabilization of a passively mode-locked laser by continuous wave optical injection,” Appl. Phys. Lett.97(10), 101105 (2010).
[CrossRef]

Jiang, Y.

Kane, D. J.

Y.-C. Xin, D. J. Kane, and L. F. Lester, “Frequency-resolved optical gating characterisation of passively modelocked quantum-dot laser,” Electron. Lett.44(21), 1255–1256 (2008).
[CrossRef]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum.68(9), 3277–3295 (1997).
[CrossRef]

D. J. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency -resolved optical gating,” IEEE J. Quantum Electron.29(2), 571–579 (1993).
[CrossRef]

Keeler, G. A.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron.9(2), 477–485 (2003).
[CrossRef]

Kim, J.

Kim, J. H.

C.-Y. Lin, Y.-C. Xin, J. H. Kim, C. G. Christodoulou, and L. F. Lester, “Compact optical generation of microwave signals using a monolithic quantum dot passively mode-locked laser,” IEEE Photon. Journal1(4), 236–244 (2009).
[CrossRef]

Kirstaedter, N.

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs quantum-dot Lasers,” IEEE J. Sel. Top. Quantum Electron.3(2), 196–205 (1997).
[CrossRef]

Kohler, B.

Kop’ev, P. S.

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs quantum-dot Lasers,” IEEE J. Sel. Top. Quantum Electron.3(2), 196–205 (1997).
[CrossRef]

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kop’ev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films267(1-2), 32–36 (1995).
[CrossRef]

Kovanis, V.

Krumbugel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum.68(9), 3277–3295 (1997).
[CrossRef]

Kuntz, M.

G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijevic, S. Liebich, M. Laemmlin, M. Kuntz, and D. Bimberg, “Quantum-dot semiconductor mode-locked lasers and amplifiers at 40 GHz,” IEEE J. Quantum Electron.45(11), 1429–1435 (2009).
[CrossRef]

Kutty, S.

L. Zhang, L.-S. Cheng, A. L. Gray, H. Huang, S. Kutty, H. Li, J. Nagyvary, F. Nabulsi, L. Olona, E. Pease, Q. Sun, C. Wiggins, J. C. Zilko, Z. Zou, and P. M. Varangis, “High-power low-jitter quantum-dot passively modelocked lasers,” Proc. SPIE6115, 611502, 611502-8 (2006).
[CrossRef]

Laemmlin, M.

G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijevic, S. Liebich, M. Laemmlin, M. Kuntz, and D. Bimberg, “Quantum-dot semiconductor mode-locked lasers and amplifiers at 40 GHz,” IEEE J. Quantum Electron.45(11), 1429–1435 (2009).
[CrossRef]

Ledentsov, N. N.

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs quantum-dot Lasers,” IEEE J. Sel. Top. Quantum Electron.3(2), 196–205 (1997).
[CrossRef]

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kop’ev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films267(1-2), 32–36 (1995).
[CrossRef]

Lester, L. F.

C.-Y. Lin, F. Grillot, Y. Li, R. Raghunathan, and L. F. Lester, “Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser,” Opt. Express18(21), 21932–21937 (2010).
[CrossRef] [PubMed]

Y. Li, F. L. Chiragh, Y.-C. Xin, C.-Y. Lin, J. Kim, C. G. Christodoulou, and L. F. Lester, “Harmonic mode-locking using the double interval technique in quantum dot lasers,” Opt. Express15, 7623–7633 (2010).
[CrossRef] [PubMed]

C.-Y. Lin, Y.-C. Xin, J. H. Kim, C. G. Christodoulou, and L. F. Lester, “Compact optical generation of microwave signals using a monolithic quantum dot passively mode-locked laser,” IEEE Photon. Journal1(4), 236–244 (2009).
[CrossRef]

C.-Y. Lin, Y.-C. Xin, Y. Li, F. L. Chiragh, and L. F. Lester, “Cavity design and characteristics of monolithic long-wavelength InAs/InP quantum dash passively mode-locked lasers,” Opt. Express17(22), 19739–19748 (2009).
[CrossRef] [PubMed]

Y.-C. Xin, D. J. Kane, and L. F. Lester, “Frequency-resolved optical gating characterisation of passively modelocked quantum-dot laser,” Electron. Lett.44(21), 1255–1256 (2008).
[CrossRef]

Y.-C. Xin, Y. Li, V. Kovanis, A. L. Gray, L. Zhang, and L. F. Lester, “Reconfigurable quantum dot monolithic multisection passive mode-locked lasers,” Opt. Express15(12), 7623–7633 (2007).
[CrossRef] [PubMed]

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3-µm two-section InAs quantum dot lasers,” Appl. Phys. Lett.78(19), 2825–2827 (2001).
[CrossRef]

Li, H.

L. Zhang, L.-S. Cheng, A. L. Gray, H. Huang, S. Kutty, H. Li, J. Nagyvary, F. Nabulsi, L. Olona, E. Pease, Q. Sun, C. Wiggins, J. C. Zilko, Z. Zou, and P. M. Varangis, “High-power low-jitter quantum-dot passively modelocked lasers,” Proc. SPIE6115, 611502, 611502-8 (2006).
[CrossRef]

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3-µm two-section InAs quantum dot lasers,” Appl. Phys. Lett.78(19), 2825–2827 (2001).
[CrossRef]

Li, Y.

Liebich, S.

G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijevic, S. Liebich, M. Laemmlin, M. Kuntz, and D. Bimberg, “Quantum-dot semiconductor mode-locked lasers and amplifiers at 40 GHz,” IEEE J. Quantum Electron.45(11), 1429–1435 (2009).
[CrossRef]

Lin, C.-Y.

Loza-Alvarez, P.

Malins, D. B.

D. B. Malins, A. Gomez-Iglesias, S. J. White, W. Sibbett, A. Miller, and E. U. Rafailov, “Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm,” Appl. Phys. Lett.89(17), 171111 (2006).
[CrossRef]

Malloy, K. J.

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3-µm two-section InAs quantum dot lasers,” Appl. Phys. Lett.78(19), 2825–2827 (2001).
[CrossRef]

Meuer, C.

H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg, “Complete pulse characterization of quantum dot mode-locked lasers suitable for optical communication up to 160 Gbit/s,” Opt. Express18(4), 3415–3425 (2010).
[CrossRef] [PubMed]

G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijevic, S. Liebich, M. Laemmlin, M. Kuntz, and D. Bimberg, “Quantum-dot semiconductor mode-locked lasers and amplifiers at 40 GHz,” IEEE J. Quantum Electron.45(11), 1429–1435 (2009).
[CrossRef]

Mielke, M.

M. Mielke, G. A. Alphonse, and P. J. Delfyett, “168 channels x 6 GHz from a multiwavelength mode-locked semiconductor laser,” IEEE Photon. Technol. Lett.15(4), 501–503 (2003).
[CrossRef]

Miller, A.

D. B. Malins, A. Gomez-Iglesias, S. J. White, W. Sibbett, A. Miller, and E. U. Rafailov, “Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm,” Appl. Phys. Lett.89(17), 171111 (2006).
[CrossRef]

Miller, D. A. B.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron.9(2), 477–485 (2003).
[CrossRef]

Mo Xia, R. V.

M. G. Thompson, A. R. Rae, R. V. Mo Xia, Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron.15(3), 661–672 (2009).
[CrossRef]

Moshammer, R.

Nabulsi, F.

L. Zhang, L.-S. Cheng, A. L. Gray, H. Huang, S. Kutty, H. Li, J. Nagyvary, F. Nabulsi, L. Olona, E. Pease, Q. Sun, C. Wiggins, J. C. Zilko, Z. Zou, and P. M. Varangis, “High-power low-jitter quantum-dot passively modelocked lasers,” Proc. SPIE6115, 611502, 611502-8 (2006).
[CrossRef]

Nagyvary, J.

L. Zhang, L.-S. Cheng, A. L. Gray, H. Huang, S. Kutty, H. Li, J. Nagyvary, F. Nabulsi, L. Olona, E. Pease, Q. Sun, C. Wiggins, J. C. Zilko, Z. Zou, and P. M. Varangis, “High-power low-jitter quantum-dot passively modelocked lasers,” Proc. SPIE6115, 611502, 611502-8 (2006).
[CrossRef]

Nelson, B. E.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron.9(2), 477–485 (2003).
[CrossRef]

O’Donoghue, S.

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. P. Barry, D. Rachinskii, G. Huyet, and S. P. Hegarty, “Quantum-dot mode-locked lasers with dual-mode optical injection,” IEEE Photon. Technol. Lett.22(6), 359–361 (2010).
[CrossRef]

Olona, L.

L. Zhang, L.-S. Cheng, A. L. Gray, H. Huang, S. Kutty, H. Li, J. Nagyvary, F. Nabulsi, L. Olona, E. Pease, Q. Sun, C. Wiggins, J. C. Zilko, Z. Zou, and P. M. Varangis, “High-power low-jitter quantum-dot passively modelocked lasers,” Proc. SPIE6115, 611502, 611502-8 (2006).
[CrossRef]

Parameswaran, K. R.

Pease, E.

L. Zhang, L.-S. Cheng, A. L. Gray, H. Huang, S. Kutty, H. Li, J. Nagyvary, F. Nabulsi, L. Olona, E. Pease, Q. Sun, C. Wiggins, J. C. Zilko, Z. Zou, and P. M. Varangis, “High-power low-jitter quantum-dot passively modelocked lasers,” Proc. SPIE6115, 611502, 611502-8 (2006).
[CrossRef]

Penty,

M. G. Thompson, A. R. Rae, R. V. Mo Xia, Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron.15(3), 661–672 (2009).
[CrossRef]

Penty, R. V.

M. G. Thompson, R. V. Penty, and I. H. White, “Regimes of modelocking in tapered quantum dot laser diodes,” in Proc. Semicond. Laser Conf. (ISLC), Sorrento, Italy, Sep. 2008, pp. 27–28.

Pfeifer, T.

Preble, S. F.

Rachinskii, D.

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. P. Barry, D. Rachinskii, G. Huyet, and S. P. Hegarty, “Quantum-dot mode-locked lasers with dual-mode optical injection,” IEEE Photon. Technol. Lett.22(6), 359–361 (2010).
[CrossRef]

Rae, A. R.

M. G. Thompson, A. R. Rae, R. V. Mo Xia, Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron.15(3), 661–672 (2009).
[CrossRef]

Rafailov, E. U.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1(7), 395–401 (2007).
[CrossRef]

D. B. Malins, A. Gomez-Iglesias, S. J. White, W. Sibbett, A. Miller, and E. U. Rafailov, “Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm,” Appl. Phys. Lett.89(17), 171111 (2006).
[CrossRef]

Raghunathan, R.

Ratner, J.

Rebrova, N.

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. P. Barry, D. Rachinskii, G. Huyet, and S. P. Hegarty, “Quantum-dot mode-locked lasers with dual-mode optical injection,” IEEE Photon. Technol. Lett.22(6), 359–361 (2010).
[CrossRef]

N. Rebrova, T. Habruseva, G. Huyet, and S. P. Hegarty, “Stabilization of a passively mode-locked laser by continuous wave optical injection,” Appl. Phys. Lett.97(10), 101105 (2010).
[CrossRef]

Reid, D. A.

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. P. Barry, D. Rachinskii, G. Huyet, and S. P. Hegarty, “Quantum-dot mode-locked lasers with dual-mode optical injection,” IEEE Photon. Technol. Lett.22(6), 359–361 (2010).
[CrossRef]

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum.68(9), 3277–3295 (1997).
[CrossRef]

Richter, U.

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kop’ev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films267(1-2), 32–36 (1995).
[CrossRef]

Ruvimov, S. S.

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kop’ev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films267(1-2), 32–36 (1995).
[CrossRef]

Schmeckebier, H.

H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg, “Complete pulse characterization of quantum dot mode-locked lasers suitable for optical communication up to 160 Gbit/s,” Opt. Express18(4), 3415–3425 (2010).
[CrossRef] [PubMed]

G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijevic, S. Liebich, M. Laemmlin, M. Kuntz, and D. Bimberg, “Quantum-dot semiconductor mode-locked lasers and amplifiers at 40 GHz,” IEEE J. Quantum Electron.45(11), 1429–1435 (2009).
[CrossRef]

Sibbett, W.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1(7), 395–401 (2007).
[CrossRef]

D. B. Malins, A. Gomez-Iglesias, S. J. White, W. Sibbett, A. Miller, and E. U. Rafailov, “Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm,” Appl. Phys. Lett.89(17), 171111 (2006).
[CrossRef]

Squier, J.

Steinmeyer, G.

Stintz, A.

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3-µm two-section InAs quantum dot lasers,” Appl. Phys. Lett.78(19), 2825–2827 (2001).
[CrossRef]

Sun, Q.

L. Zhang, L.-S. Cheng, A. L. Gray, H. Huang, S. Kutty, H. Li, J. Nagyvary, F. Nabulsi, L. Olona, E. Pease, Q. Sun, C. Wiggins, J. C. Zilko, Z. Zou, and P. M. Varangis, “High-power low-jitter quantum-dot passively modelocked lasers,” Proc. SPIE6115, 611502, 611502-8 (2006).
[CrossRef]

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum.68(9), 3277–3295 (1997).
[CrossRef]

Thompson, M. G.

M. G. Thompson, A. R. Rae, R. V. Mo Xia, Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron.15(3), 661–672 (2009).
[CrossRef]

M. G. Thompson, R. V. Penty, and I. H. White, “Regimes of modelocking in tapered quantum dot laser diodes,” in Proc. Semicond. Laser Conf. (ISLC), Sorrento, Italy, Sep. 2008, pp. 27–28.

Trebino, R.

J. Ratner, G. Steinmeyer, T. C. Wong, R. Bartels, and R. Trebino, “Coherent artifact in modern pulse measurements,” Opt. Lett.37(14), 2874–2876 (2012).
[CrossRef] [PubMed]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum.68(9), 3277–3295 (1997).
[CrossRef]

B. Kohler, V. V. Yakovlev, K. R. Wilson, J. Squier, K. W. Delong, and R. Trebino, “Phase and intensity characterization of femtosecond pulses from a chirped-pulse amplifier by frequency-resolved optical gating,” Opt. Lett.20(5), 483–485 (1995).
[CrossRef] [PubMed]

D. J. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency -resolved optical gating,” IEEE J. Quantum Electron.29(2), 571–579 (1993).
[CrossRef]

Ullrich, J.

Ustinov, V. M.

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs quantum-dot Lasers,” IEEE J. Sel. Top. Quantum Electron.3(2), 196–205 (1997).
[CrossRef]

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kop’ev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films267(1-2), 32–36 (1995).
[CrossRef]

Varangis, P. M.

L. Zhang, L.-S. Cheng, A. L. Gray, H. Huang, S. Kutty, H. Li, J. Nagyvary, F. Nabulsi, L. Olona, E. Pease, Q. Sun, C. Wiggins, J. C. Zilko, Z. Zou, and P. M. Varangis, “High-power low-jitter quantum-dot passively modelocked lasers,” Proc. SPIE6115, 611502, 611502-8 (2006).
[CrossRef]

Weiner, A. M.

Werner, P.

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kop’ev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films267(1-2), 32–36 (1995).
[CrossRef]

White, I. H.

M. G. Thompson, A. R. Rae, R. V. Mo Xia, Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron.15(3), 661–672 (2009).
[CrossRef]

M. G. Thompson, R. V. Penty, and I. H. White, “Regimes of modelocking in tapered quantum dot laser diodes,” in Proc. Semicond. Laser Conf. (ISLC), Sorrento, Italy, Sep. 2008, pp. 27–28.

White, S. J.

D. B. Malins, A. Gomez-Iglesias, S. J. White, W. Sibbett, A. Miller, and E. U. Rafailov, “Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm,” Appl. Phys. Lett.89(17), 171111 (2006).
[CrossRef]

Wiggins, C.

L. Zhang, L.-S. Cheng, A. L. Gray, H. Huang, S. Kutty, H. Li, J. Nagyvary, F. Nabulsi, L. Olona, E. Pease, Q. Sun, C. Wiggins, J. C. Zilko, Z. Zou, and P. M. Varangis, “High-power low-jitter quantum-dot passively modelocked lasers,” Proc. SPIE6115, 611502, 611502-8 (2006).
[CrossRef]

Wilson, K. R.

Wong, T. C.

Xin, Y.-C.

Yakovlev, V. V.

Yang, S.-D.

Zhang, L.

Y.-C. Xin, Y. Li, V. Kovanis, A. L. Gray, L. Zhang, and L. F. Lester, “Reconfigurable quantum dot monolithic multisection passive mode-locked lasers,” Opt. Express15(12), 7623–7633 (2007).
[CrossRef] [PubMed]

L. Zhang, L.-S. Cheng, A. L. Gray, H. Huang, S. Kutty, H. Li, J. Nagyvary, F. Nabulsi, L. Olona, E. Pease, Q. Sun, C. Wiggins, J. C. Zilko, Z. Zou, and P. M. Varangis, “High-power low-jitter quantum-dot passively modelocked lasers,” Proc. SPIE6115, 611502, 611502-8 (2006).
[CrossRef]

Zilko, J. C.

L. Zhang, L.-S. Cheng, A. L. Gray, H. Huang, S. Kutty, H. Li, J. Nagyvary, F. Nabulsi, L. Olona, E. Pease, Q. Sun, C. Wiggins, J. C. Zilko, Z. Zou, and P. M. Varangis, “High-power low-jitter quantum-dot passively modelocked lasers,” Proc. SPIE6115, 611502, 611502-8 (2006).
[CrossRef]

Zou, Z.

L. Zhang, L.-S. Cheng, A. L. Gray, H. Huang, S. Kutty, H. Li, J. Nagyvary, F. Nabulsi, L. Olona, E. Pease, Q. Sun, C. Wiggins, J. C. Zilko, Z. Zou, and P. M. Varangis, “High-power low-jitter quantum-dot passively modelocked lasers,” Proc. SPIE6115, 611502, 611502-8 (2006).
[CrossRef]

Appl. Phys. Lett. (3)

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3-µm two-section InAs quantum dot lasers,” Appl. Phys. Lett.78(19), 2825–2827 (2001).
[CrossRef]

D. B. Malins, A. Gomez-Iglesias, S. J. White, W. Sibbett, A. Miller, and E. U. Rafailov, “Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm,” Appl. Phys. Lett.89(17), 171111 (2006).
[CrossRef]

N. Rebrova, T. Habruseva, G. Huyet, and S. P. Hegarty, “Stabilization of a passively mode-locked laser by continuous wave optical injection,” Appl. Phys. Lett.97(10), 101105 (2010).
[CrossRef]

Electron. Lett. (2)

Y.-C. Xin, D. J. Kane, and L. F. Lester, “Frequency-resolved optical gating characterisation of passively modelocked quantum-dot laser,” Electron. Lett.44(21), 1255–1256 (2008).
[CrossRef]

D. Bimberg, “Quantum dot based nanophotonics and nanoelectronics,” Electron. Lett.44(3), 168–171 (2008).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. J. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency -resolved optical gating,” IEEE J. Quantum Electron.29(2), 571–579 (1993).
[CrossRef]

G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijevic, S. Liebich, M. Laemmlin, M. Kuntz, and D. Bimberg, “Quantum-dot semiconductor mode-locked lasers and amplifiers at 40 GHz,” IEEE J. Quantum Electron.45(11), 1429–1435 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

M. G. Thompson, A. R. Rae, R. V. Mo Xia, Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron.15(3), 661–672 (2009).
[CrossRef]

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs quantum-dot Lasers,” IEEE J. Sel. Top. Quantum Electron.3(2), 196–205 (1997).
[CrossRef]

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron.9(2), 477–485 (2003).
[CrossRef]

IEEE Photon. Journal (1)

C.-Y. Lin, Y.-C. Xin, J. H. Kim, C. G. Christodoulou, and L. F. Lester, “Compact optical generation of microwave signals using a monolithic quantum dot passively mode-locked laser,” IEEE Photon. Journal1(4), 236–244 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. Mielke, G. A. Alphonse, and P. J. Delfyett, “168 channels x 6 GHz from a multiwavelength mode-locked semiconductor laser,” IEEE Photon. Technol. Lett.15(4), 501–503 (2003).
[CrossRef]

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. P. Barry, D. Rachinskii, G. Huyet, and S. P. Hegarty, “Quantum-dot mode-locked lasers with dual-mode optical injection,” IEEE Photon. Technol. Lett.22(6), 359–361 (2010).
[CrossRef]

Nat. Photonics (1)

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1(7), 395–401 (2007).
[CrossRef]

Opt. Express (7)

Y.-C. Xin, Y. Li, V. Kovanis, A. L. Gray, L. Zhang, and L. F. Lester, “Reconfigurable quantum dot monolithic multisection passive mode-locked lasers,” Opt. Express15(12), 7623–7633 (2007).
[CrossRef] [PubMed]

C.-Y. Lin, Y.-C. Xin, Y. Li, F. L. Chiragh, and L. F. Lester, “Cavity design and characteristics of monolithic long-wavelength InAs/InP quantum dash passively mode-locked lasers,” Opt. Express17(22), 19739–19748 (2009).
[CrossRef] [PubMed]

Y. Li, F. L. Chiragh, Y.-C. Xin, C.-Y. Lin, J. Kim, C. G. Christodoulou, and L. F. Lester, “Harmonic mode-locking using the double interval technique in quantum dot lasers,” Opt. Express15, 7623–7633 (2010).
[CrossRef] [PubMed]

A. A. Aboketaf, A. W. Elshaari, and S. F. Preble, “Optical time division multiplexer on silicon chip,” Opt. Express18(13), 13529–13535 (2010).
[CrossRef] [PubMed]

C.-Y. Lin, F. Grillot, Y. Li, R. Raghunathan, and L. F. Lester, “Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser,” Opt. Express18(21), 21932–21937 (2010).
[CrossRef] [PubMed]

H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg, “Complete pulse characterization of quantum dot mode-locked lasers suitable for optical communication up to 160 Gbit/s,” Opt. Express18(4), 3415–3425 (2010).
[CrossRef] [PubMed]

I. Amat-Roldán, I. G. Cormack, P. Loza-Alvarez, E. Gualda, and D. Artigas, “Ultrashort pulse characterisation with SHG collinear-FROG,” Opt. Express12(6), 1169–1178 (2004).
[CrossRef] [PubMed]

Opt. Lett. (4)

Proc. SPIE (1)

L. Zhang, L.-S. Cheng, A. L. Gray, H. Huang, S. Kutty, H. Li, J. Nagyvary, F. Nabulsi, L. Olona, E. Pease, Q. Sun, C. Wiggins, J. C. Zilko, Z. Zou, and P. M. Varangis, “High-power low-jitter quantum-dot passively modelocked lasers,” Proc. SPIE6115, 611502, 611502-8 (2006).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum.68(9), 3277–3295 (1997).
[CrossRef]

Thin Solid Films (1)

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kop’ev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films267(1-2), 32–36 (1995).
[CrossRef]

Other (4)

M. G. Thompson, R. V. Penty, and I. H. White, “Regimes of modelocking in tapered quantum dot laser diodes,” in Proc. Semicond. Laser Conf. (ISLC), Sorrento, Italy, Sep. 2008, pp. 27–28.

M. Xia, M. G. Thompson, R. V. Penty, and I. H. White, “External-cavity mode-locked quantum-dot lasers for low repetition rate, sub-picosecond pulse generation,” presented at the Lasers Elect.-Opt. (CLEO) Conf. San Jose, CA, 2008.
[CrossRef]

M. Photonics, “FROG scan screen captures of shaped pulses,” http://www.mesaphotonics.com/products-2/pulse-measurement/frogscan-data/ .

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the collinear SHG FROG system.

Fig. 2
Fig. 2

(a) Measured and (b) retrieved FROG spectrograms of the passive-mode-locked laser at 105 mA gain section current and −4.5 V absorber section reverse bias. (c) Retrieved pulse intensity profile. (d) phase profile and temporal chirp; (e) Pulse trace measured by autocorrelator at the same bias condition.

Fig. 3
Fig. 3

(a) Measured FROG spectrogram of the passive-mode-locked laser at 135 mA gain section current and −4.5 V absorber section reverse bias. (b) Pulse trace measured by autocorrelation.

Fig. 4
Fig. 4

Pulse FWHM of the QD MLL as a function of gain current and reverse bias measured by (a) the FROG and the retrieval error of the algorithm is smaller than 2%. (b) Autocorrelation results showing the regions predicted to have less than 10 ps pulse width. The two blue circles marked as “A” and “B” in Fig. 4(a) corresponds to the two different bias conditions in Fig. 2 and Fig. 3, respectively. The smallest pulse width is 2.7 ps as measured by FROG when the gain current is 95 mA and reverse bias is −4.5 V.

Fig. 5
Fig. 5

Example noisy pulses and FROG traces. a) shows the sum of 10,000 noisy pulses (black) and a sample single noisy pulse (red) formed from random noise modulated by a Gaussian. b) shows the average autocorrelation of a noisy pulse train. c) shows the FROG trace of a pulse train comprising of only pulses depicted by the red line in a). d) shows the average FROG trace of a noisy pulse train. While the single pulse shown in part a) can be extracted from the FROG trace shown in c), no pulse can be extracted from the FROG trace in part d).

Fig. 6
Fig. 6

FROG traces constructed from the partial coherence model described in the text. a) no spectral phase; b) cubic spectral phase only. c) has linear chirp only, and d) has linear and cubic chirp. All of the examples use the same spectral gain profile.

Fig. 7
Fig. 7

Average pulses from the partial coherence model. The temporal pulses would be measured using a digital sampling oscilloscope (assuming adequate bandwidth) and the average spectra would be measured using an optical spectrum analyzer. Individual pulses within the pulse train vary randomly. Spectral and temporal shaping occurs only because the spectral chirp added together with the action of the saturable absorber.

Metrics