Abstract

Optical properties of light absorbing carbon (LAC) aggregates encapsulated in a shell of sulfate are computed for realistic model geometries based on field measurements. Computations are performed for wavelengths from the UV-C to the mid-IR. Both climate- and remote sensing-relevant optical properties are considered. The results are compared to commonly used simplified model geometries, none of which gives a realistic representation of the distribution of the LAC mass within the host material and, as a consequence, fail to predict the optical properties accurately. A new core-gray shell model is introduced, which accurately reproduces the size- and wavelength dependence of the integrated and differential optical properties.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. R. Jones, “Light scattering in combustion,” in Light Scattering Reviews, A. Kokhanovsky, ed. (Springer, 2006).
    [CrossRef]
  2. M. Schnaiter, H. Horvath, O. Möhler, K.-H. Naumann, H. Saathoff, and O. W. Schöck, “UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols,” J. Aerosol Sci.34, 1421–1444 (2003).
    [CrossRef]
  3. J. Hallett, J. G. Hudson, and C. F. Rogers, “Characterization of combustion aerosols for haze and cloud formation,” Aerosol Sci. Technol.10, 70–83 (1989).
    [CrossRef]
  4. I. Colbeck, L. Appleby, E. J. Hardman, and R. M. Harrison, “The optical properties and morphology of cloud-processed carbonaceous smoke,” J. Aerosol Sci.21, 527–538 (1990).
    [CrossRef]
  5. G. Ramachandran and P. C. Reist, “Characterization of morphological changes in agglomerates subject to condensation and evaporation using multiple fractal dimensions,” Aerosol Sci. Technol.23, 431–442 (1995).
    [CrossRef]
  6. S. Nyeki and I. Colbeck, “Fractal dimension analysis of single, in-situ, restructured carbonaceous aggregates,” Aerosol Sci. Technol.23, 109–120 (1995).
    [CrossRef]
  7. N. Riemer, H. Vogel, and B. Vogel, “Soot aging time scales in polluted regions during day and night,” Atmos. Chem. Phys.4, 1885–1893 (2004).
    [CrossRef]
  8. S. Tsyro, D. Simpson, L. Tarrasón, Z. K. K. Kupiainen, C. Pio, and K. E. Yttri, “Modelling of elemental carbon over Europe,” J. Geophys. Res.112, D23S19, (2007).
    [CrossRef]
  9. B. Croft, U. Lohmann, and K. von Salzen, “Black carbon aging in the Canadian Centre for Climate modelling and analysis atmospheric general circulation model,” Atmos. Chem. Phys.5, 1383–1419 (2005).
    [CrossRef]
  10. R. J. Park, D. J. Jacob, P. I. Palmer, A. D. Clarke, R. J. Weber, M. A. Zondlo, F. L. Eisele, A. R. Bandy, D. C. Thornton, G. W. Sachse, and T. C. Bond, “Export efficiency of black carbon aerosol in continental outflow: Global implications,” J. Geophys. Res.110, D11205, (2005).
    [CrossRef]
  11. A. Worringen, M. Ebert, T. Trautmann, S. Weinbruch, and G. Helas, “Optical properties of internally mixed ammonium sulfate and soot particles–a study of individual aerosol particles and ambient aerosol populations,” Appl. Opt.47, 3835–3845 (2008).
    [CrossRef] [PubMed]
  12. B. Scarnato, S. Vahidinia, D. T. Richard, and T. W. Kirchstetter, “Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model,” Atmos. Chem. Phys. Discuss.12, 26401–26434 (2012).
    [CrossRef]
  13. K. Adachi and P. R. Buseck, “Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City,” Atmos. Chem. Phys.8, 6469–6481 (2008).
    [CrossRef]
  14. T. C. Bond, G. Habib, and R. W. Bergstrom, “Limitations in the enhancement of visible light absorption due to mixing state,” J. Geophys. Res.111, D20211, (2006).
    [CrossRef]
  15. M. Kahnert, T. Nousiainen, H. Lindqvist, and M. Ebert, “Optical properties of light absorbing carbon aggregates mixed with sulfate: assessment of different model geometries for climate forcing calculations,” Opt. Express20, 10042–10058 (2012).
    [CrossRef] [PubMed]
  16. M. Kahnert, “On the discrepancy between modelled and measured mass absorption cross sections of light absorbing carbon aerosols,” Aerosol Sci. Technol.44, 453–460 (2010).
    [CrossRef]
  17. M. I. Mishchenko, V. P. Tishkovets, L. D. Travis, B. Cairns, J. M. Dlugach, L. Liu, V. K. Rosenbush, and N. N. Kiselev, “Electromagnetic scattering by a morphologically complex object: Fundamental concepts and common misconceptions,” J. Quant. Spectrosc. Radiat. Transfer112, 671–692 (2011).
    [CrossRef]
  18. M. Kahnert, “Modelling the optical and radiative properties of freshly emitted light absorbing carbon within an atmospheric chemical transport model,” Atmos. Chem. Phys.10, 1403–1416 (2010).
    [CrossRef]
  19. M. Kahnert, “Numerically exact computation of the optical properties of light absorbing carbon aggregates for wavelength of 200 nm V 12.2 μm,” Atmos. Chem. Phys.10, 8319–8329 (2010).
    [CrossRef]
  20. M. Kahnert and A. Devasthale, “Black carbon fractal morphology and short-wave radiative impact: a modelling study,” Atmos. Chem. Phys.11, 11745–11759 (2011).
    [CrossRef]
  21. P. Chýlek, G. Videen, D. J. W. Geldart, J. S. Dobbie, and H. C. W. Tso, “Effective medium approximations for heterogeneous particles,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000), pp. 274–308.
  22. G. Videen and P. Chýlek, “Scattering by a composite sphere with an absorbing inclusion and effective medium approximations,” Opt. Commun.158, 1–6 (1998).
    [CrossRef]
  23. M. Z. Jacobson, “Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols,” Nature409, 695–697 (2001).
    [CrossRef] [PubMed]
  24. K. Adachi, S. Chung, and P. R. Buseck, “Shapes of soot aerosol particles and implications for their effects on climate,” J. Geophys. Res.115, D15206, (2010).
    [CrossRef]
  25. M. Wentzel, G. Gorzawski, K.-H. Naumann, H. Saathoff, and S. Weinbruch, “Transmission electron microscopical and aerosol dynamical characterization of soot aerosols,” Aerosol Sci.34, 1347–1370 (2003).
    [CrossRef]
  26. J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. A203, 385–420 (1904).
    [CrossRef]
  27. M. Kahnert, “Irreducible representations of finite groups in the T matrix formulation of the electromagnetic scattering problem,” J. Opt. Soc. Am. A22, 1187–1199 (2005).
    [CrossRef]
  28. H. Chang and T. T. Charalampopoulos, “Determination of the wavelength dependence of refractive indices of flame soot,” Proc. R. Soc. Lond. A430, 577–591 (1990).
    [CrossRef]
  29. T. C. Bond and R. W. Bergstrom, “Light absorption by carbonaceous particles: An investigative review,” Aerosol Sci. Technol.40, 27–67 (2006).
    [CrossRef]
  30. M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Met. Soc.79, 831–844 (1998).
    [CrossRef]
  31. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A11, 1491–1499 (1994).
    [CrossRef]
  32. B. T. Draine and J. J. Goodman, “Beyond Clausius-Mossotti: Wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophysical J.405, 685–697 (1993).
    [CrossRef]
  33. D. W. Mackowski and M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A13, 2266–2278 (1996).
    [CrossRef]
  34. K. Schmidt, M. Yurkin, and M. Kahnert, “A case study on the reciprocity in light scattering computations,” Opt. Express20, 23253–23274 (2012).
    [CrossRef] [PubMed]
  35. D. Gutkowicz-Krusin and B. T. Draine, “Propagation of electromagnetic waves on a rectangular lattice of polarizable points,” Tech. rep., http://arxiv.org/abs/astro-ph/0403082 (2004).
  36. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University, 2002).
  37. O. B. Toon and T. P. Ackermann, “Algorithms for the calculation of scattering by stratified spheres,” Appl. Opt.20, 3657–3660 (1981).
    [CrossRef] [PubMed]
  38. K. A. Fuller, W. C. Malm, and S. M. Kreidenweis, “Effects of mixing on extinction by carbonaceous particles,” J. Geophys. Res.104, 15941–15954 (1999).
    [CrossRef]
  39. G. Lesins, P. Chylek, and U. Lohmann, “A study of internal and external mixing scenarios and its effect on aerosol optical properties and direct radiative forcing,” J. Geophys. Res.107(D10), 4094, (2002).
    [CrossRef]
  40. S. Mogo, V. E. Cachorro, A. de Frutos, and A. Rodrigues, “Absorption ångström exponents of aerosols and light absorbing carbon (lac) obtained from in situ data in Covilhã, central Portugal,” J. Environ. Monit.14, 3174–3181 (2012).
    [CrossRef] [PubMed]
  41. K. Adachi, S. H. Chung, H. Friedrich, and P. R. Buseck, “Fractal parameters of individual soot particles determined using electron tomography: Implications for optical properties,” J. Geophys. Res.112, D14202, (2007).
    [CrossRef]
  42. E. F. Mikhailov, S. S. Vlasenko, I. A. Podgorny, V. Ramanathan, and C. E. Corrigan, “Optical properties of soot-water drop agglomerates: An experimental study,” J. Geophys. Res.111, D07209, (2006).
    [CrossRef]

2012 (4)

B. Scarnato, S. Vahidinia, D. T. Richard, and T. W. Kirchstetter, “Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model,” Atmos. Chem. Phys. Discuss.12, 26401–26434 (2012).
[CrossRef]

M. Kahnert, T. Nousiainen, H. Lindqvist, and M. Ebert, “Optical properties of light absorbing carbon aggregates mixed with sulfate: assessment of different model geometries for climate forcing calculations,” Opt. Express20, 10042–10058 (2012).
[CrossRef] [PubMed]

K. Schmidt, M. Yurkin, and M. Kahnert, “A case study on the reciprocity in light scattering computations,” Opt. Express20, 23253–23274 (2012).
[CrossRef] [PubMed]

S. Mogo, V. E. Cachorro, A. de Frutos, and A. Rodrigues, “Absorption ångström exponents of aerosols and light absorbing carbon (lac) obtained from in situ data in Covilhã, central Portugal,” J. Environ. Monit.14, 3174–3181 (2012).
[CrossRef] [PubMed]

2011 (2)

M. I. Mishchenko, V. P. Tishkovets, L. D. Travis, B. Cairns, J. M. Dlugach, L. Liu, V. K. Rosenbush, and N. N. Kiselev, “Electromagnetic scattering by a morphologically complex object: Fundamental concepts and common misconceptions,” J. Quant. Spectrosc. Radiat. Transfer112, 671–692 (2011).
[CrossRef]

M. Kahnert and A. Devasthale, “Black carbon fractal morphology and short-wave radiative impact: a modelling study,” Atmos. Chem. Phys.11, 11745–11759 (2011).
[CrossRef]

2010 (4)

M. Kahnert, “Modelling the optical and radiative properties of freshly emitted light absorbing carbon within an atmospheric chemical transport model,” Atmos. Chem. Phys.10, 1403–1416 (2010).
[CrossRef]

M. Kahnert, “Numerically exact computation of the optical properties of light absorbing carbon aggregates for wavelength of 200 nm V 12.2 μm,” Atmos. Chem. Phys.10, 8319–8329 (2010).
[CrossRef]

M. Kahnert, “On the discrepancy between modelled and measured mass absorption cross sections of light absorbing carbon aerosols,” Aerosol Sci. Technol.44, 453–460 (2010).
[CrossRef]

K. Adachi, S. Chung, and P. R. Buseck, “Shapes of soot aerosol particles and implications for their effects on climate,” J. Geophys. Res.115, D15206, (2010).
[CrossRef]

2008 (2)

2007 (2)

S. Tsyro, D. Simpson, L. Tarrasón, Z. K. K. Kupiainen, C. Pio, and K. E. Yttri, “Modelling of elemental carbon over Europe,” J. Geophys. Res.112, D23S19, (2007).
[CrossRef]

K. Adachi, S. H. Chung, H. Friedrich, and P. R. Buseck, “Fractal parameters of individual soot particles determined using electron tomography: Implications for optical properties,” J. Geophys. Res.112, D14202, (2007).
[CrossRef]

2006 (3)

E. F. Mikhailov, S. S. Vlasenko, I. A. Podgorny, V. Ramanathan, and C. E. Corrigan, “Optical properties of soot-water drop agglomerates: An experimental study,” J. Geophys. Res.111, D07209, (2006).
[CrossRef]

T. C. Bond and R. W. Bergstrom, “Light absorption by carbonaceous particles: An investigative review,” Aerosol Sci. Technol.40, 27–67 (2006).
[CrossRef]

T. C. Bond, G. Habib, and R. W. Bergstrom, “Limitations in the enhancement of visible light absorption due to mixing state,” J. Geophys. Res.111, D20211, (2006).
[CrossRef]

2005 (3)

B. Croft, U. Lohmann, and K. von Salzen, “Black carbon aging in the Canadian Centre for Climate modelling and analysis atmospheric general circulation model,” Atmos. Chem. Phys.5, 1383–1419 (2005).
[CrossRef]

R. J. Park, D. J. Jacob, P. I. Palmer, A. D. Clarke, R. J. Weber, M. A. Zondlo, F. L. Eisele, A. R. Bandy, D. C. Thornton, G. W. Sachse, and T. C. Bond, “Export efficiency of black carbon aerosol in continental outflow: Global implications,” J. Geophys. Res.110, D11205, (2005).
[CrossRef]

M. Kahnert, “Irreducible representations of finite groups in the T matrix formulation of the electromagnetic scattering problem,” J. Opt. Soc. Am. A22, 1187–1199 (2005).
[CrossRef]

2004 (1)

N. Riemer, H. Vogel, and B. Vogel, “Soot aging time scales in polluted regions during day and night,” Atmos. Chem. Phys.4, 1885–1893 (2004).
[CrossRef]

2003 (2)

M. Schnaiter, H. Horvath, O. Möhler, K.-H. Naumann, H. Saathoff, and O. W. Schöck, “UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols,” J. Aerosol Sci.34, 1421–1444 (2003).
[CrossRef]

M. Wentzel, G. Gorzawski, K.-H. Naumann, H. Saathoff, and S. Weinbruch, “Transmission electron microscopical and aerosol dynamical characterization of soot aerosols,” Aerosol Sci.34, 1347–1370 (2003).
[CrossRef]

2002 (1)

G. Lesins, P. Chylek, and U. Lohmann, “A study of internal and external mixing scenarios and its effect on aerosol optical properties and direct radiative forcing,” J. Geophys. Res.107(D10), 4094, (2002).
[CrossRef]

2001 (1)

M. Z. Jacobson, “Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols,” Nature409, 695–697 (2001).
[CrossRef] [PubMed]

1999 (1)

K. A. Fuller, W. C. Malm, and S. M. Kreidenweis, “Effects of mixing on extinction by carbonaceous particles,” J. Geophys. Res.104, 15941–15954 (1999).
[CrossRef]

1998 (2)

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Met. Soc.79, 831–844 (1998).
[CrossRef]

G. Videen and P. Chýlek, “Scattering by a composite sphere with an absorbing inclusion and effective medium approximations,” Opt. Commun.158, 1–6 (1998).
[CrossRef]

1996 (1)

1995 (2)

G. Ramachandran and P. C. Reist, “Characterization of morphological changes in agglomerates subject to condensation and evaporation using multiple fractal dimensions,” Aerosol Sci. Technol.23, 431–442 (1995).
[CrossRef]

S. Nyeki and I. Colbeck, “Fractal dimension analysis of single, in-situ, restructured carbonaceous aggregates,” Aerosol Sci. Technol.23, 109–120 (1995).
[CrossRef]

1994 (1)

1993 (1)

B. T. Draine and J. J. Goodman, “Beyond Clausius-Mossotti: Wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophysical J.405, 685–697 (1993).
[CrossRef]

1990 (2)

H. Chang and T. T. Charalampopoulos, “Determination of the wavelength dependence of refractive indices of flame soot,” Proc. R. Soc. Lond. A430, 577–591 (1990).
[CrossRef]

I. Colbeck, L. Appleby, E. J. Hardman, and R. M. Harrison, “The optical properties and morphology of cloud-processed carbonaceous smoke,” J. Aerosol Sci.21, 527–538 (1990).
[CrossRef]

1989 (1)

J. Hallett, J. G. Hudson, and C. F. Rogers, “Characterization of combustion aerosols for haze and cloud formation,” Aerosol Sci. Technol.10, 70–83 (1989).
[CrossRef]

1981 (1)

1904 (1)

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. A203, 385–420 (1904).
[CrossRef]

Ackermann, T. P.

Adachi, K.

K. Adachi, S. Chung, and P. R. Buseck, “Shapes of soot aerosol particles and implications for their effects on climate,” J. Geophys. Res.115, D15206, (2010).
[CrossRef]

K. Adachi and P. R. Buseck, “Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City,” Atmos. Chem. Phys.8, 6469–6481 (2008).
[CrossRef]

K. Adachi, S. H. Chung, H. Friedrich, and P. R. Buseck, “Fractal parameters of individual soot particles determined using electron tomography: Implications for optical properties,” J. Geophys. Res.112, D14202, (2007).
[CrossRef]

Appleby, L.

I. Colbeck, L. Appleby, E. J. Hardman, and R. M. Harrison, “The optical properties and morphology of cloud-processed carbonaceous smoke,” J. Aerosol Sci.21, 527–538 (1990).
[CrossRef]

Bandy, A. R.

R. J. Park, D. J. Jacob, P. I. Palmer, A. D. Clarke, R. J. Weber, M. A. Zondlo, F. L. Eisele, A. R. Bandy, D. C. Thornton, G. W. Sachse, and T. C. Bond, “Export efficiency of black carbon aerosol in continental outflow: Global implications,” J. Geophys. Res.110, D11205, (2005).
[CrossRef]

Bergstrom, R. W.

T. C. Bond, G. Habib, and R. W. Bergstrom, “Limitations in the enhancement of visible light absorption due to mixing state,” J. Geophys. Res.111, D20211, (2006).
[CrossRef]

T. C. Bond and R. W. Bergstrom, “Light absorption by carbonaceous particles: An investigative review,” Aerosol Sci. Technol.40, 27–67 (2006).
[CrossRef]

Bond, T. C.

T. C. Bond and R. W. Bergstrom, “Light absorption by carbonaceous particles: An investigative review,” Aerosol Sci. Technol.40, 27–67 (2006).
[CrossRef]

T. C. Bond, G. Habib, and R. W. Bergstrom, “Limitations in the enhancement of visible light absorption due to mixing state,” J. Geophys. Res.111, D20211, (2006).
[CrossRef]

R. J. Park, D. J. Jacob, P. I. Palmer, A. D. Clarke, R. J. Weber, M. A. Zondlo, F. L. Eisele, A. R. Bandy, D. C. Thornton, G. W. Sachse, and T. C. Bond, “Export efficiency of black carbon aerosol in continental outflow: Global implications,” J. Geophys. Res.110, D11205, (2005).
[CrossRef]

Buseck, P. R.

K. Adachi, S. Chung, and P. R. Buseck, “Shapes of soot aerosol particles and implications for their effects on climate,” J. Geophys. Res.115, D15206, (2010).
[CrossRef]

K. Adachi and P. R. Buseck, “Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City,” Atmos. Chem. Phys.8, 6469–6481 (2008).
[CrossRef]

K. Adachi, S. H. Chung, H. Friedrich, and P. R. Buseck, “Fractal parameters of individual soot particles determined using electron tomography: Implications for optical properties,” J. Geophys. Res.112, D14202, (2007).
[CrossRef]

Cachorro, V. E.

S. Mogo, V. E. Cachorro, A. de Frutos, and A. Rodrigues, “Absorption ångström exponents of aerosols and light absorbing carbon (lac) obtained from in situ data in Covilhã, central Portugal,” J. Environ. Monit.14, 3174–3181 (2012).
[CrossRef] [PubMed]

Cairns, B.

M. I. Mishchenko, V. P. Tishkovets, L. D. Travis, B. Cairns, J. M. Dlugach, L. Liu, V. K. Rosenbush, and N. N. Kiselev, “Electromagnetic scattering by a morphologically complex object: Fundamental concepts and common misconceptions,” J. Quant. Spectrosc. Radiat. Transfer112, 671–692 (2011).
[CrossRef]

Chang, H.

H. Chang and T. T. Charalampopoulos, “Determination of the wavelength dependence of refractive indices of flame soot,” Proc. R. Soc. Lond. A430, 577–591 (1990).
[CrossRef]

Charalampopoulos, T. T.

H. Chang and T. T. Charalampopoulos, “Determination of the wavelength dependence of refractive indices of flame soot,” Proc. R. Soc. Lond. A430, 577–591 (1990).
[CrossRef]

Chung, S.

K. Adachi, S. Chung, and P. R. Buseck, “Shapes of soot aerosol particles and implications for their effects on climate,” J. Geophys. Res.115, D15206, (2010).
[CrossRef]

Chung, S. H.

K. Adachi, S. H. Chung, H. Friedrich, and P. R. Buseck, “Fractal parameters of individual soot particles determined using electron tomography: Implications for optical properties,” J. Geophys. Res.112, D14202, (2007).
[CrossRef]

Chylek, P.

G. Lesins, P. Chylek, and U. Lohmann, “A study of internal and external mixing scenarios and its effect on aerosol optical properties and direct radiative forcing,” J. Geophys. Res.107(D10), 4094, (2002).
[CrossRef]

Chýlek, P.

G. Videen and P. Chýlek, “Scattering by a composite sphere with an absorbing inclusion and effective medium approximations,” Opt. Commun.158, 1–6 (1998).
[CrossRef]

P. Chýlek, G. Videen, D. J. W. Geldart, J. S. Dobbie, and H. C. W. Tso, “Effective medium approximations for heterogeneous particles,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000), pp. 274–308.

Clarke, A. D.

R. J. Park, D. J. Jacob, P. I. Palmer, A. D. Clarke, R. J. Weber, M. A. Zondlo, F. L. Eisele, A. R. Bandy, D. C. Thornton, G. W. Sachse, and T. C. Bond, “Export efficiency of black carbon aerosol in continental outflow: Global implications,” J. Geophys. Res.110, D11205, (2005).
[CrossRef]

Colbeck, I.

S. Nyeki and I. Colbeck, “Fractal dimension analysis of single, in-situ, restructured carbonaceous aggregates,” Aerosol Sci. Technol.23, 109–120 (1995).
[CrossRef]

I. Colbeck, L. Appleby, E. J. Hardman, and R. M. Harrison, “The optical properties and morphology of cloud-processed carbonaceous smoke,” J. Aerosol Sci.21, 527–538 (1990).
[CrossRef]

Corrigan, C. E.

E. F. Mikhailov, S. S. Vlasenko, I. A. Podgorny, V. Ramanathan, and C. E. Corrigan, “Optical properties of soot-water drop agglomerates: An experimental study,” J. Geophys. Res.111, D07209, (2006).
[CrossRef]

Croft, B.

B. Croft, U. Lohmann, and K. von Salzen, “Black carbon aging in the Canadian Centre for Climate modelling and analysis atmospheric general circulation model,” Atmos. Chem. Phys.5, 1383–1419 (2005).
[CrossRef]

de Frutos, A.

S. Mogo, V. E. Cachorro, A. de Frutos, and A. Rodrigues, “Absorption ångström exponents of aerosols and light absorbing carbon (lac) obtained from in situ data in Covilhã, central Portugal,” J. Environ. Monit.14, 3174–3181 (2012).
[CrossRef] [PubMed]

Devasthale, A.

M. Kahnert and A. Devasthale, “Black carbon fractal morphology and short-wave radiative impact: a modelling study,” Atmos. Chem. Phys.11, 11745–11759 (2011).
[CrossRef]

Dlugach, J. M.

M. I. Mishchenko, V. P. Tishkovets, L. D. Travis, B. Cairns, J. M. Dlugach, L. Liu, V. K. Rosenbush, and N. N. Kiselev, “Electromagnetic scattering by a morphologically complex object: Fundamental concepts and common misconceptions,” J. Quant. Spectrosc. Radiat. Transfer112, 671–692 (2011).
[CrossRef]

Dobbie, J. S.

P. Chýlek, G. Videen, D. J. W. Geldart, J. S. Dobbie, and H. C. W. Tso, “Effective medium approximations for heterogeneous particles,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000), pp. 274–308.

Draine, B. T.

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A11, 1491–1499 (1994).
[CrossRef]

B. T. Draine and J. J. Goodman, “Beyond Clausius-Mossotti: Wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophysical J.405, 685–697 (1993).
[CrossRef]

Ebert, M.

Eisele, F. L.

R. J. Park, D. J. Jacob, P. I. Palmer, A. D. Clarke, R. J. Weber, M. A. Zondlo, F. L. Eisele, A. R. Bandy, D. C. Thornton, G. W. Sachse, and T. C. Bond, “Export efficiency of black carbon aerosol in continental outflow: Global implications,” J. Geophys. Res.110, D11205, (2005).
[CrossRef]

Flatau, P. J.

Friedrich, H.

K. Adachi, S. H. Chung, H. Friedrich, and P. R. Buseck, “Fractal parameters of individual soot particles determined using electron tomography: Implications for optical properties,” J. Geophys. Res.112, D14202, (2007).
[CrossRef]

Fuller, K. A.

K. A. Fuller, W. C. Malm, and S. M. Kreidenweis, “Effects of mixing on extinction by carbonaceous particles,” J. Geophys. Res.104, 15941–15954 (1999).
[CrossRef]

Geldart, D. J. W.

P. Chýlek, G. Videen, D. J. W. Geldart, J. S. Dobbie, and H. C. W. Tso, “Effective medium approximations for heterogeneous particles,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000), pp. 274–308.

Goodman, J. J.

B. T. Draine and J. J. Goodman, “Beyond Clausius-Mossotti: Wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophysical J.405, 685–697 (1993).
[CrossRef]

Gorzawski, G.

M. Wentzel, G. Gorzawski, K.-H. Naumann, H. Saathoff, and S. Weinbruch, “Transmission electron microscopical and aerosol dynamical characterization of soot aerosols,” Aerosol Sci.34, 1347–1370 (2003).
[CrossRef]

Habib, G.

T. C. Bond, G. Habib, and R. W. Bergstrom, “Limitations in the enhancement of visible light absorption due to mixing state,” J. Geophys. Res.111, D20211, (2006).
[CrossRef]

Hallett, J.

J. Hallett, J. G. Hudson, and C. F. Rogers, “Characterization of combustion aerosols for haze and cloud formation,” Aerosol Sci. Technol.10, 70–83 (1989).
[CrossRef]

Hardman, E. J.

I. Colbeck, L. Appleby, E. J. Hardman, and R. M. Harrison, “The optical properties and morphology of cloud-processed carbonaceous smoke,” J. Aerosol Sci.21, 527–538 (1990).
[CrossRef]

Harrison, R. M.

I. Colbeck, L. Appleby, E. J. Hardman, and R. M. Harrison, “The optical properties and morphology of cloud-processed carbonaceous smoke,” J. Aerosol Sci.21, 527–538 (1990).
[CrossRef]

Helas, G.

Hess, M.

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Met. Soc.79, 831–844 (1998).
[CrossRef]

Horvath, H.

M. Schnaiter, H. Horvath, O. Möhler, K.-H. Naumann, H. Saathoff, and O. W. Schöck, “UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols,” J. Aerosol Sci.34, 1421–1444 (2003).
[CrossRef]

Hudson, J. G.

J. Hallett, J. G. Hudson, and C. F. Rogers, “Characterization of combustion aerosols for haze and cloud formation,” Aerosol Sci. Technol.10, 70–83 (1989).
[CrossRef]

Jacob, D. J.

R. J. Park, D. J. Jacob, P. I. Palmer, A. D. Clarke, R. J. Weber, M. A. Zondlo, F. L. Eisele, A. R. Bandy, D. C. Thornton, G. W. Sachse, and T. C. Bond, “Export efficiency of black carbon aerosol in continental outflow: Global implications,” J. Geophys. Res.110, D11205, (2005).
[CrossRef]

Jacobson, M. Z.

M. Z. Jacobson, “Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols,” Nature409, 695–697 (2001).
[CrossRef] [PubMed]

Jones, A. R.

A. R. Jones, “Light scattering in combustion,” in Light Scattering Reviews, A. Kokhanovsky, ed. (Springer, 2006).
[CrossRef]

Kahnert, M.

M. Kahnert, T. Nousiainen, H. Lindqvist, and M. Ebert, “Optical properties of light absorbing carbon aggregates mixed with sulfate: assessment of different model geometries for climate forcing calculations,” Opt. Express20, 10042–10058 (2012).
[CrossRef] [PubMed]

K. Schmidt, M. Yurkin, and M. Kahnert, “A case study on the reciprocity in light scattering computations,” Opt. Express20, 23253–23274 (2012).
[CrossRef] [PubMed]

M. Kahnert and A. Devasthale, “Black carbon fractal morphology and short-wave radiative impact: a modelling study,” Atmos. Chem. Phys.11, 11745–11759 (2011).
[CrossRef]

M. Kahnert, “Modelling the optical and radiative properties of freshly emitted light absorbing carbon within an atmospheric chemical transport model,” Atmos. Chem. Phys.10, 1403–1416 (2010).
[CrossRef]

M. Kahnert, “Numerically exact computation of the optical properties of light absorbing carbon aggregates for wavelength of 200 nm V 12.2 μm,” Atmos. Chem. Phys.10, 8319–8329 (2010).
[CrossRef]

M. Kahnert, “On the discrepancy between modelled and measured mass absorption cross sections of light absorbing carbon aerosols,” Aerosol Sci. Technol.44, 453–460 (2010).
[CrossRef]

M. Kahnert, “Irreducible representations of finite groups in the T matrix formulation of the electromagnetic scattering problem,” J. Opt. Soc. Am. A22, 1187–1199 (2005).
[CrossRef]

Kirchstetter, T. W.

B. Scarnato, S. Vahidinia, D. T. Richard, and T. W. Kirchstetter, “Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model,” Atmos. Chem. Phys. Discuss.12, 26401–26434 (2012).
[CrossRef]

Kiselev, N. N.

M. I. Mishchenko, V. P. Tishkovets, L. D. Travis, B. Cairns, J. M. Dlugach, L. Liu, V. K. Rosenbush, and N. N. Kiselev, “Electromagnetic scattering by a morphologically complex object: Fundamental concepts and common misconceptions,” J. Quant. Spectrosc. Radiat. Transfer112, 671–692 (2011).
[CrossRef]

Koepke, P.

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Met. Soc.79, 831–844 (1998).
[CrossRef]

Kreidenweis, S. M.

K. A. Fuller, W. C. Malm, and S. M. Kreidenweis, “Effects of mixing on extinction by carbonaceous particles,” J. Geophys. Res.104, 15941–15954 (1999).
[CrossRef]

Kupiainen, Z. K. K.

S. Tsyro, D. Simpson, L. Tarrasón, Z. K. K. Kupiainen, C. Pio, and K. E. Yttri, “Modelling of elemental carbon over Europe,” J. Geophys. Res.112, D23S19, (2007).
[CrossRef]

Lacis, A. A.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University, 2002).

Lesins, G.

G. Lesins, P. Chylek, and U. Lohmann, “A study of internal and external mixing scenarios and its effect on aerosol optical properties and direct radiative forcing,” J. Geophys. Res.107(D10), 4094, (2002).
[CrossRef]

Lindqvist, H.

Liu, L.

M. I. Mishchenko, V. P. Tishkovets, L. D. Travis, B. Cairns, J. M. Dlugach, L. Liu, V. K. Rosenbush, and N. N. Kiselev, “Electromagnetic scattering by a morphologically complex object: Fundamental concepts and common misconceptions,” J. Quant. Spectrosc. Radiat. Transfer112, 671–692 (2011).
[CrossRef]

Lohmann, U.

B. Croft, U. Lohmann, and K. von Salzen, “Black carbon aging in the Canadian Centre for Climate modelling and analysis atmospheric general circulation model,” Atmos. Chem. Phys.5, 1383–1419 (2005).
[CrossRef]

G. Lesins, P. Chylek, and U. Lohmann, “A study of internal and external mixing scenarios and its effect on aerosol optical properties and direct radiative forcing,” J. Geophys. Res.107(D10), 4094, (2002).
[CrossRef]

Mackowski, D. W.

Malm, W. C.

K. A. Fuller, W. C. Malm, and S. M. Kreidenweis, “Effects of mixing on extinction by carbonaceous particles,” J. Geophys. Res.104, 15941–15954 (1999).
[CrossRef]

Maxwell Garnett, J. C.

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. A203, 385–420 (1904).
[CrossRef]

Mikhailov, E. F.

E. F. Mikhailov, S. S. Vlasenko, I. A. Podgorny, V. Ramanathan, and C. E. Corrigan, “Optical properties of soot-water drop agglomerates: An experimental study,” J. Geophys. Res.111, D07209, (2006).
[CrossRef]

Mishchenko, M. I.

M. I. Mishchenko, V. P. Tishkovets, L. D. Travis, B. Cairns, J. M. Dlugach, L. Liu, V. K. Rosenbush, and N. N. Kiselev, “Electromagnetic scattering by a morphologically complex object: Fundamental concepts and common misconceptions,” J. Quant. Spectrosc. Radiat. Transfer112, 671–692 (2011).
[CrossRef]

D. W. Mackowski and M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A13, 2266–2278 (1996).
[CrossRef]

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University, 2002).

Mogo, S.

S. Mogo, V. E. Cachorro, A. de Frutos, and A. Rodrigues, “Absorption ångström exponents of aerosols and light absorbing carbon (lac) obtained from in situ data in Covilhã, central Portugal,” J. Environ. Monit.14, 3174–3181 (2012).
[CrossRef] [PubMed]

Möhler, O.

M. Schnaiter, H. Horvath, O. Möhler, K.-H. Naumann, H. Saathoff, and O. W. Schöck, “UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols,” J. Aerosol Sci.34, 1421–1444 (2003).
[CrossRef]

Naumann, K.-H.

M. Schnaiter, H. Horvath, O. Möhler, K.-H. Naumann, H. Saathoff, and O. W. Schöck, “UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols,” J. Aerosol Sci.34, 1421–1444 (2003).
[CrossRef]

M. Wentzel, G. Gorzawski, K.-H. Naumann, H. Saathoff, and S. Weinbruch, “Transmission electron microscopical and aerosol dynamical characterization of soot aerosols,” Aerosol Sci.34, 1347–1370 (2003).
[CrossRef]

Nousiainen, T.

Nyeki, S.

S. Nyeki and I. Colbeck, “Fractal dimension analysis of single, in-situ, restructured carbonaceous aggregates,” Aerosol Sci. Technol.23, 109–120 (1995).
[CrossRef]

Palmer, P. I.

R. J. Park, D. J. Jacob, P. I. Palmer, A. D. Clarke, R. J. Weber, M. A. Zondlo, F. L. Eisele, A. R. Bandy, D. C. Thornton, G. W. Sachse, and T. C. Bond, “Export efficiency of black carbon aerosol in continental outflow: Global implications,” J. Geophys. Res.110, D11205, (2005).
[CrossRef]

Park, R. J.

R. J. Park, D. J. Jacob, P. I. Palmer, A. D. Clarke, R. J. Weber, M. A. Zondlo, F. L. Eisele, A. R. Bandy, D. C. Thornton, G. W. Sachse, and T. C. Bond, “Export efficiency of black carbon aerosol in continental outflow: Global implications,” J. Geophys. Res.110, D11205, (2005).
[CrossRef]

Pio, C.

S. Tsyro, D. Simpson, L. Tarrasón, Z. K. K. Kupiainen, C. Pio, and K. E. Yttri, “Modelling of elemental carbon over Europe,” J. Geophys. Res.112, D23S19, (2007).
[CrossRef]

Podgorny, I. A.

E. F. Mikhailov, S. S. Vlasenko, I. A. Podgorny, V. Ramanathan, and C. E. Corrigan, “Optical properties of soot-water drop agglomerates: An experimental study,” J. Geophys. Res.111, D07209, (2006).
[CrossRef]

Ramachandran, G.

G. Ramachandran and P. C. Reist, “Characterization of morphological changes in agglomerates subject to condensation and evaporation using multiple fractal dimensions,” Aerosol Sci. Technol.23, 431–442 (1995).
[CrossRef]

Ramanathan, V.

E. F. Mikhailov, S. S. Vlasenko, I. A. Podgorny, V. Ramanathan, and C. E. Corrigan, “Optical properties of soot-water drop agglomerates: An experimental study,” J. Geophys. Res.111, D07209, (2006).
[CrossRef]

Reist, P. C.

G. Ramachandran and P. C. Reist, “Characterization of morphological changes in agglomerates subject to condensation and evaporation using multiple fractal dimensions,” Aerosol Sci. Technol.23, 431–442 (1995).
[CrossRef]

Richard, D. T.

B. Scarnato, S. Vahidinia, D. T. Richard, and T. W. Kirchstetter, “Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model,” Atmos. Chem. Phys. Discuss.12, 26401–26434 (2012).
[CrossRef]

Riemer, N.

N. Riemer, H. Vogel, and B. Vogel, “Soot aging time scales in polluted regions during day and night,” Atmos. Chem. Phys.4, 1885–1893 (2004).
[CrossRef]

Rodrigues, A.

S. Mogo, V. E. Cachorro, A. de Frutos, and A. Rodrigues, “Absorption ångström exponents of aerosols and light absorbing carbon (lac) obtained from in situ data in Covilhã, central Portugal,” J. Environ. Monit.14, 3174–3181 (2012).
[CrossRef] [PubMed]

Rogers, C. F.

J. Hallett, J. G. Hudson, and C. F. Rogers, “Characterization of combustion aerosols for haze and cloud formation,” Aerosol Sci. Technol.10, 70–83 (1989).
[CrossRef]

Rosenbush, V. K.

M. I. Mishchenko, V. P. Tishkovets, L. D. Travis, B. Cairns, J. M. Dlugach, L. Liu, V. K. Rosenbush, and N. N. Kiselev, “Electromagnetic scattering by a morphologically complex object: Fundamental concepts and common misconceptions,” J. Quant. Spectrosc. Radiat. Transfer112, 671–692 (2011).
[CrossRef]

Saathoff, H.

M. Wentzel, G. Gorzawski, K.-H. Naumann, H. Saathoff, and S. Weinbruch, “Transmission electron microscopical and aerosol dynamical characterization of soot aerosols,” Aerosol Sci.34, 1347–1370 (2003).
[CrossRef]

M. Schnaiter, H. Horvath, O. Möhler, K.-H. Naumann, H. Saathoff, and O. W. Schöck, “UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols,” J. Aerosol Sci.34, 1421–1444 (2003).
[CrossRef]

Sachse, G. W.

R. J. Park, D. J. Jacob, P. I. Palmer, A. D. Clarke, R. J. Weber, M. A. Zondlo, F. L. Eisele, A. R. Bandy, D. C. Thornton, G. W. Sachse, and T. C. Bond, “Export efficiency of black carbon aerosol in continental outflow: Global implications,” J. Geophys. Res.110, D11205, (2005).
[CrossRef]

Scarnato, B.

B. Scarnato, S. Vahidinia, D. T. Richard, and T. W. Kirchstetter, “Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model,” Atmos. Chem. Phys. Discuss.12, 26401–26434 (2012).
[CrossRef]

Schmidt, K.

Schnaiter, M.

M. Schnaiter, H. Horvath, O. Möhler, K.-H. Naumann, H. Saathoff, and O. W. Schöck, “UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols,” J. Aerosol Sci.34, 1421–1444 (2003).
[CrossRef]

Schöck, O. W.

M. Schnaiter, H. Horvath, O. Möhler, K.-H. Naumann, H. Saathoff, and O. W. Schöck, “UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols,” J. Aerosol Sci.34, 1421–1444 (2003).
[CrossRef]

Schult, I.

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Met. Soc.79, 831–844 (1998).
[CrossRef]

Simpson, D.

S. Tsyro, D. Simpson, L. Tarrasón, Z. K. K. Kupiainen, C. Pio, and K. E. Yttri, “Modelling of elemental carbon over Europe,” J. Geophys. Res.112, D23S19, (2007).
[CrossRef]

Tarrasón, L.

S. Tsyro, D. Simpson, L. Tarrasón, Z. K. K. Kupiainen, C. Pio, and K. E. Yttri, “Modelling of elemental carbon over Europe,” J. Geophys. Res.112, D23S19, (2007).
[CrossRef]

Thornton, D. C.

R. J. Park, D. J. Jacob, P. I. Palmer, A. D. Clarke, R. J. Weber, M. A. Zondlo, F. L. Eisele, A. R. Bandy, D. C. Thornton, G. W. Sachse, and T. C. Bond, “Export efficiency of black carbon aerosol in continental outflow: Global implications,” J. Geophys. Res.110, D11205, (2005).
[CrossRef]

Tishkovets, V. P.

M. I. Mishchenko, V. P. Tishkovets, L. D. Travis, B. Cairns, J. M. Dlugach, L. Liu, V. K. Rosenbush, and N. N. Kiselev, “Electromagnetic scattering by a morphologically complex object: Fundamental concepts and common misconceptions,” J. Quant. Spectrosc. Radiat. Transfer112, 671–692 (2011).
[CrossRef]

Toon, O. B.

Trautmann, T.

Travis, L. D.

M. I. Mishchenko, V. P. Tishkovets, L. D. Travis, B. Cairns, J. M. Dlugach, L. Liu, V. K. Rosenbush, and N. N. Kiselev, “Electromagnetic scattering by a morphologically complex object: Fundamental concepts and common misconceptions,” J. Quant. Spectrosc. Radiat. Transfer112, 671–692 (2011).
[CrossRef]

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University, 2002).

Tso, H. C. W.

P. Chýlek, G. Videen, D. J. W. Geldart, J. S. Dobbie, and H. C. W. Tso, “Effective medium approximations for heterogeneous particles,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000), pp. 274–308.

Tsyro, S.

S. Tsyro, D. Simpson, L. Tarrasón, Z. K. K. Kupiainen, C. Pio, and K. E. Yttri, “Modelling of elemental carbon over Europe,” J. Geophys. Res.112, D23S19, (2007).
[CrossRef]

Vahidinia, S.

B. Scarnato, S. Vahidinia, D. T. Richard, and T. W. Kirchstetter, “Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model,” Atmos. Chem. Phys. Discuss.12, 26401–26434 (2012).
[CrossRef]

Videen, G.

G. Videen and P. Chýlek, “Scattering by a composite sphere with an absorbing inclusion and effective medium approximations,” Opt. Commun.158, 1–6 (1998).
[CrossRef]

P. Chýlek, G. Videen, D. J. W. Geldart, J. S. Dobbie, and H. C. W. Tso, “Effective medium approximations for heterogeneous particles,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000), pp. 274–308.

Vlasenko, S. S.

E. F. Mikhailov, S. S. Vlasenko, I. A. Podgorny, V. Ramanathan, and C. E. Corrigan, “Optical properties of soot-water drop agglomerates: An experimental study,” J. Geophys. Res.111, D07209, (2006).
[CrossRef]

Vogel, B.

N. Riemer, H. Vogel, and B. Vogel, “Soot aging time scales in polluted regions during day and night,” Atmos. Chem. Phys.4, 1885–1893 (2004).
[CrossRef]

Vogel, H.

N. Riemer, H. Vogel, and B. Vogel, “Soot aging time scales in polluted regions during day and night,” Atmos. Chem. Phys.4, 1885–1893 (2004).
[CrossRef]

von Salzen, K.

B. Croft, U. Lohmann, and K. von Salzen, “Black carbon aging in the Canadian Centre for Climate modelling and analysis atmospheric general circulation model,” Atmos. Chem. Phys.5, 1383–1419 (2005).
[CrossRef]

Weber, R. J.

R. J. Park, D. J. Jacob, P. I. Palmer, A. D. Clarke, R. J. Weber, M. A. Zondlo, F. L. Eisele, A. R. Bandy, D. C. Thornton, G. W. Sachse, and T. C. Bond, “Export efficiency of black carbon aerosol in continental outflow: Global implications,” J. Geophys. Res.110, D11205, (2005).
[CrossRef]

Weinbruch, S.

A. Worringen, M. Ebert, T. Trautmann, S. Weinbruch, and G. Helas, “Optical properties of internally mixed ammonium sulfate and soot particles–a study of individual aerosol particles and ambient aerosol populations,” Appl. Opt.47, 3835–3845 (2008).
[CrossRef] [PubMed]

M. Wentzel, G. Gorzawski, K.-H. Naumann, H. Saathoff, and S. Weinbruch, “Transmission electron microscopical and aerosol dynamical characterization of soot aerosols,” Aerosol Sci.34, 1347–1370 (2003).
[CrossRef]

Wentzel, M.

M. Wentzel, G. Gorzawski, K.-H. Naumann, H. Saathoff, and S. Weinbruch, “Transmission electron microscopical and aerosol dynamical characterization of soot aerosols,” Aerosol Sci.34, 1347–1370 (2003).
[CrossRef]

Worringen, A.

Yttri, K. E.

S. Tsyro, D. Simpson, L. Tarrasón, Z. K. K. Kupiainen, C. Pio, and K. E. Yttri, “Modelling of elemental carbon over Europe,” J. Geophys. Res.112, D23S19, (2007).
[CrossRef]

Yurkin, M.

Zondlo, M. A.

R. J. Park, D. J. Jacob, P. I. Palmer, A. D. Clarke, R. J. Weber, M. A. Zondlo, F. L. Eisele, A. R. Bandy, D. C. Thornton, G. W. Sachse, and T. C. Bond, “Export efficiency of black carbon aerosol in continental outflow: Global implications,” J. Geophys. Res.110, D11205, (2005).
[CrossRef]

Aerosol Sci. (1)

M. Wentzel, G. Gorzawski, K.-H. Naumann, H. Saathoff, and S. Weinbruch, “Transmission electron microscopical and aerosol dynamical characterization of soot aerosols,” Aerosol Sci.34, 1347–1370 (2003).
[CrossRef]

Aerosol Sci. Technol. (5)

T. C. Bond and R. W. Bergstrom, “Light absorption by carbonaceous particles: An investigative review,” Aerosol Sci. Technol.40, 27–67 (2006).
[CrossRef]

J. Hallett, J. G. Hudson, and C. F. Rogers, “Characterization of combustion aerosols for haze and cloud formation,” Aerosol Sci. Technol.10, 70–83 (1989).
[CrossRef]

G. Ramachandran and P. C. Reist, “Characterization of morphological changes in agglomerates subject to condensation and evaporation using multiple fractal dimensions,” Aerosol Sci. Technol.23, 431–442 (1995).
[CrossRef]

S. Nyeki and I. Colbeck, “Fractal dimension analysis of single, in-situ, restructured carbonaceous aggregates,” Aerosol Sci. Technol.23, 109–120 (1995).
[CrossRef]

M. Kahnert, “On the discrepancy between modelled and measured mass absorption cross sections of light absorbing carbon aerosols,” Aerosol Sci. Technol.44, 453–460 (2010).
[CrossRef]

Appl. Opt. (2)

Astrophysical J. (1)

B. T. Draine and J. J. Goodman, “Beyond Clausius-Mossotti: Wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophysical J.405, 685–697 (1993).
[CrossRef]

Atmos. Chem. Phys. (6)

M. Kahnert, “Modelling the optical and radiative properties of freshly emitted light absorbing carbon within an atmospheric chemical transport model,” Atmos. Chem. Phys.10, 1403–1416 (2010).
[CrossRef]

M. Kahnert, “Numerically exact computation of the optical properties of light absorbing carbon aggregates for wavelength of 200 nm V 12.2 μm,” Atmos. Chem. Phys.10, 8319–8329 (2010).
[CrossRef]

M. Kahnert and A. Devasthale, “Black carbon fractal morphology and short-wave radiative impact: a modelling study,” Atmos. Chem. Phys.11, 11745–11759 (2011).
[CrossRef]

B. Croft, U. Lohmann, and K. von Salzen, “Black carbon aging in the Canadian Centre for Climate modelling and analysis atmospheric general circulation model,” Atmos. Chem. Phys.5, 1383–1419 (2005).
[CrossRef]

K. Adachi and P. R. Buseck, “Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City,” Atmos. Chem. Phys.8, 6469–6481 (2008).
[CrossRef]

N. Riemer, H. Vogel, and B. Vogel, “Soot aging time scales in polluted regions during day and night,” Atmos. Chem. Phys.4, 1885–1893 (2004).
[CrossRef]

Atmos. Chem. Phys. Discuss. (1)

B. Scarnato, S. Vahidinia, D. T. Richard, and T. W. Kirchstetter, “Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model,” Atmos. Chem. Phys. Discuss.12, 26401–26434 (2012).
[CrossRef]

Bull. Am. Met. Soc. (1)

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Met. Soc.79, 831–844 (1998).
[CrossRef]

J. Aerosol Sci. (2)

I. Colbeck, L. Appleby, E. J. Hardman, and R. M. Harrison, “The optical properties and morphology of cloud-processed carbonaceous smoke,” J. Aerosol Sci.21, 527–538 (1990).
[CrossRef]

M. Schnaiter, H. Horvath, O. Möhler, K.-H. Naumann, H. Saathoff, and O. W. Schöck, “UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols,” J. Aerosol Sci.34, 1421–1444 (2003).
[CrossRef]

J. Environ. Monit. (1)

S. Mogo, V. E. Cachorro, A. de Frutos, and A. Rodrigues, “Absorption ångström exponents of aerosols and light absorbing carbon (lac) obtained from in situ data in Covilhã, central Portugal,” J. Environ. Monit.14, 3174–3181 (2012).
[CrossRef] [PubMed]

J. Geophys. Res. (8)

K. Adachi, S. H. Chung, H. Friedrich, and P. R. Buseck, “Fractal parameters of individual soot particles determined using electron tomography: Implications for optical properties,” J. Geophys. Res.112, D14202, (2007).
[CrossRef]

E. F. Mikhailov, S. S. Vlasenko, I. A. Podgorny, V. Ramanathan, and C. E. Corrigan, “Optical properties of soot-water drop agglomerates: An experimental study,” J. Geophys. Res.111, D07209, (2006).
[CrossRef]

K. A. Fuller, W. C. Malm, and S. M. Kreidenweis, “Effects of mixing on extinction by carbonaceous particles,” J. Geophys. Res.104, 15941–15954 (1999).
[CrossRef]

G. Lesins, P. Chylek, and U. Lohmann, “A study of internal and external mixing scenarios and its effect on aerosol optical properties and direct radiative forcing,” J. Geophys. Res.107(D10), 4094, (2002).
[CrossRef]

K. Adachi, S. Chung, and P. R. Buseck, “Shapes of soot aerosol particles and implications for their effects on climate,” J. Geophys. Res.115, D15206, (2010).
[CrossRef]

S. Tsyro, D. Simpson, L. Tarrasón, Z. K. K. Kupiainen, C. Pio, and K. E. Yttri, “Modelling of elemental carbon over Europe,” J. Geophys. Res.112, D23S19, (2007).
[CrossRef]

R. J. Park, D. J. Jacob, P. I. Palmer, A. D. Clarke, R. J. Weber, M. A. Zondlo, F. L. Eisele, A. R. Bandy, D. C. Thornton, G. W. Sachse, and T. C. Bond, “Export efficiency of black carbon aerosol in continental outflow: Global implications,” J. Geophys. Res.110, D11205, (2005).
[CrossRef]

T. C. Bond, G. Habib, and R. W. Bergstrom, “Limitations in the enhancement of visible light absorption due to mixing state,” J. Geophys. Res.111, D20211, (2006).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Quant. Spectrosc. Radiat. Transfer (1)

M. I. Mishchenko, V. P. Tishkovets, L. D. Travis, B. Cairns, J. M. Dlugach, L. Liu, V. K. Rosenbush, and N. N. Kiselev, “Electromagnetic scattering by a morphologically complex object: Fundamental concepts and common misconceptions,” J. Quant. Spectrosc. Radiat. Transfer112, 671–692 (2011).
[CrossRef]

Nature (1)

M. Z. Jacobson, “Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols,” Nature409, 695–697 (2001).
[CrossRef] [PubMed]

Opt. Commun. (1)

G. Videen and P. Chýlek, “Scattering by a composite sphere with an absorbing inclusion and effective medium approximations,” Opt. Commun.158, 1–6 (1998).
[CrossRef]

Opt. Express (2)

Philos. Trans. R. Soc. A (1)

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. A203, 385–420 (1904).
[CrossRef]

Proc. R. Soc. Lond. A (1)

H. Chang and T. T. Charalampopoulos, “Determination of the wavelength dependence of refractive indices of flame soot,” Proc. R. Soc. Lond. A430, 577–591 (1990).
[CrossRef]

Other (4)

D. Gutkowicz-Krusin and B. T. Draine, “Propagation of electromagnetic waves on a rectangular lattice of polarizable points,” Tech. rep., http://arxiv.org/abs/astro-ph/0403082 (2004).

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University, 2002).

P. Chýlek, G. Videen, D. J. W. Geldart, J. S. Dobbie, and H. C. W. Tso, “Effective medium approximations for heterogeneous particles,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000), pp. 274–308.

A. R. Jones, “Light scattering in combustion,” in Light Scattering Reviews, A. Kokhanovsky, ed. (Springer, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Encapsulated aggregate geometries considered in this study. The particles have volume-equivalent radii of (from left to right) 100, 200, 300, 400, and 500 nm, and LAC volume fractions of 7% (top row) and 20% (bottom row).

Fig. 2
Fig. 2

Simplified spherically symmetric model geometries (from left to right): External mixture, homogeneous internal mixture, core-shell, and core-gray shell.

Fig. 3
Fig. 3

Spectral variation of the real part (left) and imaginary part (right) of the refractive indices of LAC (blue) and sulfate (red).

Fig. 4
Fig. 4

Cabs (left), SSA (center), and g (right) as a function of particle size and wavelength for particles with an LAC volume fraction of f =7%. The rows show reference results for encapsulated aggregates (first row), and relative differences between those and external mixtures (second row), internal homogeneous mixtures (third row), core-shell (fourth row), and core-gray shell particles (fifth row). Positive differences indicate that the simplified models overestimate the reference results.

Fig. 5
Fig. 5

As Fig. 4, but for f =20%.

Fig. 6
Fig. 6

Backscattering cross section for encapsulated aggregates with LAC volume fractions of f =7% (top left) and f =20% (top right), as well as differences between reference computations and results for simplified model particles.

Fig. 7
Fig. 7

Mueller matrix elements logF11 (left), −F12/F11, and F33/F11 as functions of scattering angle and size at a wavelength of λ =304 nm. Results are shown for encapsulated aggregates (first row), external mixtures (second row), internal homogeneous mixtures (third row), core-shell (fourth row), and core-gray shell particles (fifth row).

Fig. 8
Fig. 8

Mueller matrix elements as a function of scattering angle for particles of a size RV =0.5 μm at a wavelength of 0.5332 μm. Results are shown for encapsulated aggregates with an LAC volume fraction of 7% (black), pure sulfate spheres (red), and bare aggregates (blue).

Fig. 9
Fig. 9

As Fig. 6, but for the absorption Ångström exponent.

Tables (3)

Tables Icon

Table 1 Number of monomers Ns in the LAC aggregates and radius RV of the internally mixed aerosols for LAC volume fractions f =7% and f =20%. The radius RV is the radius of a volume-equivalent sphere, where the volume of the encapsulated aggregates is the sum of the volumes of the LAC aggregate and the coating material. The monomer size is 25 nm for all values of Ns.

Tables Icon

Table 2 Choice of the core fraction fcore for each of the 14 wavelength bands (where λ denotes the band mid-point).

Tables Icon

Table 3 Fractional bias FB and, in parentheses, normalized root mean square error NRMSE for the four different model particles and for different optical properties.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

N s = k 0 ( R g a ) D f ,
R g = 1 N s i = 1 N s r i 2 ,
A A ˚ E = ln C abs ( λ 1 ) C abs ( λ 2 ) ln λ 1 λ 2 .
F B = i ( x i mod x i ref ) 1 2 i ( x i mod + x i ref )
N R M S E = i ( x i mod x i ref ) 2 i ( x i ref ) 2 ,

Metrics