Abstract

We investigate local electromagnetic field enhancements in oligomers of plasmonic nanospheres. We first evaluate via full-wave simulations the field between spheres in several oligomer systems: linear dimers, linear trimers, trimers 60°, trimers 90° and linear quadrumers. To gain a better understanding of the field enhancement values, we compare the results with local fields in a hexagonal close-packed (HCP) configuration with same structural dimensions. We then inter-relate the field enhancement values found via full-wave simulations to SERS enhancements of actual fabricated self-assembled oligomers. We find that linear oligomers provide the largest field enhancement values. Finally, we provide closed-form formulas for the prediction of the resonance frequency responsible for field enhancement in linear oligomers, namely dimers, trimers and quadrumers, modeling each nanosphere as a single electric dipole. These formulas provide with resonance values less than 7% shifted when compared to full-wave results even when the gap between spheres is only about one fifth of the radius, showing the powerfulness of dipolar approximations. The results shown in this paper demonstrate that ad hoc clusters of nanospheres can be designed and fabricated to obtain larger field enhancements than with the HCP structure and this may pave the way for the development of improved sensors for molecular spectroscopy.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Steshenko, F. Capolino, P. Alitalo, and S. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(1), 016607 (2011).
    [CrossRef] [PubMed]
  2. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96(12), 7519–7526 (2004).
    [CrossRef]
  3. A. J. Haes and R. P. V. Duyne, “Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics,” Expert Rev. Mol. Diagn.4(4), 527–537 (2004).
    [CrossRef] [PubMed]
  4. K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem.390(1), 113–124 (2008).
    [CrossRef] [PubMed]
  5. L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Kall, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett.78(6), 802–804 (2001).
    [CrossRef]
  6. D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant Field Enhancements from Metal Nanoparticle Arrays,” Nano Lett.4(1), 153–158 (2004).
    [CrossRef]
  7. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
    [CrossRef] [PubMed]
  8. K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett.6(10), 2173–2176 (2006).
    [CrossRef] [PubMed]
  9. D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon Modes of Nanosphere Trimers and Quadrumers,” J. Phys. Chem. B110(25), 12302–12310 (2006).
    [CrossRef] [PubMed]
  10. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates,” Nano Lett.5(8), 1569–1574 (2005).
    [CrossRef] [PubMed]
  11. T. Vo-Dinh, “Surface-enhanced Raman spectroscopy using metallic nanostructures,” TRAC-Trend. Anal. Chem.17, 557–582 (1998).
  12. K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates - From single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res.39(7), 443–450 (2006).
    [CrossRef] [PubMed]
  13. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.- Condes. Matter14(18), R597–R624 (2002).
    [CrossRef]
  14. J. Mock, S. Norton, S. Y. Chen, A. Lazarides, and D. Smith, “Electromagnetic Enhancement Effect Caused by Aggregation on SERS-Active Gold Nanoparticles,” Plasmonics6(1), 113–124 (2011).
    [CrossRef]
  15. O. Rabin and S. Y. Lee, “SERS Substrates by the Assembly of Silver Nanocubes: High-Throughput and Enhancement Reliability Considerations,” J. Nanotechnol.2012, 870378 (2012).
    [CrossRef]
  16. A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Engineering Photonic-Plasmonic Coupling in Metal Nanoparticle Necklaces,” ACS Nano5(8), 6578–6585 (2011).
    [CrossRef] [PubMed]
  17. A. M. Schwartzberg, C. D. Grant, A. Wolcott, C. E. Talley, T. R. Huser, R. Bogomolni, and J. Z. Zhang, “Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate,” J. Phys. Chem. B108(50), 19191–19197 (2004).
    [CrossRef]
  18. B. Yan, S. V. Boriskina, and B. M. Reinhard, “Optimizing Gold Nanoparticle Cluster Configurations (n ≤ 7) for Array Applications,” J Phys Chem C Nanomater Interfaces115(11), 4578–4583 (2011).
    [CrossRef] [PubMed]
  19. B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineered SERS Substrates with Multiscale Signal Enhancement: Nanoparticle Cluster Arrays,” ACS Nano3(5), 1190–1202 (2009).
    [CrossRef] [PubMed]
  20. G. V. P. Kumar, “Plasmonic nano-architectures for surface enhanced Raman scattering: a review,” J. Nanophoton.6(1), 064503–064520 (2012).
    [CrossRef]
  21. X. Gong, Y. Bao, C. Qiu, and C. Y. Jiang, “Individual nanostructured materials: fabrication and surface-enhanced Raman scattering,” Chem. Commun. (Camb.)48(56), 7003–7018 (2012).
    [CrossRef] [PubMed]
  22. B. Gao, Y. Alvi, D. Rosen, M. Lav, and A. R. Tao, “Designer nanojunctions: orienting shaped nanoparticles within polymer thin-film nanocomposites,” Chem. Commun. (Camb.) (2013), doi:.
    [CrossRef] [PubMed]
  23. S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS Substrates: Tailoring Surface Chemistry for Au Nanoparticle Cluster Assembly,” Small8(14), 2239–2249 (2012).
    [CrossRef] [PubMed]
  24. L. Brown, T. Koerner, J. H. Horton, and R. D. Oleschuk, “Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents,” Lab Chip6(1), 66–73 (2006).
    [CrossRef] [PubMed]
  25. J. H. Choi, S. M. Adams, and R. Ragan, “Design of a versatile chemical assembly method for patterning colloidal nanoparticles,” Nanotechnology20(6), 065301 (2009).
    [CrossRef] [PubMed]
  26. T. Xu, H.-C. Kim, J. DeRouchey, C. Seney, C. Levesque, P. Martin, C. M. Stafford, and T. P. Russell, “The influence of molecular weight on nanoporous polymer films,” Polymer (Guildf.)42(21), 9091–9095 (2001).
    [CrossRef]
  27. R. A. Segalman, A. Hexemer, and E. J. Kramer, “Effects of Lateral Confinement on Order in Spherical Domain Block Copolymer Thin Films,” Macromolecules36(18), 6831–6839 (2003).
    [CrossRef]
  28. E. W. Edwards, M. F. Montague, H. H. Solak, C. J. Hawker, and P. F. Nealey, “Precise Control over Molecular Dimensions of Block-Copolymer Domains Using the Interfacial Energy of Chemically Nanopatterned Substrates,” Adv. Mater.16(15), 1315–1319 (2004).
    [CrossRef]
  29. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  30. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B71(23), 235408 (2005).
    [CrossRef]
  31. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
    [CrossRef] [PubMed]
  32. V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37(9), 1792–1805 (2008).
    [CrossRef] [PubMed]
  33. S. M. Adams, S. Campione, F. Capolino, and R. Ragan, “Directing cluster formation of Au nanoparticles from colloidal solution,” Langmuir (2013).
    [CrossRef]
  34. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles,” Nano Lett.3(8), 1087–1090 (2003).
    [CrossRef]
  35. K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy,” J. Am. Chem. Soc.132(31), 10903–10910 (2010).
    [CrossRef] [PubMed]
  36. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  37. S. Steshenko and F. Capolino, “Single Dipole Approximation for Modeling Collections of Nanoscatterers,” in Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009, Chap. 8).
  38. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
  39. N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett.399(1-3), 167–171 (2004).
    [CrossRef]
  40. S. Campione, S. Steshenko, M. Albani, and F. Capolino, “Complex modes and effective refractive index in 3D periodic arrays of plasmonic nanospheres,” Opt. Express19(27), 26027–26043 (2011).
    [CrossRef] [PubMed]
  41. M. A. Vincenti, S. Campione, D. de Ceglia, F. Capolino, and M. Scalora, “Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells,” New J. Phys.14(10), 103016 (2012).
    [CrossRef]
  42. A. Vallecchi, S. Campione, and F. Capolino, “Symmetric and antisymmetric resonances in a pair of metal-dielectric nanoshells: tunability and closed-form formulas,” J. Nanophoton.4(1), 041577 (2010).
    [CrossRef]

2013 (2)

B. Gao, Y. Alvi, D. Rosen, M. Lav, and A. R. Tao, “Designer nanojunctions: orienting shaped nanoparticles within polymer thin-film nanocomposites,” Chem. Commun. (Camb.) (2013), doi:.
[CrossRef] [PubMed]

S. M. Adams, S. Campione, F. Capolino, and R. Ragan, “Directing cluster formation of Au nanoparticles from colloidal solution,” Langmuir (2013).
[CrossRef]

2012 (5)

S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS Substrates: Tailoring Surface Chemistry for Au Nanoparticle Cluster Assembly,” Small8(14), 2239–2249 (2012).
[CrossRef] [PubMed]

G. V. P. Kumar, “Plasmonic nano-architectures for surface enhanced Raman scattering: a review,” J. Nanophoton.6(1), 064503–064520 (2012).
[CrossRef]

X. Gong, Y. Bao, C. Qiu, and C. Y. Jiang, “Individual nanostructured materials: fabrication and surface-enhanced Raman scattering,” Chem. Commun. (Camb.)48(56), 7003–7018 (2012).
[CrossRef] [PubMed]

O. Rabin and S. Y. Lee, “SERS Substrates by the Assembly of Silver Nanocubes: High-Throughput and Enhancement Reliability Considerations,” J. Nanotechnol.2012, 870378 (2012).
[CrossRef]

M. A. Vincenti, S. Campione, D. de Ceglia, F. Capolino, and M. Scalora, “Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells,” New J. Phys.14(10), 103016 (2012).
[CrossRef]

2011 (5)

S. Campione, S. Steshenko, M. Albani, and F. Capolino, “Complex modes and effective refractive index in 3D periodic arrays of plasmonic nanospheres,” Opt. Express19(27), 26027–26043 (2011).
[CrossRef] [PubMed]

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Engineering Photonic-Plasmonic Coupling in Metal Nanoparticle Necklaces,” ACS Nano5(8), 6578–6585 (2011).
[CrossRef] [PubMed]

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Optimizing Gold Nanoparticle Cluster Configurations (n ≤ 7) for Array Applications,” J Phys Chem C Nanomater Interfaces115(11), 4578–4583 (2011).
[CrossRef] [PubMed]

S. Steshenko, F. Capolino, P. Alitalo, and S. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(1), 016607 (2011).
[CrossRef] [PubMed]

J. Mock, S. Norton, S. Y. Chen, A. Lazarides, and D. Smith, “Electromagnetic Enhancement Effect Caused by Aggregation on SERS-Active Gold Nanoparticles,” Plasmonics6(1), 113–124 (2011).
[CrossRef]

2010 (2)

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy,” J. Am. Chem. Soc.132(31), 10903–10910 (2010).
[CrossRef] [PubMed]

A. Vallecchi, S. Campione, and F. Capolino, “Symmetric and antisymmetric resonances in a pair of metal-dielectric nanoshells: tunability and closed-form formulas,” J. Nanophoton.4(1), 041577 (2010).
[CrossRef]

2009 (2)

J. H. Choi, S. M. Adams, and R. Ragan, “Design of a versatile chemical assembly method for patterning colloidal nanoparticles,” Nanotechnology20(6), 065301 (2009).
[CrossRef] [PubMed]

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineered SERS Substrates with Multiscale Signal Enhancement: Nanoparticle Cluster Arrays,” ACS Nano3(5), 1190–1202 (2009).
[CrossRef] [PubMed]

2008 (2)

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem.390(1), 113–124 (2008).
[CrossRef] [PubMed]

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

2006 (4)

K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett.6(10), 2173–2176 (2006).
[CrossRef] [PubMed]

D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon Modes of Nanosphere Trimers and Quadrumers,” J. Phys. Chem. B110(25), 12302–12310 (2006).
[CrossRef] [PubMed]

K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates - From single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res.39(7), 443–450 (2006).
[CrossRef] [PubMed]

L. Brown, T. Koerner, J. H. Horton, and R. D. Oleschuk, “Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents,” Lab Chip6(1), 66–73 (2006).
[CrossRef] [PubMed]

2005 (2)

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B71(23), 235408 (2005).
[CrossRef]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

2004 (8)

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96(12), 7519–7526 (2004).
[CrossRef]

A. J. Haes and R. P. V. Duyne, “Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics,” Expert Rev. Mol. Diagn.4(4), 527–537 (2004).
[CrossRef] [PubMed]

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant Field Enhancements from Metal Nanoparticle Arrays,” Nano Lett.4(1), 153–158 (2004).
[CrossRef]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

A. M. Schwartzberg, C. D. Grant, A. Wolcott, C. E. Talley, T. R. Huser, R. Bogomolni, and J. Z. Zhang, “Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate,” J. Phys. Chem. B108(50), 19191–19197 (2004).
[CrossRef]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

E. W. Edwards, M. F. Montague, H. H. Solak, C. J. Hawker, and P. F. Nealey, “Precise Control over Molecular Dimensions of Block-Copolymer Domains Using the Interfacial Energy of Chemically Nanopatterned Substrates,” Adv. Mater.16(15), 1315–1319 (2004).
[CrossRef]

N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett.399(1-3), 167–171 (2004).
[CrossRef]

2003 (2)

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

R. A. Segalman, A. Hexemer, and E. J. Kramer, “Effects of Lateral Confinement on Order in Spherical Domain Block Copolymer Thin Films,” Macromolecules36(18), 6831–6839 (2003).
[CrossRef]

2002 (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.- Condes. Matter14(18), R597–R624 (2002).
[CrossRef]

2001 (2)

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Kall, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett.78(6), 802–804 (2001).
[CrossRef]

T. Xu, H.-C. Kim, J. DeRouchey, C. Seney, C. Levesque, P. Martin, C. M. Stafford, and T. P. Russell, “The influence of molecular weight on nanoporous polymer films,” Polymer (Guildf.)42(21), 9091–9095 (2001).
[CrossRef]

1998 (1)

T. Vo-Dinh, “Surface-enhanced Raman spectroscopy using metallic nanostructures,” TRAC-Trend. Anal. Chem.17, 557–582 (1998).

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Ackermann, K.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem.390(1), 113–124 (2008).
[CrossRef] [PubMed]

Adams, S. M.

S. M. Adams, S. Campione, F. Capolino, and R. Ragan, “Directing cluster formation of Au nanoparticles from colloidal solution,” Langmuir (2013).
[CrossRef]

S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS Substrates: Tailoring Surface Chemistry for Au Nanoparticle Cluster Assembly,” Small8(14), 2239–2249 (2012).
[CrossRef] [PubMed]

J. H. Choi, S. M. Adams, and R. Ragan, “Design of a versatile chemical assembly method for patterning colloidal nanoparticles,” Nanotechnology20(6), 065301 (2009).
[CrossRef] [PubMed]

Albani, M.

Alitalo, P.

S. Steshenko, F. Capolino, P. Alitalo, and S. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(1), 016607 (2011).
[CrossRef] [PubMed]

Alvi, Y.

B. Gao, Y. Alvi, D. Rosen, M. Lav, and A. R. Tao, “Designer nanojunctions: orienting shaped nanoparticles within polymer thin-film nanocomposites,” Chem. Commun. (Camb.) (2013), doi:.
[CrossRef] [PubMed]

Atwater, H. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B71(23), 235408 (2005).
[CrossRef]

Bao, Y.

X. Gong, Y. Bao, C. Qiu, and C. Y. Jiang, “Individual nanostructured materials: fabrication and surface-enhanced Raman scattering,” Chem. Commun. (Camb.)48(56), 7003–7018 (2012).
[CrossRef] [PubMed]

Bezares, F. J.

S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS Substrates: Tailoring Surface Chemistry for Au Nanoparticle Cluster Assembly,” Small8(14), 2239–2249 (2012).
[CrossRef] [PubMed]

Bjerneld, E. J.

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Kall, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett.78(6), 802–804 (2001).
[CrossRef]

Bogomolni, R.

A. M. Schwartzberg, C. D. Grant, A. Wolcott, C. E. Talley, T. R. Huser, R. Bogomolni, and J. Z. Zhang, “Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate,” J. Phys. Chem. B108(50), 19191–19197 (2004).
[CrossRef]

Boriskina, S. V.

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Optimizing Gold Nanoparticle Cluster Configurations (n ≤ 7) for Array Applications,” J Phys Chem C Nanomater Interfaces115(11), 4578–4583 (2011).
[CrossRef] [PubMed]

Brandl, D. W.

D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon Modes of Nanosphere Trimers and Quadrumers,” J. Phys. Chem. B110(25), 12302–12310 (2006).
[CrossRef] [PubMed]

Brown, L.

L. Brown, T. Koerner, J. H. Horton, and R. D. Oleschuk, “Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents,” Lab Chip6(1), 66–73 (2006).
[CrossRef] [PubMed]

Caldwell, J. D.

S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS Substrates: Tailoring Surface Chemistry for Au Nanoparticle Cluster Assembly,” Small8(14), 2239–2249 (2012).
[CrossRef] [PubMed]

Campione, S.

S. M. Adams, S. Campione, F. Capolino, and R. Ragan, “Directing cluster formation of Au nanoparticles from colloidal solution,” Langmuir (2013).
[CrossRef]

M. A. Vincenti, S. Campione, D. de Ceglia, F. Capolino, and M. Scalora, “Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells,” New J. Phys.14(10), 103016 (2012).
[CrossRef]

S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS Substrates: Tailoring Surface Chemistry for Au Nanoparticle Cluster Assembly,” Small8(14), 2239–2249 (2012).
[CrossRef] [PubMed]

S. Campione, S. Steshenko, M. Albani, and F. Capolino, “Complex modes and effective refractive index in 3D periodic arrays of plasmonic nanospheres,” Opt. Express19(27), 26027–26043 (2011).
[CrossRef] [PubMed]

A. Vallecchi, S. Campione, and F. Capolino, “Symmetric and antisymmetric resonances in a pair of metal-dielectric nanoshells: tunability and closed-form formulas,” J. Nanophoton.4(1), 041577 (2010).
[CrossRef]

Capolino, F.

S. M. Adams, S. Campione, F. Capolino, and R. Ragan, “Directing cluster formation of Au nanoparticles from colloidal solution,” Langmuir (2013).
[CrossRef]

S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS Substrates: Tailoring Surface Chemistry for Au Nanoparticle Cluster Assembly,” Small8(14), 2239–2249 (2012).
[CrossRef] [PubMed]

M. A. Vincenti, S. Campione, D. de Ceglia, F. Capolino, and M. Scalora, “Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells,” New J. Phys.14(10), 103016 (2012).
[CrossRef]

S. Campione, S. Steshenko, M. Albani, and F. Capolino, “Complex modes and effective refractive index in 3D periodic arrays of plasmonic nanospheres,” Opt. Express19(27), 26027–26043 (2011).
[CrossRef] [PubMed]

S. Steshenko, F. Capolino, P. Alitalo, and S. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(1), 016607 (2011).
[CrossRef] [PubMed]

A. Vallecchi, S. Campione, and F. Capolino, “Symmetric and antisymmetric resonances in a pair of metal-dielectric nanoshells: tunability and closed-form formulas,” J. Nanophoton.4(1), 041577 (2010).
[CrossRef]

Chen, S. Y.

J. Mock, S. Norton, S. Y. Chen, A. Lazarides, and D. Smith, “Electromagnetic Enhancement Effect Caused by Aggregation on SERS-Active Gold Nanoparticles,” Plasmonics6(1), 113–124 (2011).
[CrossRef]

Choi, J. H.

J. H. Choi, S. M. Adams, and R. Ragan, “Design of a versatile chemical assembly method for patterning colloidal nanoparticles,” Nanotechnology20(6), 065301 (2009).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Cialla, D.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem.390(1), 113–124 (2008).
[CrossRef] [PubMed]

Culbertson, J. C.

S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS Substrates: Tailoring Surface Chemistry for Au Nanoparticle Cluster Assembly,” Small8(14), 2239–2249 (2012).
[CrossRef] [PubMed]

Dal Negro, L.

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Engineering Photonic-Plasmonic Coupling in Metal Nanoparticle Necklaces,” ACS Nano5(8), 6578–6585 (2011).
[CrossRef] [PubMed]

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineered SERS Substrates with Multiscale Signal Enhancement: Nanoparticle Cluster Arrays,” ACS Nano3(5), 1190–1202 (2009).
[CrossRef] [PubMed]

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.- Condes. Matter14(18), R597–R624 (2002).
[CrossRef]

de Ceglia, D.

M. A. Vincenti, S. Campione, D. de Ceglia, F. Capolino, and M. Scalora, “Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells,” New J. Phys.14(10), 103016 (2012).
[CrossRef]

DeRouchey, J.

T. Xu, H.-C. Kim, J. DeRouchey, C. Seney, C. Levesque, P. Martin, C. M. Stafford, and T. P. Russell, “The influence of molecular weight on nanoporous polymer films,” Polymer (Guildf.)42(21), 9091–9095 (2001).
[CrossRef]

Dörfer, T.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem.390(1), 113–124 (2008).
[CrossRef] [PubMed]

Duyne, R. P. V.

A. J. Haes and R. P. V. Duyne, “Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics,” Expert Rev. Mol. Diagn.4(4), 527–537 (2004).
[CrossRef] [PubMed]

Edwards, E. W.

E. W. Edwards, M. F. Montague, H. H. Solak, C. J. Hawker, and P. F. Nealey, “Precise Control over Molecular Dimensions of Block-Copolymer Domains Using the Interfacial Energy of Chemically Nanopatterned Substrates,” Adv. Mater.16(15), 1315–1319 (2004).
[CrossRef]

Feld, M. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.- Condes. Matter14(18), R597–R624 (2002).
[CrossRef]

Forrest, S. R.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96(12), 7519–7526 (2004).
[CrossRef]

Freeman, R. G.

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy,” J. Am. Chem. Soc.132(31), 10903–10910 (2010).
[CrossRef] [PubMed]

Fritzsche, W.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem.390(1), 113–124 (2008).
[CrossRef] [PubMed]

Funston, A. M.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

Gao, B.

B. Gao, Y. Alvi, D. Rosen, M. Lav, and A. R. Tao, “Designer nanojunctions: orienting shaped nanoparticles within polymer thin-film nanocomposites,” Chem. Commun. (Camb.) (2013), doi:.
[CrossRef] [PubMed]

García de Abajo, F. J.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

Genov, D. A.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant Field Enhancements from Metal Nanoparticle Arrays,” Nano Lett.4(1), 153–158 (2004).
[CrossRef]

Gong, X.

X. Gong, Y. Bao, C. Qiu, and C. Y. Jiang, “Individual nanostructured materials: fabrication and surface-enhanced Raman scattering,” Chem. Commun. (Camb.)48(56), 7003–7018 (2012).
[CrossRef] [PubMed]

Grady, N. K.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett.399(1-3), 167–171 (2004).
[CrossRef]

Grant, C. D.

A. M. Schwartzberg, C. D. Grant, A. Wolcott, C. E. Talley, T. R. Huser, R. Bogomolni, and J. Z. Zhang, “Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate,” J. Phys. Chem. B108(50), 19191–19197 (2004).
[CrossRef]

Gunnarsson, L.

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Kall, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett.78(6), 802–804 (2001).
[CrossRef]

Haes, A. J.

A. J. Haes and R. P. V. Duyne, “Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics,” Expert Rev. Mol. Diagn.4(4), 527–537 (2004).
[CrossRef] [PubMed]

Halas, N. J.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett.399(1-3), 167–171 (2004).
[CrossRef]

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

Hawker, C. J.

E. W. Edwards, M. F. Montague, H. H. Solak, C. J. Hawker, and P. F. Nealey, “Precise Control over Molecular Dimensions of Block-Copolymer Domains Using the Interfacial Energy of Chemically Nanopatterned Substrates,” Adv. Mater.16(15), 1315–1319 (2004).
[CrossRef]

Henry, A.-I.

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy,” J. Am. Chem. Soc.132(31), 10903–10910 (2010).
[CrossRef] [PubMed]

Hering, K.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem.390(1), 113–124 (2008).
[CrossRef] [PubMed]

Hexemer, A.

R. A. Segalman, A. Hexemer, and E. J. Kramer, “Effects of Lateral Confinement on Order in Spherical Domain Block Copolymer Thin Films,” Macromolecules36(18), 6831–6839 (2003).
[CrossRef]

Hollars, C. W.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Horton, J. H.

L. Brown, T. Koerner, J. H. Horton, and R. D. Oleschuk, “Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents,” Lab Chip6(1), 66–73 (2006).
[CrossRef] [PubMed]

Hossain, M. K.

K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett.6(10), 2173–2176 (2006).
[CrossRef] [PubMed]

Huser, T. R.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

A. M. Schwartzberg, C. D. Grant, A. Wolcott, C. E. Talley, T. R. Huser, R. Bogomolni, and J. Z. Zhang, “Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate,” J. Phys. Chem. B108(50), 19191–19197 (2004).
[CrossRef]

Imura, K.

K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett.6(10), 2173–2176 (2006).
[CrossRef] [PubMed]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.- Condes. Matter14(18), R597–R624 (2002).
[CrossRef]

Jackson, J. B.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Janel, N.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

Jiang, C. Y.

X. Gong, Y. Bao, C. Qiu, and C. Y. Jiang, “Individual nanostructured materials: fabrication and surface-enhanced Raman scattering,” Chem. Commun. (Camb.)48(56), 7003–7018 (2012).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Kall, M.

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Kall, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett.78(6), 802–804 (2001).
[CrossRef]

Kasemo, B.

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Kall, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett.78(6), 802–804 (2001).
[CrossRef]

Kim, H.-C.

T. Xu, H.-C. Kim, J. DeRouchey, C. Seney, C. Levesque, P. Martin, C. M. Stafford, and T. P. Russell, “The influence of molecular weight on nanoporous polymer films,” Polymer (Guildf.)42(21), 9091–9095 (2001).
[CrossRef]

Kitajima, M.

K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett.6(10), 2173–2176 (2006).
[CrossRef] [PubMed]

Kneipp, H.

K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates - From single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res.39(7), 443–450 (2006).
[CrossRef] [PubMed]

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.- Condes. Matter14(18), R597–R624 (2002).
[CrossRef]

Kneipp, J.

K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates - From single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res.39(7), 443–450 (2006).
[CrossRef] [PubMed]

Kneipp, K.

K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates - From single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res.39(7), 443–450 (2006).
[CrossRef] [PubMed]

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.- Condes. Matter14(18), R597–R624 (2002).
[CrossRef]

Koerner, T.

L. Brown, T. Koerner, J. H. Horton, and R. D. Oleschuk, “Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents,” Lab Chip6(1), 66–73 (2006).
[CrossRef] [PubMed]

Kramer, E. J.

R. A. Segalman, A. Hexemer, and E. J. Kramer, “Effects of Lateral Confinement on Order in Spherical Domain Block Copolymer Thin Films,” Macromolecules36(18), 6831–6839 (2003).
[CrossRef]

Kumar, G. V. P.

G. V. P. Kumar, “Plasmonic nano-architectures for surface enhanced Raman scattering: a review,” J. Nanophoton.6(1), 064503–064520 (2012).
[CrossRef]

Lane, S. M.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Lav, M.

B. Gao, Y. Alvi, D. Rosen, M. Lav, and A. R. Tao, “Designer nanojunctions: orienting shaped nanoparticles within polymer thin-film nanocomposites,” Chem. Commun. (Camb.) (2013), doi:.
[CrossRef] [PubMed]

Lazarides, A.

J. Mock, S. Norton, S. Y. Chen, A. Lazarides, and D. Smith, “Electromagnetic Enhancement Effect Caused by Aggregation on SERS-Active Gold Nanoparticles,” Plasmonics6(1), 113–124 (2011).
[CrossRef]

Lee, S. Y.

O. Rabin and S. Y. Lee, “SERS Substrates by the Assembly of Silver Nanocubes: High-Throughput and Enhancement Reliability Considerations,” J. Nanotechnol.2012, 870378 (2012).
[CrossRef]

Levesque, C.

T. Xu, H.-C. Kim, J. DeRouchey, C. Seney, C. Levesque, P. Martin, C. M. Stafford, and T. P. Russell, “The influence of molecular weight on nanoporous polymer films,” Polymer (Guildf.)42(21), 9091–9095 (2001).
[CrossRef]

Liz-Marzán, L. M.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

Maier, S. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B71(23), 235408 (2005).
[CrossRef]

Martin, P.

T. Xu, H.-C. Kim, J. DeRouchey, C. Seney, C. Levesque, P. Martin, C. M. Stafford, and T. P. Russell, “The influence of molecular weight on nanoporous polymer films,” Polymer (Guildf.)42(21), 9091–9095 (2001).
[CrossRef]

Mattheis, R.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem.390(1), 113–124 (2008).
[CrossRef] [PubMed]

McMahon, J. M.

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy,” J. Am. Chem. Soc.132(31), 10903–10910 (2010).
[CrossRef] [PubMed]

Mirin, N. A.

D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon Modes of Nanosphere Trimers and Quadrumers,” J. Phys. Chem. B110(25), 12302–12310 (2006).
[CrossRef] [PubMed]

Mock, J.

J. Mock, S. Norton, S. Y. Chen, A. Lazarides, and D. Smith, “Electromagnetic Enhancement Effect Caused by Aggregation on SERS-Active Gold Nanoparticles,” Plasmonics6(1), 113–124 (2011).
[CrossRef]

Mock, J. J.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Möller, R.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem.390(1), 113–124 (2008).
[CrossRef] [PubMed]

Montague, M. F.

E. W. Edwards, M. F. Montague, H. H. Solak, C. J. Hawker, and P. F. Nealey, “Precise Control over Molecular Dimensions of Block-Copolymer Domains Using the Interfacial Energy of Chemically Nanopatterned Substrates,” Adv. Mater.16(15), 1315–1319 (2004).
[CrossRef]

Mulvaney, P.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

Myroshnychenko, V.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

Natan, M. J.

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy,” J. Am. Chem. Soc.132(31), 10903–10910 (2010).
[CrossRef] [PubMed]

Nealey, P. F.

E. W. Edwards, M. F. Montague, H. H. Solak, C. J. Hawker, and P. F. Nealey, “Precise Control over Molecular Dimensions of Block-Copolymer Domains Using the Interfacial Energy of Chemically Nanopatterned Substrates,” Adv. Mater.16(15), 1315–1319 (2004).
[CrossRef]

Nordlander, P.

D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon Modes of Nanosphere Trimers and Quadrumers,” J. Phys. Chem. B110(25), 12302–12310 (2006).
[CrossRef] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett.399(1-3), 167–171 (2004).
[CrossRef]

Norton, S.

J. Mock, S. Norton, S. Y. Chen, A. Lazarides, and D. Smith, “Electromagnetic Enhancement Effect Caused by Aggregation on SERS-Active Gold Nanoparticles,” Plasmonics6(1), 113–124 (2011).
[CrossRef]

Novo, C.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

Okamoto, H.

K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett.6(10), 2173–2176 (2006).
[CrossRef] [PubMed]

Oleschuk, R. D.

L. Brown, T. Koerner, J. H. Horton, and R. D. Oleschuk, “Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents,” Lab Chip6(1), 66–73 (2006).
[CrossRef] [PubMed]

Oubre, C.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Pasquale, A. J.

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Engineering Photonic-Plasmonic Coupling in Metal Nanoparticle Necklaces,” ACS Nano5(8), 6578–6585 (2011).
[CrossRef] [PubMed]

Pastoriza-Santos, I.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

Penninkhof, J. J.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B71(23), 235408 (2005).
[CrossRef]

Petronis, S.

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Kall, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett.78(6), 802–804 (2001).
[CrossRef]

Peumans, P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96(12), 7519–7526 (2004).
[CrossRef]

Piotti, M. E.

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy,” J. Am. Chem. Soc.132(31), 10903–10910 (2010).
[CrossRef] [PubMed]

Polman, A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B71(23), 235408 (2005).
[CrossRef]

Popp, J.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem.390(1), 113–124 (2008).
[CrossRef] [PubMed]

Premasiri, W. R.

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineered SERS Substrates with Multiscale Signal Enhancement: Nanoparticle Cluster Arrays,” ACS Nano3(5), 1190–1202 (2009).
[CrossRef] [PubMed]

Qiu, C.

X. Gong, Y. Bao, C. Qiu, and C. Y. Jiang, “Individual nanostructured materials: fabrication and surface-enhanced Raman scattering,” Chem. Commun. (Camb.)48(56), 7003–7018 (2012).
[CrossRef] [PubMed]

Rabin, O.

O. Rabin and S. Y. Lee, “SERS Substrates by the Assembly of Silver Nanocubes: High-Throughput and Enhancement Reliability Considerations,” J. Nanotechnol.2012, 870378 (2012).
[CrossRef]

Ragan, R.

S. M. Adams, S. Campione, F. Capolino, and R. Ragan, “Directing cluster formation of Au nanoparticles from colloidal solution,” Langmuir (2013).
[CrossRef]

S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS Substrates: Tailoring Surface Chemistry for Au Nanoparticle Cluster Assembly,” Small8(14), 2239–2249 (2012).
[CrossRef] [PubMed]

J. H. Choi, S. M. Adams, and R. Ragan, “Design of a versatile chemical assembly method for patterning colloidal nanoparticles,” Nanotechnology20(6), 065301 (2009).
[CrossRef] [PubMed]

Rand, B. P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96(12), 7519–7526 (2004).
[CrossRef]

Reinhard, B. M.

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Engineering Photonic-Plasmonic Coupling in Metal Nanoparticle Necklaces,” ACS Nano5(8), 6578–6585 (2011).
[CrossRef] [PubMed]

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Optimizing Gold Nanoparticle Cluster Configurations (n ≤ 7) for Array Applications,” J Phys Chem C Nanomater Interfaces115(11), 4578–4583 (2011).
[CrossRef] [PubMed]

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineered SERS Substrates with Multiscale Signal Enhancement: Nanoparticle Cluster Arrays,” ACS Nano3(5), 1190–1202 (2009).
[CrossRef] [PubMed]

Rodríguez-Fernández, J.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

Rösch, P.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem.390(1), 113–124 (2008).
[CrossRef] [PubMed]

Rosen, D.

B. Gao, Y. Alvi, D. Rosen, M. Lav, and A. R. Tao, “Designer nanojunctions: orienting shaped nanoparticles within polymer thin-film nanocomposites,” Chem. Commun. (Camb.) (2013), doi:.
[CrossRef] [PubMed]

Russell, T. P.

T. Xu, H.-C. Kim, J. DeRouchey, C. Seney, C. Levesque, P. Martin, C. M. Stafford, and T. P. Russell, “The influence of molecular weight on nanoporous polymer films,” Polymer (Guildf.)42(21), 9091–9095 (2001).
[CrossRef]

Sarychev, A. K.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant Field Enhancements from Metal Nanoparticle Arrays,” Nano Lett.4(1), 153–158 (2004).
[CrossRef]

Scalora, M.

M. A. Vincenti, S. Campione, D. de Ceglia, F. Capolino, and M. Scalora, “Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells,” New J. Phys.14(10), 103016 (2012).
[CrossRef]

Schatz, G. C.

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy,” J. Am. Chem. Soc.132(31), 10903–10910 (2010).
[CrossRef] [PubMed]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

Schneidewind, H.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem.390(1), 113–124 (2008).
[CrossRef] [PubMed]

Schultz, S.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Schwartzberg, A. M.

A. M. Schwartzberg, C. D. Grant, A. Wolcott, C. E. Talley, T. R. Huser, R. Bogomolni, and J. Z. Zhang, “Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate,” J. Phys. Chem. B108(50), 19191–19197 (2004).
[CrossRef]

Segalman, R. A.

R. A. Segalman, A. Hexemer, and E. J. Kramer, “Effects of Lateral Confinement on Order in Spherical Domain Block Copolymer Thin Films,” Macromolecules36(18), 6831–6839 (2003).
[CrossRef]

Seney, C.

T. Xu, H.-C. Kim, J. DeRouchey, C. Seney, C. Levesque, P. Martin, C. M. Stafford, and T. P. Russell, “The influence of molecular weight on nanoporous polymer films,” Polymer (Guildf.)42(21), 9091–9095 (2001).
[CrossRef]

Shalaev, V. M.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant Field Enhancements from Metal Nanoparticle Arrays,” Nano Lett.4(1), 153–158 (2004).
[CrossRef]

Smith, D.

J. Mock, S. Norton, S. Y. Chen, A. Lazarides, and D. Smith, “Electromagnetic Enhancement Effect Caused by Aggregation on SERS-Active Gold Nanoparticles,” Plasmonics6(1), 113–124 (2011).
[CrossRef]

Smith, D. R.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Solak, H. H.

E. W. Edwards, M. F. Montague, H. H. Solak, C. J. Hawker, and P. F. Nealey, “Precise Control over Molecular Dimensions of Block-Copolymer Domains Using the Interfacial Energy of Chemically Nanopatterned Substrates,” Adv. Mater.16(15), 1315–1319 (2004).
[CrossRef]

Stafford, C. M.

T. Xu, H.-C. Kim, J. DeRouchey, C. Seney, C. Levesque, P. Martin, C. M. Stafford, and T. P. Russell, “The influence of molecular weight on nanoporous polymer films,” Polymer (Guildf.)42(21), 9091–9095 (2001).
[CrossRef]

Steshenko, S.

S. Steshenko, F. Capolino, P. Alitalo, and S. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(1), 016607 (2011).
[CrossRef] [PubMed]

S. Campione, S. Steshenko, M. Albani, and F. Capolino, “Complex modes and effective refractive index in 3D periodic arrays of plasmonic nanospheres,” Opt. Express19(27), 26027–26043 (2011).
[CrossRef] [PubMed]

Su, K. H.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Sweatlock, L. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B71(23), 235408 (2005).
[CrossRef]

Talley, C. E.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

A. M. Schwartzberg, C. D. Grant, A. Wolcott, C. E. Talley, T. R. Huser, R. Bogomolni, and J. Z. Zhang, “Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate,” J. Phys. Chem. B108(50), 19191–19197 (2004).
[CrossRef]

Tao, A. R.

B. Gao, Y. Alvi, D. Rosen, M. Lav, and A. R. Tao, “Designer nanojunctions: orienting shaped nanoparticles within polymer thin-film nanocomposites,” Chem. Commun. (Camb.) (2013), doi:.
[CrossRef] [PubMed]

Thubagere, A.

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineered SERS Substrates with Multiscale Signal Enhancement: Nanoparticle Cluster Arrays,” ACS Nano3(5), 1190–1202 (2009).
[CrossRef] [PubMed]

Tretyakov, S.

S. Steshenko, F. Capolino, P. Alitalo, and S. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(1), 016607 (2011).
[CrossRef] [PubMed]

Vallecchi, A.

A. Vallecchi, S. Campione, and F. Capolino, “Symmetric and antisymmetric resonances in a pair of metal-dielectric nanoshells: tunability and closed-form formulas,” J. Nanophoton.4(1), 041577 (2010).
[CrossRef]

Valley, N.

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy,” J. Am. Chem. Soc.132(31), 10903–10910 (2010).
[CrossRef] [PubMed]

Van Duyne, R. P.

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy,” J. Am. Chem. Soc.132(31), 10903–10910 (2010).
[CrossRef] [PubMed]

Vincenti, M. A.

M. A. Vincenti, S. Campione, D. de Ceglia, F. Capolino, and M. Scalora, “Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells,” New J. Phys.14(10), 103016 (2012).
[CrossRef]

Vo-Dinh, T.

T. Vo-Dinh, “Surface-enhanced Raman spectroscopy using metallic nanostructures,” TRAC-Trend. Anal. Chem.17, 557–582 (1998).

Wei, A.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant Field Enhancements from Metal Nanoparticle Arrays,” Nano Lett.4(1), 153–158 (2004).
[CrossRef]

Wei, Q. H.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Wolcott, A.

A. M. Schwartzberg, C. D. Grant, A. Wolcott, C. E. Talley, T. R. Huser, R. Bogomolni, and J. Z. Zhang, “Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate,” J. Phys. Chem. B108(50), 19191–19197 (2004).
[CrossRef]

Wustholz, K. L.

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy,” J. Am. Chem. Soc.132(31), 10903–10910 (2010).
[CrossRef] [PubMed]

Xu, H.

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Kall, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett.78(6), 802–804 (2001).
[CrossRef]

Xu, T.

T. Xu, H.-C. Kim, J. DeRouchey, C. Seney, C. Levesque, P. Martin, C. M. Stafford, and T. P. Russell, “The influence of molecular weight on nanoporous polymer films,” Polymer (Guildf.)42(21), 9091–9095 (2001).
[CrossRef]

Yan, B.

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Optimizing Gold Nanoparticle Cluster Configurations (n ≤ 7) for Array Applications,” J Phys Chem C Nanomater Interfaces115(11), 4578–4583 (2011).
[CrossRef] [PubMed]

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineered SERS Substrates with Multiscale Signal Enhancement: Nanoparticle Cluster Arrays,” ACS Nano3(5), 1190–1202 (2009).
[CrossRef] [PubMed]

Zhang, J. Z.

A. M. Schwartzberg, C. D. Grant, A. Wolcott, C. E. Talley, T. R. Huser, R. Bogomolni, and J. Z. Zhang, “Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate,” J. Phys. Chem. B108(50), 19191–19197 (2004).
[CrossRef]

Zhang, X.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Ziegler, L. D.

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineered SERS Substrates with Multiscale Signal Enhancement: Nanoparticle Cluster Arrays,” ACS Nano3(5), 1190–1202 (2009).
[CrossRef] [PubMed]

Zou, S.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

Acc. Chem. Res. (1)

K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates - From single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res.39(7), 443–450 (2006).
[CrossRef] [PubMed]

ACS Nano (2)

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Engineering Photonic-Plasmonic Coupling in Metal Nanoparticle Necklaces,” ACS Nano5(8), 6578–6585 (2011).
[CrossRef] [PubMed]

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineered SERS Substrates with Multiscale Signal Enhancement: Nanoparticle Cluster Arrays,” ACS Nano3(5), 1190–1202 (2009).
[CrossRef] [PubMed]

Adv. Mater. (1)

E. W. Edwards, M. F. Montague, H. H. Solak, C. J. Hawker, and P. F. Nealey, “Precise Control over Molecular Dimensions of Block-Copolymer Domains Using the Interfacial Energy of Chemically Nanopatterned Substrates,” Adv. Mater.16(15), 1315–1319 (2004).
[CrossRef]

Anal. Bioanal. Chem. (1)

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem.390(1), 113–124 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Kall, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett.78(6), 802–804 (2001).
[CrossRef]

Chem. Commun. (Camb.) (2)

X. Gong, Y. Bao, C. Qiu, and C. Y. Jiang, “Individual nanostructured materials: fabrication and surface-enhanced Raman scattering,” Chem. Commun. (Camb.)48(56), 7003–7018 (2012).
[CrossRef] [PubMed]

B. Gao, Y. Alvi, D. Rosen, M. Lav, and A. R. Tao, “Designer nanojunctions: orienting shaped nanoparticles within polymer thin-film nanocomposites,” Chem. Commun. (Camb.) (2013), doi:.
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett.399(1-3), 167–171 (2004).
[CrossRef]

Chem. Soc. Rev. (1)

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

Expert Rev. Mol. Diagn. (1)

A. J. Haes and R. P. V. Duyne, “Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics,” Expert Rev. Mol. Diagn.4(4), 527–537 (2004).
[CrossRef] [PubMed]

J Phys Chem C Nanomater Interfaces (1)

B. Yan, S. V. Boriskina, and B. M. Reinhard, “Optimizing Gold Nanoparticle Cluster Configurations (n ≤ 7) for Array Applications,” J Phys Chem C Nanomater Interfaces115(11), 4578–4583 (2011).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy,” J. Am. Chem. Soc.132(31), 10903–10910 (2010).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96(12), 7519–7526 (2004).
[CrossRef]

J. Chem. Phys. (2)

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

J. Nanophoton. (2)

A. Vallecchi, S. Campione, and F. Capolino, “Symmetric and antisymmetric resonances in a pair of metal-dielectric nanoshells: tunability and closed-form formulas,” J. Nanophoton.4(1), 041577 (2010).
[CrossRef]

G. V. P. Kumar, “Plasmonic nano-architectures for surface enhanced Raman scattering: a review,” J. Nanophoton.6(1), 064503–064520 (2012).
[CrossRef]

J. Nanotechnol. (1)

O. Rabin and S. Y. Lee, “SERS Substrates by the Assembly of Silver Nanocubes: High-Throughput and Enhancement Reliability Considerations,” J. Nanotechnol.2012, 870378 (2012).
[CrossRef]

J. Phys. Chem. B (2)

A. M. Schwartzberg, C. D. Grant, A. Wolcott, C. E. Talley, T. R. Huser, R. Bogomolni, and J. Z. Zhang, “Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate,” J. Phys. Chem. B108(50), 19191–19197 (2004).
[CrossRef]

D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon Modes of Nanosphere Trimers and Quadrumers,” J. Phys. Chem. B110(25), 12302–12310 (2006).
[CrossRef] [PubMed]

J. Phys.- Condes. Matter (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.- Condes. Matter14(18), R597–R624 (2002).
[CrossRef]

Lab Chip (1)

L. Brown, T. Koerner, J. H. Horton, and R. D. Oleschuk, “Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents,” Lab Chip6(1), 66–73 (2006).
[CrossRef] [PubMed]

Langmuir (1)

S. M. Adams, S. Campione, F. Capolino, and R. Ragan, “Directing cluster formation of Au nanoparticles from colloidal solution,” Langmuir (2013).
[CrossRef]

Macromolecules (1)

R. A. Segalman, A. Hexemer, and E. J. Kramer, “Effects of Lateral Confinement on Order in Spherical Domain Block Copolymer Thin Films,” Macromolecules36(18), 6831–6839 (2003).
[CrossRef]

Nano Lett. (4)

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett.6(10), 2173–2176 (2006).
[CrossRef] [PubMed]

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant Field Enhancements from Metal Nanoparticle Arrays,” Nano Lett.4(1), 153–158 (2004).
[CrossRef]

Nanotechnology (1)

J. H. Choi, S. M. Adams, and R. Ragan, “Design of a versatile chemical assembly method for patterning colloidal nanoparticles,” Nanotechnology20(6), 065301 (2009).
[CrossRef] [PubMed]

New J. Phys. (1)

M. A. Vincenti, S. Campione, D. de Ceglia, F. Capolino, and M. Scalora, “Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells,” New J. Phys.14(10), 103016 (2012).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B71(23), 235408 (2005).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. Steshenko, F. Capolino, P. Alitalo, and S. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(1), 016607 (2011).
[CrossRef] [PubMed]

Plasmonics (1)

J. Mock, S. Norton, S. Y. Chen, A. Lazarides, and D. Smith, “Electromagnetic Enhancement Effect Caused by Aggregation on SERS-Active Gold Nanoparticles,” Plasmonics6(1), 113–124 (2011).
[CrossRef]

Polymer (Guildf.) (1)

T. Xu, H.-C. Kim, J. DeRouchey, C. Seney, C. Levesque, P. Martin, C. M. Stafford, and T. P. Russell, “The influence of molecular weight on nanoporous polymer films,” Polymer (Guildf.)42(21), 9091–9095 (2001).
[CrossRef]

Small (1)

S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS Substrates: Tailoring Surface Chemistry for Au Nanoparticle Cluster Assembly,” Small8(14), 2239–2249 (2012).
[CrossRef] [PubMed]

TRAC-Trend. Anal. Chem. (1)

T. Vo-Dinh, “Surface-enhanced Raman spectroscopy using metallic nanostructures,” TRAC-Trend. Anal. Chem.17, 557–582 (1998).

Other (3)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

S. Steshenko and F. Capolino, “Single Dipole Approximation for Modeling Collections of Nanoscatterers,” in Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009, Chap. 8).

J. D. Jackson, Classical Electrodynamics (Wiley, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic of self-assembly fabrication procedure (beaker drawing) where colloidal Au nanospheres are chemically functionalized in solution to produce Au nanosphere oligomers on chemically patterned diblock copolymer surfaces for use as SERS substrates. (b) SEM image showing the types of Au oligomers observed on a fabricated surface. The inset shows a close-up view of a dimer, where the Au nanosphere diameter is approximately 23 nm.

Fig. 2
Fig. 2

Schematic of the optical setup employed in simulations. Normalized electric field magnitude maps (outside of the nanospheres) evaluated at the plane indicated by the red dashed line for various clusters and for the HCP configuration under (a-f) x polarized and (g-i) y polarized illumination at 633 nm, typical laser wavelength. Note the field hot spots between the nanospheres. Numerical results are obtained via FEM. SEM images of self-assembled oligomers are shown as insets in (a-e).

Fig. 3
Fig. 3

Normalized electric field magnitude maps on the plane indicated by the orange dashed line at the midpoint of a quadrumer at 633 nm with gap between nanospheres of 2 nm and 4 nm, showing the field confinement.

Fig. 4
Fig. 4

Field enhancement Ecl / E0 versus illumination wavelength for x polarized illumination for linear oligomers (assuming particles with 23 nm diameter and 2 nm gap) retrieved via FEM and FDTD full-wave simulations, in good agreement. Note the large field enhancement when the oligomers are resonating around 620 nm. Note also the different scales in (a)-(d) for clarity of presentation of the results.

Fig. 5
Fig. 5

As in Fig. 4, field enhancement for trimers 60° and 90°, and HCP retrieved via FEM full-wave simulation. Note the large field enhancement when the oligomers are resonating around 600 nm. Note also the different scales in (a)-(b) for clarity of presentation of the results.

Fig. 6
Fig. 6

As in Fig. 5, for y polarized illumination. Note the large field enhancement when the oligomers are resonating around 600 nm. Note also the different scales in (a)-(b) for clarity of presentation of the results.

Fig. 7
Fig. 7

(a) SERS experimental data from substrates of Au nanospheres with adsorbed benzenethiol molecules on top. EF = enhancement factor. (b) Theoretical SERS enhancement [computed as (Ecl / E0)4, i.e., the fourth power of the field enhancements in Sec. 2] for the linear oligomers in Fig. 4.

Fig. 8
Fig. 8

(a) SEM image showing the types of Au oligomers observed on a fabricated surface using EPD. The inset shows a close-up view of a dimer, where it can be observed that the gap between nanospheres is smaller than the one obtained by fabrication based on Brownian motion in Fig. 1. (b-d) Theoretical SERS enhancement [computed as (Ecl / E0)4, i.e., the fourth power of the field enhancement] for the linear oligomers in Fig. 4 retrieved via FEM full-wave simulations for various gap sizes. Note the decreasing SERS enhancement and the resonance blue shift for increasing gap size.

Fig. 9
Fig. 9

(a) Dimers, (b) trimers and (c) quadrumers linearly positioned along a direction, for simplicity assumed to be the z direction. The red arrows indicate the distribution of induced dipole moment pi for the longitudinal symmetric resonance frequencies.

Fig. 10
Fig. 10

Field enhancement Ecl / EPW versus illumination wavelength for x polarized illumination for linear oligomers in homogeneous environment (assuming particles with 23 nm diameter and 2 nm gap) retrieved via SDA near-field calculations.

Tables (3)

Tables Icon

Table 1 Summary of the resonance wavelengths (in nm) and maximum field enhancements E cl / E 0 for the oligomers and the HCP structure simulated via FEM in Figs. 4-6.

Tables Icon

Table 2 Resonance wavelengths (in nm) for the linear oligomers in Fig. 9, assuming particles with 23 nm diameter and 2 nm gap.

Tables Icon

Table 3 Resonance wavelengths (in nm) for the linear oligomers in Fig. 9, assuming particles with 23 nm diameter and 4 nm gap.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

α ee 1 = ε m +2 ε h 4π ε 0 ε h r 3 ( ε m ε h ) i k 3 6π ε 0 ε h
ε m = ε ω p 2 ω( ω+iγ ) .
ω= ω res i γ 2 ,       with        ω res = ω p ε t K,
K= 12 q 3 12 K CM q 3 .
K= 8( 1+3 57 ) q 3 8( 1+3 57 ) K CM q 3 ,
K= 108( 112+ 69865 ) q 3 108( 112+ 69865 ) K CM q 3
K CM = ε ε h ε +2 ε h     and   q= r s ,
Err%= | λ FEM λ th | λ FEM ×100
E n loc = E inc ( r n )+ m=1 mn N G ¯ ( r n , r m ) p m ,
m=1 N A ¯ nm p m = E inc ( r n ),     A ¯ nm ={ α ee 1 I ¯ , n=m G ¯ ( r n , r m ), nm .
G ¯ ( r n , r m )=[ c 1 I ¯ + c 2 Ψ ¯ ( r nm ) ],
c 1 ( r nm )= e ik r nm 4π ε 0 ε h ( k 2 r nm + ik r nm 2 1 r nm 3 ),   c 2 ( r nm )= e ik r nm 4π ε 0 ε h ( k 2 r nm + 3ik r nm 2 3 r nm 3 ).
α ee 1 c 12 =0.
α ee 2 c 13 α ee 1 2 c 12 2 =0,
α ee 2 ( c 12 + c 14 ) α ee 1 + c 12 c 14 ( c 12 + c 13 ) 2 =0,
α ee 1 = ε m +2 ε h 4π ε 0 ε h r 3 ( ε m ε h ) ,  c 1 ( r nm )= 1 4π ε 0 ε h r nm 3 ,  c 2 ( r nm )= 3 4π ε 0 ε h r nm 3

Metrics