Abstract

We demonstrate a flat polymeric lenticular microlens array using a mixture of rod-like diacrylate monomer and positive dielectric anisotropy nematic liquid crystal (LC). To create gradient refractive index profile in one microlens, we generate fringing fields from a planar top electrode and two striped bottom electrodes. After UV stabilization, the film is optically anisotropic and can stand alone. We then laminate this film on a 90° twisted-nematic LC cell, which works as a dynamic polarization rotator. The static polymeric lenticular lens exhibits focusing effect only to the extraordinary ray, but no optical effect to the ordinary ray. Such an integrated lens system offers several advantages, such as low voltage, fast response time, and temperature insensitivity, and can be used for switchable 2D/3D displays.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Choi, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, “Wide-viewing-angle 3D/2D convertible display system using two display devices and a lens array,” Opt. Express 13(21), 8424–8432 (2005).
    [CrossRef] [PubMed]
  2. T. Dekker, S. T. de Zwart, O. H. Willemsen, M. G. H. Hiddink, and W. L. IJzerman, “2D/3D switchable displays,” Proc. SPIE 6135, 61350K, 61350K-11 (2006).
    [CrossRef]
  3. J. Flack, J. Harrold, and J. Woodgate, “A prototype 3D mobile phone equipped with a next generation autostereocopic display,” Proc. SPIE 6490, 64900M (2007).
    [CrossRef]
  4. M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2D/3D displays based on switchable lenticulars,” J. SID 16(8), 847–855 (2008).
  5. A. Takagi, T. Saishu, M. Kashiwagi, K. Taira, and Y. Hirayama, “Autostereoscopic partial 2-D/3-D switchable display using liquid-crystal gradient index lens,” SID Symp. Dig. 41, 436–439 (2010).
    [CrossRef]
  6. G. J. Woodgate, J. Harrold, A. M. S. Jacobs, R. R. Moseley, and D. Ezra, “Flat panel autostereoscopic displays-characterization and enhancement,” Proc. SPIE 3957, 153–164 (2000).
    [CrossRef]
  7. J. G. Lu, X. F. Sun, Y. Song, and H. P. D. Shieh, “2-D/3-D switchable display by Fresnel-type LC lens,” J. Disp. Technol. 7(4), 215–219 (2011).
    [CrossRef]
  8. R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE 7329, 732903, 732903-8 (2009).
    [CrossRef]
  9. N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis,” IEEE Trans. Broadcast 57(2), 362–371 (2011).
    [CrossRef]
  10. L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177(1-6), 157–170 (2000).
    [CrossRef]
  11. Y.-H. Fan, H. Ren, X. Liang, H. Wang, and S.-T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
    [CrossRef]
  12. Y. J. Liu, X. W. Sun, and Q. Wang, “A focus-switchable lens made of polymer–liquid crystal composite,” J. Cryst. Growth 288(1), 192–194 (2006).
    [CrossRef]
  13. Y. P. Huang, L. Y. Liao, and C. W. Chen, “2-D/3-D switchable autostereoscopic display with multi-electrically driven liquid-crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
    [CrossRef]
  14. Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S.-T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
    [CrossRef]
  15. J.-H. Na, S.-C. Park, S.-U. Kim, Y. Choi, and S.-D. Lee, “Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode,” Opt. Express 20(2), 864–869 (2012).
    [CrossRef] [PubMed]
  16. E. Lueder, 3D Displays (Wiley, 2012).
  17. Y.-J. Lee, J.-H. Baek, Y. Kim, J.-U. Heo, Y.-K. Moon, J. S. Gwag, C.-J. Yu, and J.-H. Kim, “Polarizer-free liquid crystal display with electrically switchable microlens array,” Opt. Express 21(1), 129–134 (2013).
    [CrossRef] [PubMed]
  18. M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
    [CrossRef]
  19. S. Xu, H. Ren, Y. J. Lin, M. G. J. Moharam, S. T. Wu, and N. Tabiryan, “Adaptive liquid lens actuated by photo-polymer,” Opt. Express 17(20), 17590–17595 (2009).
    [CrossRef] [PubMed]
  20. H. Ren, Y.-H. Lin, and S.-T. Wu, “Flat polymeric microlens array,” Opt. Commun. 261(2), 296–299 (2006).
    [CrossRef]
  21. N. S. Holliman, “3D display systems,” in Handbook of optoelectronics, J.P. Dakin and R. G. W. Brown (Taylor & Francis, 2006).
  22. A. Naumov, G. Love, M. Y. Loktev, and F. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4(9), 344–352 (1999).
    [CrossRef] [PubMed]

2013 (1)

2012 (1)

2011 (3)

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S.-T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[CrossRef]

J. G. Lu, X. F. Sun, Y. Song, and H. P. D. Shieh, “2-D/3-D switchable display by Fresnel-type LC lens,” J. Disp. Technol. 7(4), 215–219 (2011).
[CrossRef]

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis,” IEEE Trans. Broadcast 57(2), 362–371 (2011).
[CrossRef]

2010 (1)

Y. P. Huang, L. Y. Liao, and C. W. Chen, “2-D/3-D switchable autostereoscopic display with multi-electrically driven liquid-crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[CrossRef]

2009 (2)

R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE 7329, 732903, 732903-8 (2009).
[CrossRef]

S. Xu, H. Ren, Y. J. Lin, M. G. J. Moharam, S. T. Wu, and N. Tabiryan, “Adaptive liquid lens actuated by photo-polymer,” Opt. Express 17(20), 17590–17595 (2009).
[CrossRef] [PubMed]

2008 (1)

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2D/3D displays based on switchable lenticulars,” J. SID 16(8), 847–855 (2008).

2007 (1)

J. Flack, J. Harrold, and J. Woodgate, “A prototype 3D mobile phone equipped with a next generation autostereocopic display,” Proc. SPIE 6490, 64900M (2007).
[CrossRef]

2006 (3)

Y. J. Liu, X. W. Sun, and Q. Wang, “A focus-switchable lens made of polymer–liquid crystal composite,” J. Cryst. Growth 288(1), 192–194 (2006).
[CrossRef]

T. Dekker, S. T. de Zwart, O. H. Willemsen, M. G. H. Hiddink, and W. L. IJzerman, “2D/3D switchable displays,” Proc. SPIE 6135, 61350K, 61350K-11 (2006).
[CrossRef]

H. Ren, Y.-H. Lin, and S.-T. Wu, “Flat polymeric microlens array,” Opt. Commun. 261(2), 296–299 (2006).
[CrossRef]

2005 (2)

H. Choi, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, “Wide-viewing-angle 3D/2D convertible display system using two display devices and a lens array,” Opt. Express 13(21), 8424–8432 (2005).
[CrossRef] [PubMed]

Y.-H. Fan, H. Ren, X. Liang, H. Wang, and S.-T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[CrossRef]

2000 (2)

G. J. Woodgate, J. Harrold, A. M. S. Jacobs, R. R. Moseley, and D. Ezra, “Flat panel autostereoscopic displays-characterization and enhancement,” Proc. SPIE 3957, 153–164 (2000).
[CrossRef]

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177(1-6), 157–170 (2000).
[CrossRef]

1999 (1)

1971 (1)

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[CrossRef]

Baek, J.-H.

Chen, C. W.

Y. P. Huang, L. Y. Liao, and C. W. Chen, “2-D/3-D switchable autostereoscopic display with multi-electrically driven liquid-crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[CrossRef]

Chen, Y.

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S.-T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[CrossRef]

Chen, Y.-C.

R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE 7329, 732903, 732903-8 (2009).
[CrossRef]

Cho, S.-W.

Choi, H.

Choi, Y.

Commander, L. G.

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177(1-6), 157–170 (2000).
[CrossRef]

Day, S. E.

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177(1-6), 157–170 (2000).
[CrossRef]

de Boer, D. K. G.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2D/3D displays based on switchable lenticulars,” J. SID 16(8), 847–855 (2008).

de Zwart, S. T.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2D/3D displays based on switchable lenticulars,” J. SID 16(8), 847–855 (2008).

T. Dekker, S. T. de Zwart, O. H. Willemsen, M. G. H. Hiddink, and W. L. IJzerman, “2D/3D switchable displays,” Proc. SPIE 6135, 61350K, 61350K-11 (2006).
[CrossRef]

Dekker, T.

T. Dekker, S. T. de Zwart, O. H. Willemsen, M. G. H. Hiddink, and W. L. IJzerman, “2D/3D switchable displays,” Proc. SPIE 6135, 61350K, 61350K-11 (2006).
[CrossRef]

Dodgson, N. A.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis,” IEEE Trans. Broadcast 57(2), 362–371 (2011).
[CrossRef]

Ezra, D.

G. J. Woodgate, J. Harrold, A. M. S. Jacobs, R. R. Moseley, and D. Ezra, “Flat panel autostereoscopic displays-characterization and enhancement,” Proc. SPIE 3957, 153–164 (2000).
[CrossRef]

Fan, Y.-H.

Y.-H. Fan, H. Ren, X. Liang, H. Wang, and S.-T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[CrossRef]

Favalora, G. E.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis,” IEEE Trans. Broadcast 57(2), 362–371 (2011).
[CrossRef]

Flack, J.

J. Flack, J. Harrold, and J. Woodgate, “A prototype 3D mobile phone equipped with a next generation autostereocopic display,” Proc. SPIE 6490, 64900M (2007).
[CrossRef]

Gwag, J. S.

Harrold, J.

J. Flack, J. Harrold, and J. Woodgate, “A prototype 3D mobile phone equipped with a next generation autostereocopic display,” Proc. SPIE 6490, 64900M (2007).
[CrossRef]

G. J. Woodgate, J. Harrold, A. M. S. Jacobs, R. R. Moseley, and D. Ezra, “Flat panel autostereoscopic displays-characterization and enhancement,” Proc. SPIE 3957, 153–164 (2000).
[CrossRef]

Helfrich, W.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[CrossRef]

Heo, J.-U.

Hiddink, M. G. H.

T. Dekker, S. T. de Zwart, O. H. Willemsen, M. G. H. Hiddink, and W. L. IJzerman, “2D/3D switchable displays,” Proc. SPIE 6135, 61350K, 61350K-11 (2006).
[CrossRef]

Hirayama, Y.

A. Takagi, T. Saishu, M. Kashiwagi, K. Taira, and Y. Hirayama, “Autostereoscopic partial 2-D/3-D switchable display using liquid-crystal gradient index lens,” SID Symp. Dig. 41, 436–439 (2010).
[CrossRef]

Holliman, N. S.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis,” IEEE Trans. Broadcast 57(2), 362–371 (2011).
[CrossRef]

Hsu, W.-L.

R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE 7329, 732903, 732903-8 (2009).
[CrossRef]

Huang, K.-C.

R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE 7329, 732903, 732903-8 (2009).
[CrossRef]

Huang, Y. P.

Y. P. Huang, L. Y. Liao, and C. W. Chen, “2-D/3-D switchable autostereoscopic display with multi-electrically driven liquid-crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[CrossRef]

IJzerman, W. L.

T. Dekker, S. T. de Zwart, O. H. Willemsen, M. G. H. Hiddink, and W. L. IJzerman, “2D/3D switchable displays,” Proc. SPIE 6135, 61350K, 61350K-11 (2006).
[CrossRef]

Ishinabe, T.

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S.-T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[CrossRef]

Jacobs, A. M. S.

G. J. Woodgate, J. Harrold, A. M. S. Jacobs, R. R. Moseley, and D. Ezra, “Flat panel autostereoscopic displays-characterization and enhancement,” Proc. SPIE 3957, 153–164 (2000).
[CrossRef]

Kashiwagi, M.

A. Takagi, T. Saishu, M. Kashiwagi, K. Taira, and Y. Hirayama, “Autostereoscopic partial 2-D/3-D switchable display using liquid-crystal gradient index lens,” SID Symp. Dig. 41, 436–439 (2010).
[CrossRef]

Kim, J.

Kim, J.-H.

Kim, S.-U.

Kim, Y.

Krijn, M. P. C. M.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2D/3D displays based on switchable lenticulars,” J. SID 16(8), 847–855 (2008).

Lee, B.

Lee, K.

R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE 7329, 732903, 732903-8 (2009).
[CrossRef]

Lee, S.-D.

Lee, Y.-J.

Liang, X.

Y.-H. Fan, H. Ren, X. Liang, H. Wang, and S.-T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[CrossRef]

Liao, L. Y.

Y. P. Huang, L. Y. Liao, and C. W. Chen, “2-D/3-D switchable autostereoscopic display with multi-electrically driven liquid-crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[CrossRef]

Lin, L.-C. D.

R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE 7329, 732903, 732903-8 (2009).
[CrossRef]

Lin, Y. J.

Lin, Y.-H.

H. Ren, Y.-H. Lin, and S.-T. Wu, “Flat polymeric microlens array,” Opt. Commun. 261(2), 296–299 (2006).
[CrossRef]

Liu, Y.

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S.-T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[CrossRef]

Liu, Y. J.

Y. J. Liu, X. W. Sun, and Q. Wang, “A focus-switchable lens made of polymer–liquid crystal composite,” J. Cryst. Growth 288(1), 192–194 (2006).
[CrossRef]

Loktev, M. Y.

Love, G.

Lu, C.-F.

R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE 7329, 732903, 732903-8 (2009).
[CrossRef]

Lu, J. G.

J. G. Lu, X. F. Sun, Y. Song, and H. P. D. Shieh, “2-D/3-D switchable display by Fresnel-type LC lens,” J. Disp. Technol. 7(4), 215–219 (2011).
[CrossRef]

Moharam, M. G. J.

Moon, Y.-K.

Moseley, R. R.

G. J. Woodgate, J. Harrold, A. M. S. Jacobs, R. R. Moseley, and D. Ezra, “Flat panel autostereoscopic displays-characterization and enhancement,” Proc. SPIE 3957, 153–164 (2000).
[CrossRef]

Na, J.-H.

Naumov, A.

Park, J.-H.

Park, S.-C.

Pockett, L.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis,” IEEE Trans. Broadcast 57(2), 362–371 (2011).
[CrossRef]

Rao, L.

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S.-T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[CrossRef]

Ren, H.

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S.-T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[CrossRef]

S. Xu, H. Ren, Y. J. Lin, M. G. J. Moharam, S. T. Wu, and N. Tabiryan, “Adaptive liquid lens actuated by photo-polymer,” Opt. Express 17(20), 17590–17595 (2009).
[CrossRef] [PubMed]

H. Ren, Y.-H. Lin, and S.-T. Wu, “Flat polymeric microlens array,” Opt. Commun. 261(2), 296–299 (2006).
[CrossRef]

Y.-H. Fan, H. Ren, X. Liang, H. Wang, and S.-T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[CrossRef]

Saishu, T.

A. Takagi, T. Saishu, M. Kashiwagi, K. Taira, and Y. Hirayama, “Autostereoscopic partial 2-D/3-D switchable display using liquid-crystal gradient index lens,” SID Symp. Dig. 41, 436–439 (2010).
[CrossRef]

Schadt, M.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[CrossRef]

Selviah, D. R.

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177(1-6), 157–170 (2000).
[CrossRef]

Shieh, H. P. D.

J. G. Lu, X. F. Sun, Y. Song, and H. P. D. Shieh, “2-D/3-D switchable display by Fresnel-type LC lens,” J. Disp. Technol. 7(4), 215–219 (2011).
[CrossRef]

Sluijter, M.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2D/3D displays based on switchable lenticulars,” J. SID 16(8), 847–855 (2008).

Song, Y.

J. G. Lu, X. F. Sun, Y. Song, and H. P. D. Shieh, “2-D/3-D switchable display by Fresnel-type LC lens,” J. Disp. Technol. 7(4), 215–219 (2011).
[CrossRef]

Sun, X. F.

J. G. Lu, X. F. Sun, Y. Song, and H. P. D. Shieh, “2-D/3-D switchable display by Fresnel-type LC lens,” J. Disp. Technol. 7(4), 215–219 (2011).
[CrossRef]

Sun, X. W.

Y. J. Liu, X. W. Sun, and Q. Wang, “A focus-switchable lens made of polymer–liquid crystal composite,” J. Cryst. Growth 288(1), 192–194 (2006).
[CrossRef]

Tabiryan, N.

Taira, K.

A. Takagi, T. Saishu, M. Kashiwagi, K. Taira, and Y. Hirayama, “Autostereoscopic partial 2-D/3-D switchable display using liquid-crystal gradient index lens,” SID Symp. Dig. 41, 436–439 (2010).
[CrossRef]

Takagi, A.

A. Takagi, T. Saishu, M. Kashiwagi, K. Taira, and Y. Hirayama, “Autostereoscopic partial 2-D/3-D switchable display using liquid-crystal gradient index lens,” SID Symp. Dig. 41, 436–439 (2010).
[CrossRef]

Tsai, C.-H.

R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE 7329, 732903, 732903-8 (2009).
[CrossRef]

Tsai, R.-Y.

R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE 7329, 732903, 732903-8 (2009).
[CrossRef]

Vladimirov, F.

Wang, H.

Y.-H. Fan, H. Ren, X. Liang, H. Wang, and S.-T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[CrossRef]

Wang, Q.

Y. J. Liu, X. W. Sun, and Q. Wang, “A focus-switchable lens made of polymer–liquid crystal composite,” J. Cryst. Growth 288(1), 192–194 (2006).
[CrossRef]

Willemsen, O. H.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2D/3D displays based on switchable lenticulars,” J. SID 16(8), 847–855 (2008).

T. Dekker, S. T. de Zwart, O. H. Willemsen, M. G. H. Hiddink, and W. L. IJzerman, “2D/3D switchable displays,” Proc. SPIE 6135, 61350K, 61350K-11 (2006).
[CrossRef]

Woodgate, G. J.

G. J. Woodgate, J. Harrold, A. M. S. Jacobs, R. R. Moseley, and D. Ezra, “Flat panel autostereoscopic displays-characterization and enhancement,” Proc. SPIE 3957, 153–164 (2000).
[CrossRef]

Woodgate, J.

J. Flack, J. Harrold, and J. Woodgate, “A prototype 3D mobile phone equipped with a next generation autostereocopic display,” Proc. SPIE 6490, 64900M (2007).
[CrossRef]

Wu, C.-L.

R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE 7329, 732903, 732903-8 (2009).
[CrossRef]

Wu, C.-S.

R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE 7329, 732903, 732903-8 (2009).
[CrossRef]

Wu, S. T.

Wu, S.-T.

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S.-T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[CrossRef]

H. Ren, Y.-H. Lin, and S.-T. Wu, “Flat polymeric microlens array,” Opt. Commun. 261(2), 296–299 (2006).
[CrossRef]

Y.-H. Fan, H. Ren, X. Liang, H. Wang, and S.-T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[CrossRef]

Xu, S.

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S.-T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[CrossRef]

S. Xu, H. Ren, Y. J. Lin, M. G. J. Moharam, S. T. Wu, and N. Tabiryan, “Adaptive liquid lens actuated by photo-polymer,” Opt. Express 17(20), 17590–17595 (2009).
[CrossRef] [PubMed]

Yang, J.-C.

R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE 7329, 732903, 732903-8 (2009).
[CrossRef]

Yu, C.-J.

Appl. Phys. Lett. (1)

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[CrossRef]

IEEE Trans. Broadcast (1)

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis,” IEEE Trans. Broadcast 57(2), 362–371 (2011).
[CrossRef]

J. Cryst. Growth (1)

Y. J. Liu, X. W. Sun, and Q. Wang, “A focus-switchable lens made of polymer–liquid crystal composite,” J. Cryst. Growth 288(1), 192–194 (2006).
[CrossRef]

J. Disp. Technol. (3)

Y.-H. Fan, H. Ren, X. Liang, H. Wang, and S.-T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005).
[CrossRef]

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S.-T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[CrossRef]

J. G. Lu, X. F. Sun, Y. Song, and H. P. D. Shieh, “2-D/3-D switchable display by Fresnel-type LC lens,” J. Disp. Technol. 7(4), 215–219 (2011).
[CrossRef]

J. SID (1)

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2D/3D displays based on switchable lenticulars,” J. SID 16(8), 847–855 (2008).

J. Soc. Inf. Disp. (1)

Y. P. Huang, L. Y. Liao, and C. W. Chen, “2-D/3-D switchable autostereoscopic display with multi-electrically driven liquid-crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[CrossRef]

Opt. Commun. (2)

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177(1-6), 157–170 (2000).
[CrossRef]

H. Ren, Y.-H. Lin, and S.-T. Wu, “Flat polymeric microlens array,” Opt. Commun. 261(2), 296–299 (2006).
[CrossRef]

Opt. Express (5)

Proc. SPIE (4)

G. J. Woodgate, J. Harrold, A. M. S. Jacobs, R. R. Moseley, and D. Ezra, “Flat panel autostereoscopic displays-characterization and enhancement,” Proc. SPIE 3957, 153–164 (2000).
[CrossRef]

T. Dekker, S. T. de Zwart, O. H. Willemsen, M. G. H. Hiddink, and W. L. IJzerman, “2D/3D switchable displays,” Proc. SPIE 6135, 61350K, 61350K-11 (2006).
[CrossRef]

J. Flack, J. Harrold, and J. Woodgate, “A prototype 3D mobile phone equipped with a next generation autostereocopic display,” Proc. SPIE 6490, 64900M (2007).
[CrossRef]

R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE 7329, 732903, 732903-8 (2009).
[CrossRef]

Other (3)

A. Takagi, T. Saishu, M. Kashiwagi, K. Taira, and Y. Hirayama, “Autostereoscopic partial 2-D/3-D switchable display using liquid-crystal gradient index lens,” SID Symp. Dig. 41, 436–439 (2010).
[CrossRef]

E. Lueder, 3D Displays (Wiley, 2012).

N. S. Holliman, “3D display systems,” in Handbook of optoelectronics, J.P. Dakin and R. G. W. Brown (Taylor & Francis, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Operation principle of a switchable 2D/3D display with a TN broadband polarization rotator (middle) and a polymeric microlens array (top): (a) voltage-off and (b) voltage-on.

Fig. 2
Fig. 2

Procedures for fabricating a polymeric lens: (a) homogeneous alignment of a diacrylate LC monomer at voltage-off state, (b) symmetric but inhomogeneous alignment at a voltage-on state, (c) UV curing to stabilize the molecular structure, and (d) peeling off the flat polymeric lens from the substrates.

Fig. 3
Fig. 3

Alignment of the monomer/LC cell at different conditions: (a) at 75°C with rubbing direction along the optic axis of a polarizer, (b) at 75 °C with rubbing direction oriented at 45° to the axis of one polarizer, (c) at 65 °C for one minute and (d) at 65°C for two minutes.

Fig. 4
Fig. 4

The POM images of UV cured RM257/BL038 cell: the rubbing direction is (a) 45° and (b) 0° to the optical axis of the polarizer.

Fig. 5
Fig. 5

(a) Photo of the solidified film during peeling, (b) image of a film observed under POM with its axis oriented at 45°and (c) 0° to the axis of the polarizer, and (d) in focused state with a red color filter.

Fig. 6
Fig. 6

The phase profiles of one polymeric microlens before and after peeling.

Fig. 7
Fig. 7

SEM images of the polymeric film: (a) surface morphology and (b) cross-sectional morphology.

Fig. 8
Fig. 8

Evaluation of the focus switching of the TNLC/polymeric lens: (a) Experimental setup, (b) imaging and intensity profiles of the focusing state, (c) imaging and intensity profiles of the non-focusing state.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

z=f( e i +1 )
f= π w 2 ( 4Δϕλ )

Metrics