Abstract

Deterministic wavelength-dependent multifilamentation is controlled in fused silica by adjusting the diffraction pattern generated by a loosely focusing 2D periodic lens array. By simply translating the sample along the propagation axis the number and distribution of filaments can be controlled and are in agreement with the results of linear diffraction simulations. The loose focusing geometry allows for long filaments whose distribution is conserved along their propagation inside the sample. The effect of incident energy and polarization on filament number is also studied. Laser filamentation controlled by a microlens array could be a promising method for easy and fast 3D track writing in transparent materials.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett.20(1), 73–75 (1995).
    [CrossRef] [PubMed]
  2. A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett.22(5), 304–306 (1997).
    [CrossRef] [PubMed]
  3. M. Chateauneuf, S. Payeur, J. Dubois, and J.-C. Kieffer, “Microwave guiding in air by a cylindrical filament array waveguide,” Appl. Phys. Lett.92(9), 091104 (2008).
    [CrossRef]
  4. M. Alshershby, Z. Q. Hao, and J. Q. Lin, “Guiding microwave radiation using laser-induced filaments: the hollow conducting waveguide concept,” J. Phys. D Appl. Phys.45(26), 265401 (2012).
    [CrossRef]
  5. M. Alshershby, J. Q. Lin, and Z. Q. Hao, “Numerical analysis of guiding a microwave radiation using a set of plasma filaments: dielectric waveguide concept,” J. Phys. D Appl. Phys.45(6), 065102 (2012).
    [CrossRef]
  6. B. La Fontaine, D. Comtois, C.-Y. Chien, A. Desparois, F. Génin, G. Jarry, T. Johnston, J.-C. Kieffer, F. Martin, R. Mawassi, H. Pépin, F. A. M. Rizk, F. Vidal, C. Potvin, P. Couture, and H. P. Mercure, “Guiding large-scale spark discharges with ultrashort pulse laser filaments,” J. Appl. Phys.88(2), 610–615 (2000).
    [CrossRef]
  7. N. L. Alexandrov, E. M. Bazeljan, N. A. Bogatov, A. M. Kiselev, A. N. Stepanov, B. A. Tikhomirov, and A. B. Tikhomirov, “Nonlinear effects of propagation of intense femtosecond laser radiation in atmosphere,” Proc. Int. Conf. on ‘High-power laser beams’ HPLB-2006 (N. Novgorod-Yaroslavl, 3–8 July) 107, (2006).
  8. A. Saliminia, N. T. Nguyen, M.-C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” J. Appl. Phys.93(7), 3724 (2003).
    [CrossRef]
  9. H. Chen, X. Chen, Y. Xia, D. Liu, Y. Li, and Q. Gong, “Beam coupling in 2×2 waveguide arrays in fused silica fabricated by femtosecond laser pulses,” Opt. Express15(9), 5445–5450 (2007).
    [CrossRef] [PubMed]
  10. Y. Wang, Y. H. Li, and P. Lu, “Infrared Femtosecond Laser Direct-Writing Digital Volume Gratings in fused silica,” Chin. Phys. Lett.27(4), 044213 (2010).
    [CrossRef]
  11. O. G. Kosareva, T. Nguyen, N. A. Panov, W. Liu, A. Saliminia, V. P. Kandidov, N. Akozbek, M. Scalora, R. Vallee, and S. L. Chin, “Array of femtosecond plasma channels in fused silica,” Opt. Commun.267(2), 511–523 (2006).
    [CrossRef]
  12. L. Shah, A. Y. Arai, S. M. Eaton, and P. R. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express13(6), 1999–2006 (2005).
    [CrossRef] [PubMed]
  13. V. Kudriašov, E. Gaižauskas, and V. Sirutkaitis, “Birefringent modifications induced by femtosecond filaments in optical glass,” Appl. Phys., A Mater. Sci. Process.93(2), 571–576 (2008).
    [CrossRef]
  14. K. Yamada, W. Watanabe, T. Toma, K. Itoh, and J. Nishii, “In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses,” Opt. Lett.26(1), 19–21 (2001).
    [CrossRef] [PubMed]
  15. A. Dubietis, G. Tamosauskas, G. Fibich, and B. Ilan, “Multiple filamentation induced by input-beam ellipticity,” Opt. Lett.29(10), 1126–1128 (2004).
    [CrossRef] [PubMed]
  16. D. Majus, V. Jukna, G. Valiulis, and A. Dubietis, “Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams,” Phys. Rev. A79(3), 033843 (2009).
    [CrossRef]
  17. Z. Q. Hao, K. Stelmaszczyk, P. Rohwetter, W. M. Nakaema, and L. Woeste, “Femtosecond laser filament-fringes in fused silica,” Opt. Express19(8), 7799–7806 (2011).
    [CrossRef] [PubMed]
  18. C. Corsi, A. Tortora, and M. Bellini, “Generation of a variable linear array of phase-coherent supercontinuum sources,” Appl. Phys. B78(3–4), 299–304 (2004).
    [CrossRef]
  19. J. P. Bérubé, R. Vallée, M. Bernier, O. Kosareva, N. Panov, V. Kandidov, and S. L. Chin, “Self and forced periodic arrangement of multiple filaments in glass,” Opt. Express18(3), 1801–1819 (2010).
    [CrossRef] [PubMed]
  20. P. Rohwetter, M. Queißer, K. Stelmaszczyk, M. Fechner, and L. Wöste, “Laser multiple filamentation control in air using a smooth phase mask,” Phys. Rev. A77(1), 013812 (2008).
    [CrossRef]
  21. V. P. Kandidov, N. Akozbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, “Towards a control of multiple filamentation by spatial regularization of a high-power femtosecond laser pulse,” Appl. Phys. B80(2), 267–275 (2005).
    [CrossRef]
  22. H. Schroeder, J. Liu, and S. L. Chin, “From random to controlled small-scale filamentation in water,” Opt. Express12(20), 4768–4774 (2004).
    [CrossRef] [PubMed]
  23. J. Liu, R. Li, Z. Xu, H. Schroder, and S. L. Chin, “Control and organization of multi-filamentation of femtosecond laser pulses in optical media,” J. Korean Phys. Soc.51(94), 1572–1577 (2007).
    [CrossRef]
  24. S. Minardi, A. Varanavicius, P. Di Trapani, and A. Piskarskas, “A compact, multipixel parametric light source,” Opt. Commun.224(4-6), 301–307 (2003).
    [CrossRef]
  25. W. Watanabe, Y. Masuda, H. Arimoto, and K. Itoh, “Coherent Array of White-Light Continuum Generated by Microlens Array,” Opt. Rev.6(3), 167–172 (1999).
    [CrossRef]
  26. K. Cook, R. McGeorge, A. K. Kar, M. R. Taghizadeh, and R. A. Lamb, “Coherent array of white-light continuum filaments produced by diffractive microlenses,” Appl. Phys. Lett.86(2), 021105 (2005).
    [CrossRef]
  27. M. Taghizadeh, P. Blair, K. Balluder, A. Waddie, P. Rudman, and N. Ross, “Design and fabrication of diffractive elements for laser material processing applications,” Opt. Lasers Eng.34(4-6), 289–307 (2000).
    [CrossRef]
  28. M. Berry, I. Marzoli, and W. Schleich, “Quantum carpets, carpets of light,” Phys. World 39–46, (June 2001).
  29. G. Fibich and B. Ilan, “Multiple filamentation of circularly polarized beams,” Phys. Rev. Lett.89(1), 013901 (2002).
    [CrossRef] [PubMed]
  30. A. Saliminia, J. P. Bérubé, and R. Vallée, “Refractive index-modified structures in glass written by 266nm fs laser pulses,” Opt. Express20(25), 27410–27419 (2012).
    [CrossRef] [PubMed]
  31. D. Papazoglou, I. Zergioti, S. G. Sgouros, G. Maravelias, S. Christopoulos, and C. Fotakis, “Sub-picosecond ultraviolet laser filamentation-induced bulk modifications in fused silica,” Appl. Phys., A Mater. Sci. Process.81(2), 241–244 (2005).
    [CrossRef]

2012

M. Alshershby, Z. Q. Hao, and J. Q. Lin, “Guiding microwave radiation using laser-induced filaments: the hollow conducting waveguide concept,” J. Phys. D Appl. Phys.45(26), 265401 (2012).
[CrossRef]

M. Alshershby, J. Q. Lin, and Z. Q. Hao, “Numerical analysis of guiding a microwave radiation using a set of plasma filaments: dielectric waveguide concept,” J. Phys. D Appl. Phys.45(6), 065102 (2012).
[CrossRef]

A. Saliminia, J. P. Bérubé, and R. Vallée, “Refractive index-modified structures in glass written by 266nm fs laser pulses,” Opt. Express20(25), 27410–27419 (2012).
[CrossRef] [PubMed]

2011

2010

J. P. Bérubé, R. Vallée, M. Bernier, O. Kosareva, N. Panov, V. Kandidov, and S. L. Chin, “Self and forced periodic arrangement of multiple filaments in glass,” Opt. Express18(3), 1801–1819 (2010).
[CrossRef] [PubMed]

Y. Wang, Y. H. Li, and P. Lu, “Infrared Femtosecond Laser Direct-Writing Digital Volume Gratings in fused silica,” Chin. Phys. Lett.27(4), 044213 (2010).
[CrossRef]

2009

D. Majus, V. Jukna, G. Valiulis, and A. Dubietis, “Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams,” Phys. Rev. A79(3), 033843 (2009).
[CrossRef]

2008

M. Chateauneuf, S. Payeur, J. Dubois, and J.-C. Kieffer, “Microwave guiding in air by a cylindrical filament array waveguide,” Appl. Phys. Lett.92(9), 091104 (2008).
[CrossRef]

P. Rohwetter, M. Queißer, K. Stelmaszczyk, M. Fechner, and L. Wöste, “Laser multiple filamentation control in air using a smooth phase mask,” Phys. Rev. A77(1), 013812 (2008).
[CrossRef]

V. Kudriašov, E. Gaižauskas, and V. Sirutkaitis, “Birefringent modifications induced by femtosecond filaments in optical glass,” Appl. Phys., A Mater. Sci. Process.93(2), 571–576 (2008).
[CrossRef]

2007

J. Liu, R. Li, Z. Xu, H. Schroder, and S. L. Chin, “Control and organization of multi-filamentation of femtosecond laser pulses in optical media,” J. Korean Phys. Soc.51(94), 1572–1577 (2007).
[CrossRef]

H. Chen, X. Chen, Y. Xia, D. Liu, Y. Li, and Q. Gong, “Beam coupling in 2×2 waveguide arrays in fused silica fabricated by femtosecond laser pulses,” Opt. Express15(9), 5445–5450 (2007).
[CrossRef] [PubMed]

2006

O. G. Kosareva, T. Nguyen, N. A. Panov, W. Liu, A. Saliminia, V. P. Kandidov, N. Akozbek, M. Scalora, R. Vallee, and S. L. Chin, “Array of femtosecond plasma channels in fused silica,” Opt. Commun.267(2), 511–523 (2006).
[CrossRef]

2005

V. P. Kandidov, N. Akozbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, “Towards a control of multiple filamentation by spatial regularization of a high-power femtosecond laser pulse,” Appl. Phys. B80(2), 267–275 (2005).
[CrossRef]

K. Cook, R. McGeorge, A. K. Kar, M. R. Taghizadeh, and R. A. Lamb, “Coherent array of white-light continuum filaments produced by diffractive microlenses,” Appl. Phys. Lett.86(2), 021105 (2005).
[CrossRef]

L. Shah, A. Y. Arai, S. M. Eaton, and P. R. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express13(6), 1999–2006 (2005).
[CrossRef] [PubMed]

D. Papazoglou, I. Zergioti, S. G. Sgouros, G. Maravelias, S. Christopoulos, and C. Fotakis, “Sub-picosecond ultraviolet laser filamentation-induced bulk modifications in fused silica,” Appl. Phys., A Mater. Sci. Process.81(2), 241–244 (2005).
[CrossRef]

2004

2003

A. Saliminia, N. T. Nguyen, M.-C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” J. Appl. Phys.93(7), 3724 (2003).
[CrossRef]

S. Minardi, A. Varanavicius, P. Di Trapani, and A. Piskarskas, “A compact, multipixel parametric light source,” Opt. Commun.224(4-6), 301–307 (2003).
[CrossRef]

2002

G. Fibich and B. Ilan, “Multiple filamentation of circularly polarized beams,” Phys. Rev. Lett.89(1), 013901 (2002).
[CrossRef] [PubMed]

2001

2000

M. Taghizadeh, P. Blair, K. Balluder, A. Waddie, P. Rudman, and N. Ross, “Design and fabrication of diffractive elements for laser material processing applications,” Opt. Lasers Eng.34(4-6), 289–307 (2000).
[CrossRef]

B. La Fontaine, D. Comtois, C.-Y. Chien, A. Desparois, F. Génin, G. Jarry, T. Johnston, J.-C. Kieffer, F. Martin, R. Mawassi, H. Pépin, F. A. M. Rizk, F. Vidal, C. Potvin, P. Couture, and H. P. Mercure, “Guiding large-scale spark discharges with ultrashort pulse laser filaments,” J. Appl. Phys.88(2), 610–615 (2000).
[CrossRef]

1999

W. Watanabe, Y. Masuda, H. Arimoto, and K. Itoh, “Coherent Array of White-Light Continuum Generated by Microlens Array,” Opt. Rev.6(3), 167–172 (1999).
[CrossRef]

1997

1995

Akozbek, N.

O. G. Kosareva, T. Nguyen, N. A. Panov, W. Liu, A. Saliminia, V. P. Kandidov, N. Akozbek, M. Scalora, R. Vallee, and S. L. Chin, “Array of femtosecond plasma channels in fused silica,” Opt. Commun.267(2), 511–523 (2006).
[CrossRef]

V. P. Kandidov, N. Akozbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, “Towards a control of multiple filamentation by spatial regularization of a high-power femtosecond laser pulse,” Appl. Phys. B80(2), 267–275 (2005).
[CrossRef]

Alshershby, M.

M. Alshershby, Z. Q. Hao, and J. Q. Lin, “Guiding microwave radiation using laser-induced filaments: the hollow conducting waveguide concept,” J. Phys. D Appl. Phys.45(26), 265401 (2012).
[CrossRef]

M. Alshershby, J. Q. Lin, and Z. Q. Hao, “Numerical analysis of guiding a microwave radiation using a set of plasma filaments: dielectric waveguide concept,” J. Phys. D Appl. Phys.45(6), 065102 (2012).
[CrossRef]

Arai, A. Y.

Arimoto, H.

W. Watanabe, Y. Masuda, H. Arimoto, and K. Itoh, “Coherent Array of White-Light Continuum Generated by Microlens Array,” Opt. Rev.6(3), 167–172 (1999).
[CrossRef]

Balluder, K.

M. Taghizadeh, P. Blair, K. Balluder, A. Waddie, P. Rudman, and N. Ross, “Design and fabrication of diffractive elements for laser material processing applications,” Opt. Lasers Eng.34(4-6), 289–307 (2000).
[CrossRef]

Bellini, M.

C. Corsi, A. Tortora, and M. Bellini, “Generation of a variable linear array of phase-coherent supercontinuum sources,” Appl. Phys. B78(3–4), 299–304 (2004).
[CrossRef]

Bernier, M.

Bérubé, J. P.

Blair, P.

M. Taghizadeh, P. Blair, K. Balluder, A. Waddie, P. Rudman, and N. Ross, “Design and fabrication of diffractive elements for laser material processing applications,” Opt. Lasers Eng.34(4-6), 289–307 (2000).
[CrossRef]

Braun, A.

Brodeur, A.

Chateauneuf, M.

M. Chateauneuf, S. Payeur, J. Dubois, and J.-C. Kieffer, “Microwave guiding in air by a cylindrical filament array waveguide,” Appl. Phys. Lett.92(9), 091104 (2008).
[CrossRef]

Chen, H.

Chen, X.

Chien, C. Y.

Chien, C.-Y.

B. La Fontaine, D. Comtois, C.-Y. Chien, A. Desparois, F. Génin, G. Jarry, T. Johnston, J.-C. Kieffer, F. Martin, R. Mawassi, H. Pépin, F. A. M. Rizk, F. Vidal, C. Potvin, P. Couture, and H. P. Mercure, “Guiding large-scale spark discharges with ultrashort pulse laser filaments,” J. Appl. Phys.88(2), 610–615 (2000).
[CrossRef]

Chin, S. L.

J. P. Bérubé, R. Vallée, M. Bernier, O. Kosareva, N. Panov, V. Kandidov, and S. L. Chin, “Self and forced periodic arrangement of multiple filaments in glass,” Opt. Express18(3), 1801–1819 (2010).
[CrossRef] [PubMed]

J. Liu, R. Li, Z. Xu, H. Schroder, and S. L. Chin, “Control and organization of multi-filamentation of femtosecond laser pulses in optical media,” J. Korean Phys. Soc.51(94), 1572–1577 (2007).
[CrossRef]

O. G. Kosareva, T. Nguyen, N. A. Panov, W. Liu, A. Saliminia, V. P. Kandidov, N. Akozbek, M. Scalora, R. Vallee, and S. L. Chin, “Array of femtosecond plasma channels in fused silica,” Opt. Commun.267(2), 511–523 (2006).
[CrossRef]

V. P. Kandidov, N. Akozbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, “Towards a control of multiple filamentation by spatial regularization of a high-power femtosecond laser pulse,” Appl. Phys. B80(2), 267–275 (2005).
[CrossRef]

H. Schroeder, J. Liu, and S. L. Chin, “From random to controlled small-scale filamentation in water,” Opt. Express12(20), 4768–4774 (2004).
[CrossRef] [PubMed]

A. Saliminia, N. T. Nguyen, M.-C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” J. Appl. Phys.93(7), 3724 (2003).
[CrossRef]

A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett.22(5), 304–306 (1997).
[CrossRef] [PubMed]

Christopoulos, S.

D. Papazoglou, I. Zergioti, S. G. Sgouros, G. Maravelias, S. Christopoulos, and C. Fotakis, “Sub-picosecond ultraviolet laser filamentation-induced bulk modifications in fused silica,” Appl. Phys., A Mater. Sci. Process.81(2), 241–244 (2005).
[CrossRef]

Comtois, D.

B. La Fontaine, D. Comtois, C.-Y. Chien, A. Desparois, F. Génin, G. Jarry, T. Johnston, J.-C. Kieffer, F. Martin, R. Mawassi, H. Pépin, F. A. M. Rizk, F. Vidal, C. Potvin, P. Couture, and H. P. Mercure, “Guiding large-scale spark discharges with ultrashort pulse laser filaments,” J. Appl. Phys.88(2), 610–615 (2000).
[CrossRef]

Cook, K.

K. Cook, R. McGeorge, A. K. Kar, M. R. Taghizadeh, and R. A. Lamb, “Coherent array of white-light continuum filaments produced by diffractive microlenses,” Appl. Phys. Lett.86(2), 021105 (2005).
[CrossRef]

Corsi, C.

C. Corsi, A. Tortora, and M. Bellini, “Generation of a variable linear array of phase-coherent supercontinuum sources,” Appl. Phys. B78(3–4), 299–304 (2004).
[CrossRef]

Couture, P.

B. La Fontaine, D. Comtois, C.-Y. Chien, A. Desparois, F. Génin, G. Jarry, T. Johnston, J.-C. Kieffer, F. Martin, R. Mawassi, H. Pépin, F. A. M. Rizk, F. Vidal, C. Potvin, P. Couture, and H. P. Mercure, “Guiding large-scale spark discharges with ultrashort pulse laser filaments,” J. Appl. Phys.88(2), 610–615 (2000).
[CrossRef]

Desparois, A.

B. La Fontaine, D. Comtois, C.-Y. Chien, A. Desparois, F. Génin, G. Jarry, T. Johnston, J.-C. Kieffer, F. Martin, R. Mawassi, H. Pépin, F. A. M. Rizk, F. Vidal, C. Potvin, P. Couture, and H. P. Mercure, “Guiding large-scale spark discharges with ultrashort pulse laser filaments,” J. Appl. Phys.88(2), 610–615 (2000).
[CrossRef]

Di Trapani, P.

S. Minardi, A. Varanavicius, P. Di Trapani, and A. Piskarskas, “A compact, multipixel parametric light source,” Opt. Commun.224(4-6), 301–307 (2003).
[CrossRef]

Du, D.

Dubietis, A.

D. Majus, V. Jukna, G. Valiulis, and A. Dubietis, “Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams,” Phys. Rev. A79(3), 033843 (2009).
[CrossRef]

A. Dubietis, G. Tamosauskas, G. Fibich, and B. Ilan, “Multiple filamentation induced by input-beam ellipticity,” Opt. Lett.29(10), 1126–1128 (2004).
[CrossRef] [PubMed]

Dubois, J.

M. Chateauneuf, S. Payeur, J. Dubois, and J.-C. Kieffer, “Microwave guiding in air by a cylindrical filament array waveguide,” Appl. Phys. Lett.92(9), 091104 (2008).
[CrossRef]

Eaton, S. M.

Fechner, M.

P. Rohwetter, M. Queißer, K. Stelmaszczyk, M. Fechner, and L. Wöste, “Laser multiple filamentation control in air using a smooth phase mask,” Phys. Rev. A77(1), 013812 (2008).
[CrossRef]

Fibich, G.

Fotakis, C.

D. Papazoglou, I. Zergioti, S. G. Sgouros, G. Maravelias, S. Christopoulos, and C. Fotakis, “Sub-picosecond ultraviolet laser filamentation-induced bulk modifications in fused silica,” Appl. Phys., A Mater. Sci. Process.81(2), 241–244 (2005).
[CrossRef]

Gaižauskas, E.

V. Kudriašov, E. Gaižauskas, and V. Sirutkaitis, “Birefringent modifications induced by femtosecond filaments in optical glass,” Appl. Phys., A Mater. Sci. Process.93(2), 571–576 (2008).
[CrossRef]

Génin, F.

B. La Fontaine, D. Comtois, C.-Y. Chien, A. Desparois, F. Génin, G. Jarry, T. Johnston, J.-C. Kieffer, F. Martin, R. Mawassi, H. Pépin, F. A. M. Rizk, F. Vidal, C. Potvin, P. Couture, and H. P. Mercure, “Guiding large-scale spark discharges with ultrashort pulse laser filaments,” J. Appl. Phys.88(2), 610–615 (2000).
[CrossRef]

Gong, Q.

Hao, Z. Q.

M. Alshershby, J. Q. Lin, and Z. Q. Hao, “Numerical analysis of guiding a microwave radiation using a set of plasma filaments: dielectric waveguide concept,” J. Phys. D Appl. Phys.45(6), 065102 (2012).
[CrossRef]

M. Alshershby, Z. Q. Hao, and J. Q. Lin, “Guiding microwave radiation using laser-induced filaments: the hollow conducting waveguide concept,” J. Phys. D Appl. Phys.45(26), 265401 (2012).
[CrossRef]

Z. Q. Hao, K. Stelmaszczyk, P. Rohwetter, W. M. Nakaema, and L. Woeste, “Femtosecond laser filament-fringes in fused silica,” Opt. Express19(8), 7799–7806 (2011).
[CrossRef] [PubMed]

Herman, P. R.

Hosseini, S. A.

V. P. Kandidov, N. Akozbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, “Towards a control of multiple filamentation by spatial regularization of a high-power femtosecond laser pulse,” Appl. Phys. B80(2), 267–275 (2005).
[CrossRef]

Ilan, B.

Ilkov, F. A.

Itoh, K.

Jarry, G.

B. La Fontaine, D. Comtois, C.-Y. Chien, A. Desparois, F. Génin, G. Jarry, T. Johnston, J.-C. Kieffer, F. Martin, R. Mawassi, H. Pépin, F. A. M. Rizk, F. Vidal, C. Potvin, P. Couture, and H. P. Mercure, “Guiding large-scale spark discharges with ultrashort pulse laser filaments,” J. Appl. Phys.88(2), 610–615 (2000).
[CrossRef]

Johnston, T.

B. La Fontaine, D. Comtois, C.-Y. Chien, A. Desparois, F. Génin, G. Jarry, T. Johnston, J.-C. Kieffer, F. Martin, R. Mawassi, H. Pépin, F. A. M. Rizk, F. Vidal, C. Potvin, P. Couture, and H. P. Mercure, “Guiding large-scale spark discharges with ultrashort pulse laser filaments,” J. Appl. Phys.88(2), 610–615 (2000).
[CrossRef]

Jukna, V.

D. Majus, V. Jukna, G. Valiulis, and A. Dubietis, “Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams,” Phys. Rev. A79(3), 033843 (2009).
[CrossRef]

Kandidov, V.

Kandidov, V. P.

O. G. Kosareva, T. Nguyen, N. A. Panov, W. Liu, A. Saliminia, V. P. Kandidov, N. Akozbek, M. Scalora, R. Vallee, and S. L. Chin, “Array of femtosecond plasma channels in fused silica,” Opt. Commun.267(2), 511–523 (2006).
[CrossRef]

V. P. Kandidov, N. Akozbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, “Towards a control of multiple filamentation by spatial regularization of a high-power femtosecond laser pulse,” Appl. Phys. B80(2), 267–275 (2005).
[CrossRef]

A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett.22(5), 304–306 (1997).
[CrossRef] [PubMed]

Kar, A. K.

K. Cook, R. McGeorge, A. K. Kar, M. R. Taghizadeh, and R. A. Lamb, “Coherent array of white-light continuum filaments produced by diffractive microlenses,” Appl. Phys. Lett.86(2), 021105 (2005).
[CrossRef]

Kieffer, J.-C.

M. Chateauneuf, S. Payeur, J. Dubois, and J.-C. Kieffer, “Microwave guiding in air by a cylindrical filament array waveguide,” Appl. Phys. Lett.92(9), 091104 (2008).
[CrossRef]

B. La Fontaine, D. Comtois, C.-Y. Chien, A. Desparois, F. Génin, G. Jarry, T. Johnston, J.-C. Kieffer, F. Martin, R. Mawassi, H. Pépin, F. A. M. Rizk, F. Vidal, C. Potvin, P. Couture, and H. P. Mercure, “Guiding large-scale spark discharges with ultrashort pulse laser filaments,” J. Appl. Phys.88(2), 610–615 (2000).
[CrossRef]

Korn, G.

Kosareva, O.

Kosareva, O. G.

O. G. Kosareva, T. Nguyen, N. A. Panov, W. Liu, A. Saliminia, V. P. Kandidov, N. Akozbek, M. Scalora, R. Vallee, and S. L. Chin, “Array of femtosecond plasma channels in fused silica,” Opt. Commun.267(2), 511–523 (2006).
[CrossRef]

V. P. Kandidov, N. Akozbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, “Towards a control of multiple filamentation by spatial regularization of a high-power femtosecond laser pulse,” Appl. Phys. B80(2), 267–275 (2005).
[CrossRef]

A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett.22(5), 304–306 (1997).
[CrossRef] [PubMed]

Kudriašov, V.

V. Kudriašov, E. Gaižauskas, and V. Sirutkaitis, “Birefringent modifications induced by femtosecond filaments in optical glass,” Appl. Phys., A Mater. Sci. Process.93(2), 571–576 (2008).
[CrossRef]

La Fontaine, B.

B. La Fontaine, D. Comtois, C.-Y. Chien, A. Desparois, F. Génin, G. Jarry, T. Johnston, J.-C. Kieffer, F. Martin, R. Mawassi, H. Pépin, F. A. M. Rizk, F. Vidal, C. Potvin, P. Couture, and H. P. Mercure, “Guiding large-scale spark discharges with ultrashort pulse laser filaments,” J. Appl. Phys.88(2), 610–615 (2000).
[CrossRef]

Lamb, R. A.

K. Cook, R. McGeorge, A. K. Kar, M. R. Taghizadeh, and R. A. Lamb, “Coherent array of white-light continuum filaments produced by diffractive microlenses,” Appl. Phys. Lett.86(2), 021105 (2005).
[CrossRef]

Li, R.

J. Liu, R. Li, Z. Xu, H. Schroder, and S. L. Chin, “Control and organization of multi-filamentation of femtosecond laser pulses in optical media,” J. Korean Phys. Soc.51(94), 1572–1577 (2007).
[CrossRef]

Li, Y.

Li, Y. H.

Y. Wang, Y. H. Li, and P. Lu, “Infrared Femtosecond Laser Direct-Writing Digital Volume Gratings in fused silica,” Chin. Phys. Lett.27(4), 044213 (2010).
[CrossRef]

Lin, J. Q.

M. Alshershby, Z. Q. Hao, and J. Q. Lin, “Guiding microwave radiation using laser-induced filaments: the hollow conducting waveguide concept,” J. Phys. D Appl. Phys.45(26), 265401 (2012).
[CrossRef]

M. Alshershby, J. Q. Lin, and Z. Q. Hao, “Numerical analysis of guiding a microwave radiation using a set of plasma filaments: dielectric waveguide concept,” J. Phys. D Appl. Phys.45(6), 065102 (2012).
[CrossRef]

Liu, D.

Liu, J.

J. Liu, R. Li, Z. Xu, H. Schroder, and S. L. Chin, “Control and organization of multi-filamentation of femtosecond laser pulses in optical media,” J. Korean Phys. Soc.51(94), 1572–1577 (2007).
[CrossRef]

H. Schroeder, J. Liu, and S. L. Chin, “From random to controlled small-scale filamentation in water,” Opt. Express12(20), 4768–4774 (2004).
[CrossRef] [PubMed]

Liu, W.

O. G. Kosareva, T. Nguyen, N. A. Panov, W. Liu, A. Saliminia, V. P. Kandidov, N. Akozbek, M. Scalora, R. Vallee, and S. L. Chin, “Array of femtosecond plasma channels in fused silica,” Opt. Commun.267(2), 511–523 (2006).
[CrossRef]

Liu, X.

Lu, P.

Y. Wang, Y. H. Li, and P. Lu, “Infrared Femtosecond Laser Direct-Writing Digital Volume Gratings in fused silica,” Chin. Phys. Lett.27(4), 044213 (2010).
[CrossRef]

Luo, Q.

V. P. Kandidov, N. Akozbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, “Towards a control of multiple filamentation by spatial regularization of a high-power femtosecond laser pulse,” Appl. Phys. B80(2), 267–275 (2005).
[CrossRef]

Majus, D.

D. Majus, V. Jukna, G. Valiulis, and A. Dubietis, “Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams,” Phys. Rev. A79(3), 033843 (2009).
[CrossRef]

Maravelias, G.

D. Papazoglou, I. Zergioti, S. G. Sgouros, G. Maravelias, S. Christopoulos, and C. Fotakis, “Sub-picosecond ultraviolet laser filamentation-induced bulk modifications in fused silica,” Appl. Phys., A Mater. Sci. Process.81(2), 241–244 (2005).
[CrossRef]

Martin, F.

B. La Fontaine, D. Comtois, C.-Y. Chien, A. Desparois, F. Génin, G. Jarry, T. Johnston, J.-C. Kieffer, F. Martin, R. Mawassi, H. Pépin, F. A. M. Rizk, F. Vidal, C. Potvin, P. Couture, and H. P. Mercure, “Guiding large-scale spark discharges with ultrashort pulse laser filaments,” J. Appl. Phys.88(2), 610–615 (2000).
[CrossRef]

Masuda, Y.

W. Watanabe, Y. Masuda, H. Arimoto, and K. Itoh, “Coherent Array of White-Light Continuum Generated by Microlens Array,” Opt. Rev.6(3), 167–172 (1999).
[CrossRef]

Mawassi, R.

B. La Fontaine, D. Comtois, C.-Y. Chien, A. Desparois, F. Génin, G. Jarry, T. Johnston, J.-C. Kieffer, F. Martin, R. Mawassi, H. Pépin, F. A. M. Rizk, F. Vidal, C. Potvin, P. Couture, and H. P. Mercure, “Guiding large-scale spark discharges with ultrashort pulse laser filaments,” J. Appl. Phys.88(2), 610–615 (2000).
[CrossRef]

McGeorge, R.

K. Cook, R. McGeorge, A. K. Kar, M. R. Taghizadeh, and R. A. Lamb, “Coherent array of white-light continuum filaments produced by diffractive microlenses,” Appl. Phys. Lett.86(2), 021105 (2005).
[CrossRef]

Mercure, H. P.

B. La Fontaine, D. Comtois, C.-Y. Chien, A. Desparois, F. Génin, G. Jarry, T. Johnston, J.-C. Kieffer, F. Martin, R. Mawassi, H. Pépin, F. A. M. Rizk, F. Vidal, C. Potvin, P. Couture, and H. P. Mercure, “Guiding large-scale spark discharges with ultrashort pulse laser filaments,” J. Appl. Phys.88(2), 610–615 (2000).
[CrossRef]

Minardi, S.

S. Minardi, A. Varanavicius, P. Di Trapani, and A. Piskarskas, “A compact, multipixel parametric light source,” Opt. Commun.224(4-6), 301–307 (2003).
[CrossRef]

Mourou, G.

Nadeau, M.-C.

A. Saliminia, N. T. Nguyen, M.-C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” J. Appl. Phys.93(7), 3724 (2003).
[CrossRef]

Nakaema, W. M.

Nguyen, N. T.

A. Saliminia, N. T. Nguyen, M.-C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” J. Appl. Phys.93(7), 3724 (2003).
[CrossRef]

Nguyen, T.

O. G. Kosareva, T. Nguyen, N. A. Panov, W. Liu, A. Saliminia, V. P. Kandidov, N. Akozbek, M. Scalora, R. Vallee, and S. L. Chin, “Array of femtosecond plasma channels in fused silica,” Opt. Commun.267(2), 511–523 (2006).
[CrossRef]

Nishii, J.

Nyakk, A. V.

V. P. Kandidov, N. Akozbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, “Towards a control of multiple filamentation by spatial regularization of a high-power femtosecond laser pulse,” Appl. Phys. B80(2), 267–275 (2005).
[CrossRef]

Panov, N.

Panov, N. A.

O. G. Kosareva, T. Nguyen, N. A. Panov, W. Liu, A. Saliminia, V. P. Kandidov, N. Akozbek, M. Scalora, R. Vallee, and S. L. Chin, “Array of femtosecond plasma channels in fused silica,” Opt. Commun.267(2), 511–523 (2006).
[CrossRef]

Papazoglou, D.

D. Papazoglou, I. Zergioti, S. G. Sgouros, G. Maravelias, S. Christopoulos, and C. Fotakis, “Sub-picosecond ultraviolet laser filamentation-induced bulk modifications in fused silica,” Appl. Phys., A Mater. Sci. Process.81(2), 241–244 (2005).
[CrossRef]

Payeur, S.

M. Chateauneuf, S. Payeur, J. Dubois, and J.-C. Kieffer, “Microwave guiding in air by a cylindrical filament array waveguide,” Appl. Phys. Lett.92(9), 091104 (2008).
[CrossRef]

Pépin, H.

B. La Fontaine, D. Comtois, C.-Y. Chien, A. Desparois, F. Génin, G. Jarry, T. Johnston, J.-C. Kieffer, F. Martin, R. Mawassi, H. Pépin, F. A. M. Rizk, F. Vidal, C. Potvin, P. Couture, and H. P. Mercure, “Guiding large-scale spark discharges with ultrashort pulse laser filaments,” J. Appl. Phys.88(2), 610–615 (2000).
[CrossRef]

Petit, S.

A. Saliminia, N. T. Nguyen, M.-C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” J. Appl. Phys.93(7), 3724 (2003).
[CrossRef]

Piskarskas, A.

S. Minardi, A. Varanavicius, P. Di Trapani, and A. Piskarskas, “A compact, multipixel parametric light source,” Opt. Commun.224(4-6), 301–307 (2003).
[CrossRef]

Potvin, C.

B. La Fontaine, D. Comtois, C.-Y. Chien, A. Desparois, F. Génin, G. Jarry, T. Johnston, J.-C. Kieffer, F. Martin, R. Mawassi, H. Pépin, F. A. M. Rizk, F. Vidal, C. Potvin, P. Couture, and H. P. Mercure, “Guiding large-scale spark discharges with ultrashort pulse laser filaments,” J. Appl. Phys.88(2), 610–615 (2000).
[CrossRef]

Queißer, M.

P. Rohwetter, M. Queißer, K. Stelmaszczyk, M. Fechner, and L. Wöste, “Laser multiple filamentation control in air using a smooth phase mask,” Phys. Rev. A77(1), 013812 (2008).
[CrossRef]

Rizk, F. A. M.

B. La Fontaine, D. Comtois, C.-Y. Chien, A. Desparois, F. Génin, G. Jarry, T. Johnston, J.-C. Kieffer, F. Martin, R. Mawassi, H. Pépin, F. A. M. Rizk, F. Vidal, C. Potvin, P. Couture, and H. P. Mercure, “Guiding large-scale spark discharges with ultrashort pulse laser filaments,” J. Appl. Phys.88(2), 610–615 (2000).
[CrossRef]

Rohwetter, P.

Z. Q. Hao, K. Stelmaszczyk, P. Rohwetter, W. M. Nakaema, and L. Woeste, “Femtosecond laser filament-fringes in fused silica,” Opt. Express19(8), 7799–7806 (2011).
[CrossRef] [PubMed]

P. Rohwetter, M. Queißer, K. Stelmaszczyk, M. Fechner, and L. Wöste, “Laser multiple filamentation control in air using a smooth phase mask,” Phys. Rev. A77(1), 013812 (2008).
[CrossRef]

Ross, N.

M. Taghizadeh, P. Blair, K. Balluder, A. Waddie, P. Rudman, and N. Ross, “Design and fabrication of diffractive elements for laser material processing applications,” Opt. Lasers Eng.34(4-6), 289–307 (2000).
[CrossRef]

Rudman, P.

M. Taghizadeh, P. Blair, K. Balluder, A. Waddie, P. Rudman, and N. Ross, “Design and fabrication of diffractive elements for laser material processing applications,” Opt. Lasers Eng.34(4-6), 289–307 (2000).
[CrossRef]

Saliminia, A.

A. Saliminia, J. P. Bérubé, and R. Vallée, “Refractive index-modified structures in glass written by 266nm fs laser pulses,” Opt. Express20(25), 27410–27419 (2012).
[CrossRef] [PubMed]

O. G. Kosareva, T. Nguyen, N. A. Panov, W. Liu, A. Saliminia, V. P. Kandidov, N. Akozbek, M. Scalora, R. Vallee, and S. L. Chin, “Array of femtosecond plasma channels in fused silica,” Opt. Commun.267(2), 511–523 (2006).
[CrossRef]

A. Saliminia, N. T. Nguyen, M.-C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” J. Appl. Phys.93(7), 3724 (2003).
[CrossRef]

Scalora, M.

O. G. Kosareva, T. Nguyen, N. A. Panov, W. Liu, A. Saliminia, V. P. Kandidov, N. Akozbek, M. Scalora, R. Vallee, and S. L. Chin, “Array of femtosecond plasma channels in fused silica,” Opt. Commun.267(2), 511–523 (2006).
[CrossRef]

V. P. Kandidov, N. Akozbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, “Towards a control of multiple filamentation by spatial regularization of a high-power femtosecond laser pulse,” Appl. Phys. B80(2), 267–275 (2005).
[CrossRef]

Schroder, H.

J. Liu, R. Li, Z. Xu, H. Schroder, and S. L. Chin, “Control and organization of multi-filamentation of femtosecond laser pulses in optical media,” J. Korean Phys. Soc.51(94), 1572–1577 (2007).
[CrossRef]

Schroeder, H.

Sgouros, S. G.

D. Papazoglou, I. Zergioti, S. G. Sgouros, G. Maravelias, S. Christopoulos, and C. Fotakis, “Sub-picosecond ultraviolet laser filamentation-induced bulk modifications in fused silica,” Appl. Phys., A Mater. Sci. Process.81(2), 241–244 (2005).
[CrossRef]

Shah, L.

Sirutkaitis, V.

V. Kudriašov, E. Gaižauskas, and V. Sirutkaitis, “Birefringent modifications induced by femtosecond filaments in optical glass,” Appl. Phys., A Mater. Sci. Process.93(2), 571–576 (2008).
[CrossRef]

Squier, J.

Stelmaszczyk, K.

Z. Q. Hao, K. Stelmaszczyk, P. Rohwetter, W. M. Nakaema, and L. Woeste, “Femtosecond laser filament-fringes in fused silica,” Opt. Express19(8), 7799–7806 (2011).
[CrossRef] [PubMed]

P. Rohwetter, M. Queißer, K. Stelmaszczyk, M. Fechner, and L. Wöste, “Laser multiple filamentation control in air using a smooth phase mask,” Phys. Rev. A77(1), 013812 (2008).
[CrossRef]

Taghizadeh, M.

M. Taghizadeh, P. Blair, K. Balluder, A. Waddie, P. Rudman, and N. Ross, “Design and fabrication of diffractive elements for laser material processing applications,” Opt. Lasers Eng.34(4-6), 289–307 (2000).
[CrossRef]

Taghizadeh, M. R.

K. Cook, R. McGeorge, A. K. Kar, M. R. Taghizadeh, and R. A. Lamb, “Coherent array of white-light continuum filaments produced by diffractive microlenses,” Appl. Phys. Lett.86(2), 021105 (2005).
[CrossRef]

Tamosauskas, G.

Toma, T.

Tortora, A.

C. Corsi, A. Tortora, and M. Bellini, “Generation of a variable linear array of phase-coherent supercontinuum sources,” Appl. Phys. B78(3–4), 299–304 (2004).
[CrossRef]

Valiulis, G.

D. Majus, V. Jukna, G. Valiulis, and A. Dubietis, “Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams,” Phys. Rev. A79(3), 033843 (2009).
[CrossRef]

Vallee, R.

O. G. Kosareva, T. Nguyen, N. A. Panov, W. Liu, A. Saliminia, V. P. Kandidov, N. Akozbek, M. Scalora, R. Vallee, and S. L. Chin, “Array of femtosecond plasma channels in fused silica,” Opt. Commun.267(2), 511–523 (2006).
[CrossRef]

Vallée, R.

Varanavicius, A.

S. Minardi, A. Varanavicius, P. Di Trapani, and A. Piskarskas, “A compact, multipixel parametric light source,” Opt. Commun.224(4-6), 301–307 (2003).
[CrossRef]

Vidal, F.

B. La Fontaine, D. Comtois, C.-Y. Chien, A. Desparois, F. Génin, G. Jarry, T. Johnston, J.-C. Kieffer, F. Martin, R. Mawassi, H. Pépin, F. A. M. Rizk, F. Vidal, C. Potvin, P. Couture, and H. P. Mercure, “Guiding large-scale spark discharges with ultrashort pulse laser filaments,” J. Appl. Phys.88(2), 610–615 (2000).
[CrossRef]

Waddie, A.

M. Taghizadeh, P. Blair, K. Balluder, A. Waddie, P. Rudman, and N. Ross, “Design and fabrication of diffractive elements for laser material processing applications,” Opt. Lasers Eng.34(4-6), 289–307 (2000).
[CrossRef]

Wang, Y.

Y. Wang, Y. H. Li, and P. Lu, “Infrared Femtosecond Laser Direct-Writing Digital Volume Gratings in fused silica,” Chin. Phys. Lett.27(4), 044213 (2010).
[CrossRef]

Watanabe, W.

Woeste, L.

Wöste, L.

P. Rohwetter, M. Queißer, K. Stelmaszczyk, M. Fechner, and L. Wöste, “Laser multiple filamentation control in air using a smooth phase mask,” Phys. Rev. A77(1), 013812 (2008).
[CrossRef]

Xia, Y.

Xu, Z.

J. Liu, R. Li, Z. Xu, H. Schroder, and S. L. Chin, “Control and organization of multi-filamentation of femtosecond laser pulses in optical media,” J. Korean Phys. Soc.51(94), 1572–1577 (2007).
[CrossRef]

Yamada, K.

Zergioti, I.

D. Papazoglou, I. Zergioti, S. G. Sgouros, G. Maravelias, S. Christopoulos, and C. Fotakis, “Sub-picosecond ultraviolet laser filamentation-induced bulk modifications in fused silica,” Appl. Phys., A Mater. Sci. Process.81(2), 241–244 (2005).
[CrossRef]

Appl. Phys. B

V. P. Kandidov, N. Akozbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, “Towards a control of multiple filamentation by spatial regularization of a high-power femtosecond laser pulse,” Appl. Phys. B80(2), 267–275 (2005).
[CrossRef]

C. Corsi, A. Tortora, and M. Bellini, “Generation of a variable linear array of phase-coherent supercontinuum sources,” Appl. Phys. B78(3–4), 299–304 (2004).
[CrossRef]

Appl. Phys. Lett.

K. Cook, R. McGeorge, A. K. Kar, M. R. Taghizadeh, and R. A. Lamb, “Coherent array of white-light continuum filaments produced by diffractive microlenses,” Appl. Phys. Lett.86(2), 021105 (2005).
[CrossRef]

M. Chateauneuf, S. Payeur, J. Dubois, and J.-C. Kieffer, “Microwave guiding in air by a cylindrical filament array waveguide,” Appl. Phys. Lett.92(9), 091104 (2008).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

V. Kudriašov, E. Gaižauskas, and V. Sirutkaitis, “Birefringent modifications induced by femtosecond filaments in optical glass,” Appl. Phys., A Mater. Sci. Process.93(2), 571–576 (2008).
[CrossRef]

D. Papazoglou, I. Zergioti, S. G. Sgouros, G. Maravelias, S. Christopoulos, and C. Fotakis, “Sub-picosecond ultraviolet laser filamentation-induced bulk modifications in fused silica,” Appl. Phys., A Mater. Sci. Process.81(2), 241–244 (2005).
[CrossRef]

Chin. Phys. Lett.

Y. Wang, Y. H. Li, and P. Lu, “Infrared Femtosecond Laser Direct-Writing Digital Volume Gratings in fused silica,” Chin. Phys. Lett.27(4), 044213 (2010).
[CrossRef]

J. Appl. Phys.

B. La Fontaine, D. Comtois, C.-Y. Chien, A. Desparois, F. Génin, G. Jarry, T. Johnston, J.-C. Kieffer, F. Martin, R. Mawassi, H. Pépin, F. A. M. Rizk, F. Vidal, C. Potvin, P. Couture, and H. P. Mercure, “Guiding large-scale spark discharges with ultrashort pulse laser filaments,” J. Appl. Phys.88(2), 610–615 (2000).
[CrossRef]

A. Saliminia, N. T. Nguyen, M.-C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” J. Appl. Phys.93(7), 3724 (2003).
[CrossRef]

J. Korean Phys. Soc.

J. Liu, R. Li, Z. Xu, H. Schroder, and S. L. Chin, “Control and organization of multi-filamentation of femtosecond laser pulses in optical media,” J. Korean Phys. Soc.51(94), 1572–1577 (2007).
[CrossRef]

J. Phys. D Appl. Phys.

M. Alshershby, Z. Q. Hao, and J. Q. Lin, “Guiding microwave radiation using laser-induced filaments: the hollow conducting waveguide concept,” J. Phys. D Appl. Phys.45(26), 265401 (2012).
[CrossRef]

M. Alshershby, J. Q. Lin, and Z. Q. Hao, “Numerical analysis of guiding a microwave radiation using a set of plasma filaments: dielectric waveguide concept,” J. Phys. D Appl. Phys.45(6), 065102 (2012).
[CrossRef]

Opt. Commun.

O. G. Kosareva, T. Nguyen, N. A. Panov, W. Liu, A. Saliminia, V. P. Kandidov, N. Akozbek, M. Scalora, R. Vallee, and S. L. Chin, “Array of femtosecond plasma channels in fused silica,” Opt. Commun.267(2), 511–523 (2006).
[CrossRef]

S. Minardi, A. Varanavicius, P. Di Trapani, and A. Piskarskas, “A compact, multipixel parametric light source,” Opt. Commun.224(4-6), 301–307 (2003).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

M. Taghizadeh, P. Blair, K. Balluder, A. Waddie, P. Rudman, and N. Ross, “Design and fabrication of diffractive elements for laser material processing applications,” Opt. Lasers Eng.34(4-6), 289–307 (2000).
[CrossRef]

Opt. Lett.

Opt. Rev.

W. Watanabe, Y. Masuda, H. Arimoto, and K. Itoh, “Coherent Array of White-Light Continuum Generated by Microlens Array,” Opt. Rev.6(3), 167–172 (1999).
[CrossRef]

Phys. Rev. A

P. Rohwetter, M. Queißer, K. Stelmaszczyk, M. Fechner, and L. Wöste, “Laser multiple filamentation control in air using a smooth phase mask,” Phys. Rev. A77(1), 013812 (2008).
[CrossRef]

D. Majus, V. Jukna, G. Valiulis, and A. Dubietis, “Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams,” Phys. Rev. A79(3), 033843 (2009).
[CrossRef]

Phys. Rev. Lett.

G. Fibich and B. Ilan, “Multiple filamentation of circularly polarized beams,” Phys. Rev. Lett.89(1), 013901 (2002).
[CrossRef] [PubMed]

Other

N. L. Alexandrov, E. M. Bazeljan, N. A. Bogatov, A. M. Kiselev, A. N. Stepanov, B. A. Tikhomirov, and A. B. Tikhomirov, “Nonlinear effects of propagation of intense femtosecond laser radiation in atmosphere,” Proc. Int. Conf. on ‘High-power laser beams’ HPLB-2006 (N. Novgorod-Yaroslavl, 3–8 July) 107, (2006).

M. Berry, I. Marzoli, and W. Schleich, “Quantum carpets, carpets of light,” Phys. World 39–46, (June 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Sketch of the experimental setup. F, filter; WP, quarter-wave plate; PM, power meter; MLA, multilens array; FSB, fused silica block; L, imaging lens; S, screen. The inset Fig. is a representation of the commercial microlens array utilized.

Fig. 2
Fig. 2

Typical MF patterns formed by (a) 800-nm and (b) 400-nm laser pulses when the sample is placed in the focal region.

Fig. 3
Fig. 3

Filament patterns at different laser propagation distances inside the fused silica block formed from incidence of fundamental (a-e) and second harmonic laser (e-h). The images are taken at (a, e) 10 mm, (b, f) 12 mm, (c, g) 15 mm and (d, h) 18 mm from the front surface of the sample respectively.

Fig. 4
Fig. 4

MF dependence on the relative position of the sample. Filament patterns from the fundamental laser case are depicted on (a-b) while patterns from the second harmonic case in (c-e). Images (a) and (c) correspond to sample position z = 144 mm, image (d) to z = 164 mm and images (b) and (e) to z = 180 mm.

Fig. 5
Fig. 5

Zemax simulations of the diffraction pattern at the entrance face of the sample for three different wavelengths at five different sample positions. Images (a-e) represent the central spot for 800-nm, (f-j) for 400 nm and (k-o) for 248 nm. Columns from left to right represent sample position at respectively z = 144 mm, 155 mm, 164 mm, 172 mm and the rightmost at 180 mm.

Fig. 6
Fig. 6

Effect of input energy on the number of filaments formed per lenslet. Pictures (a–d) represent respectively energies of 250 µJ, 300 µJ, 370 µJ and 480 µJ.

Fig. 7
Fig. 7

Effect of laser polarization in the number of filaments formed per lenslet. Picture (a) represents LP and (b) CP.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Z T = Λ 2 λ ,

Metrics