Abstract

We present an experimental demonstration of a quantum dot (QD)-based plasmon emitter controllably integrated in designed patterns on a thin metal film. The generation of surface plasmons polaritons (SPPs) from optically excited QDs on a thin metal film is experimentally demonstrated. Long-range, low-dispersion, two-dimensional isotropic guiding, as well as efficient coupling of the SPPs are also shown. The realization of planar, low loss and efficient plasmon emitter-waveguide integration will offer further development of plasmon circuits.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one dimensional optical beam with nanometer diameter,” Opt. Lett.22, 475–477 (1997).
    [CrossRef] [PubMed]
  2. J. Takahara and T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photonics News15, 54–59 (2004).
    [CrossRef]
  3. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford, 2009).
  4. D. K. Gramotnev, M. G. Nielsen, S. J. Tan, M. L. Kurth, and S. I. Bozhevolnyi, “Gap surface plasmon waveguides with enhanced integration and functionality,” Nano Lett.12, 359–363 (2012).
    [CrossRef]
  5. M. Miyata and J. Takahara, “Field enhancement by longitudinal compression of plasmonic slow light,” J. Appl. Phys.111, 053102 (2012).
    [CrossRef]
  6. M. Miyata and J. Takahara, “Excitation control of long-range surface plasmons by two incident beams,” Opt. Express20, 9493–9500 (2012).
    [CrossRef] [PubMed]
  7. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys98, 043109 (2005).
    [CrossRef]
  8. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics2, 496–500 (2008).
    [CrossRef]
  9. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. -Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonantors,” Nature440, 508–511 (2006).
    [CrossRef] [PubMed]
  10. H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett.11, 471–475 (2011.
    [CrossRef]
  11. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. -M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
    [CrossRef] [PubMed]
  12. R. -M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10, 110–113 (2010).
    [CrossRef] [PubMed]
  13. P. Neutens, P. V. Dorpe, I. D. Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics3, 283–286 (2009).
    [CrossRef]
  14. P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahoud, and G. Mattiussi, “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys.103, 113114 (2007).
    [CrossRef]
  15. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3, 55–58 (2008).
    [CrossRef]
  16. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics4, 382–387 (2010).
    [CrossRef]
  17. D. K. Gramotnev and S. I. Bozhelvonyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4, 83–91 (2010).
    [CrossRef]
  18. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61, 44–50 (2008).
    [CrossRef]
  19. D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics2, 684–687 (2008).
    [CrossRef]
  20. R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9, 21–25 (2010).
    [CrossRef]
  21. A. Ueda, T. Tayagaki, and Y. Kanemitsu, “Energy transfer from semiconductor nanocrystal monolayers to metal surfaces revealed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett.92, 133118 (2008).
    [CrossRef]
  22. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
    [CrossRef] [PubMed]
  23. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450, 402–406 (2007).
    [CrossRef] [PubMed]
  24. C. Gruber, P. Kusar, A. Hohenau, and J. R. Krenn, “Controlled addressing of quantum dots by nanowire plasmons,” Appl. Phys. Lett.100, 231102 (2012).
    [CrossRef]
  25. R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett.10, 4851–4857 (2010).
    [CrossRef]
  26. P. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygård, A. F. i Morral, and M. L. Brongersma, “An Electrically-Driven GaAs Nanowire Surface Plasmon Source,” Nano Lett.12, 4943–4947 (2012).
    [CrossRef] [PubMed]
  27. Y. Masuda, T. Itoh, and K. Koumoto, “Self-assembly patterning of silica colloidal crystals,” Langmuir21, 4478–4481 (2005).
    [CrossRef] [PubMed]
  28. H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. -K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett.9, 4168–4171 (2009).
    [CrossRef] [PubMed]
  29. J. Takahara and T. Kobayashi, “Nano-optical waveguides breaking through diffraction limit of light,” Proc. SPIE5604, 158–172 (2004).
    [CrossRef]
  30. M. Fukui, V. -C. Y. So, and R. Normandin, “Lifetimes of surface plasmons in thin silver films,” Phys. Status SolidiB91, K61 (1979).
    [CrossRef]
  31. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1, 484–588 (2009).
    [CrossRef]
  32. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics1, 402–406 (2007).
    [CrossRef]
  33. P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett.35, 1197–1199 (2010).
    [CrossRef] [PubMed]

2012 (5)

C. Gruber, P. Kusar, A. Hohenau, and J. R. Krenn, “Controlled addressing of quantum dots by nanowire plasmons,” Appl. Phys. Lett.100, 231102 (2012).
[CrossRef]

P. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygård, A. F. i Morral, and M. L. Brongersma, “An Electrically-Driven GaAs Nanowire Surface Plasmon Source,” Nano Lett.12, 4943–4947 (2012).
[CrossRef] [PubMed]

D. K. Gramotnev, M. G. Nielsen, S. J. Tan, M. L. Kurth, and S. I. Bozhevolnyi, “Gap surface plasmon waveguides with enhanced integration and functionality,” Nano Lett.12, 359–363 (2012).
[CrossRef]

M. Miyata and J. Takahara, “Field enhancement by longitudinal compression of plasmonic slow light,” J. Appl. Phys.111, 053102 (2012).
[CrossRef]

M. Miyata and J. Takahara, “Excitation control of long-range surface plasmons by two incident beams,” Opt. Express20, 9493–9500 (2012).
[CrossRef] [PubMed]

2011 (1)

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett.11, 471–475 (2011.
[CrossRef]

2010 (7)

R. -M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10, 110–113 (2010).
[CrossRef] [PubMed]

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics4, 382–387 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhelvonyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4, 83–91 (2010).
[CrossRef]

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9, 21–25 (2010).
[CrossRef]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett.35, 1197–1199 (2010).
[CrossRef] [PubMed]

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett.10, 4851–4857 (2010).
[CrossRef]

2009 (4)

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. -K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett.9, 4168–4171 (2009).
[CrossRef] [PubMed]

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1, 484–588 (2009).
[CrossRef]

P. Neutens, P. V. Dorpe, I. D. Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics3, 283–286 (2009).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. -M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

2008 (5)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics2, 496–500 (2008).
[CrossRef]

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3, 55–58 (2008).
[CrossRef]

A. Ueda, T. Tayagaki, and Y. Kanemitsu, “Energy transfer from semiconductor nanocrystal monolayers to metal surfaces revealed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett.92, 133118 (2008).
[CrossRef]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61, 44–50 (2008).
[CrossRef]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics2, 684–687 (2008).
[CrossRef]

2007 (3)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450, 402–406 (2007).
[CrossRef] [PubMed]

P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahoud, and G. Mattiussi, “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys.103, 113114 (2007).
[CrossRef]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics1, 402–406 (2007).
[CrossRef]

2006 (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. -Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonantors,” Nature440, 508–511 (2006).
[CrossRef] [PubMed]

2005 (2)

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys98, 043109 (2005).
[CrossRef]

Y. Masuda, T. Itoh, and K. Koumoto, “Self-assembly patterning of silica colloidal crystals,” Langmuir21, 4478–4481 (2005).
[CrossRef] [PubMed]

2004 (2)

J. Takahara and T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photonics News15, 54–59 (2004).
[CrossRef]

J. Takahara and T. Kobayashi, “Nano-optical waveguides breaking through diffraction limit of light,” Proc. SPIE5604, 158–172 (2004).
[CrossRef]

1997 (1)

1979 (1)

M. Fukui, V. -C. Y. So, and R. Normandin, “Lifetimes of surface plasmons in thin silver films,” Phys. Status SolidiB91, K61 (1979).
[CrossRef]

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450, 402–406 (2007).
[CrossRef] [PubMed]

Atwater, H. A.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett.10, 4851–4857 (2010).
[CrossRef]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics1, 402–406 (2007).
[CrossRef]

Aussenegg, F. R.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics2, 684–687 (2008).
[CrossRef]

Bartal, G.

R. -M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10, 110–113 (2010).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. -M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

Berini, P.

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics4, 382–387 (2010).
[CrossRef]

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1, 484–588 (2009).
[CrossRef]

P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahoud, and G. Mattiussi, “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys.103, 113114 (2007).
[CrossRef]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys98, 043109 (2005).
[CrossRef]

Bolger, P. M.

Borghs, G.

P. Neutens, P. V. Dorpe, I. D. Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics3, 283–286 (2009).
[CrossRef]

Bozhelvonyi, S. I.

D. K. Gramotnev and S. I. Bozhelvonyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4, 83–91 (2010).
[CrossRef]

Bozhevolnyi, S. I.

D. K. Gramotnev, M. G. Nielsen, S. J. Tan, M. L. Kurth, and S. I. Bozhevolnyi, “Gap surface plasmon waveguides with enhanced integration and functionality,” Nano Lett.12, 359–363 (2012).
[CrossRef]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61, 44–50 (2008).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. -Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonantors,” Nature440, 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford, 2009).

Briggs, R. M.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett.10, 4851–4857 (2010).
[CrossRef]

Brongersma, M. L.

P. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygård, A. F. i Morral, and M. L. Brongersma, “An Electrically-Driven GaAs Nanowire Surface Plasmon Source,” Nano Lett.12, 4943–4947 (2012).
[CrossRef] [PubMed]

Brunets, I.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9, 21–25 (2010).
[CrossRef]

Burgos, S. P.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett.10, 4851–4857 (2010).
[CrossRef]

Chang, D. E.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450, 402–406 (2007).
[CrossRef] [PubMed]

Charbonneau, R.

P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahoud, and G. Mattiussi, “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys.103, 113114 (2007).
[CrossRef]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys98, 043109 (2005).
[CrossRef]

Colombo, C.

P. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygård, A. F. i Morral, and M. L. Brongersma, “An Electrically-Driven GaAs Nanowire Surface Plasmon Source,” Nano Lett.12, 4943–4947 (2012).
[CrossRef] [PubMed]

Cong, F.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett.11, 471–475 (2011.
[CrossRef]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. -M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

De Leon, I.

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics4, 382–387 (2010).
[CrossRef]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. -Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonantors,” Nature440, 508–511 (2006).
[CrossRef] [PubMed]

Dickson, W.

Ditlbacher, H.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics2, 684–687 (2008).
[CrossRef]

Dorpe, P. V.

P. Neutens, P. V. Dorpe, I. D. Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics3, 283–286 (2009).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61, 44–50 (2008).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. -Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonantors,” Nature440, 508–511 (2006).
[CrossRef] [PubMed]

Fan, P.

P. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygård, A. F. i Morral, and M. L. Brongersma, “An Electrically-Driven GaAs Nanowire Surface Plasmon Source,” Nano Lett.12, 4943–4947 (2012).
[CrossRef] [PubMed]

Feigenbaum, E.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett.10, 4851–4857 (2010).
[CrossRef]

Fukui, M.

M. Fukui, V. -C. Y. So, and R. Normandin, “Lifetimes of surface plasmons in thin silver films,” Phys. Status SolidiB91, K61 (1979).
[CrossRef]

Galler, N.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics2, 684–687 (2008).
[CrossRef]

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61, 44–50 (2008).
[CrossRef]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics2, 496–500 (2008).
[CrossRef]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. -M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev, M. G. Nielsen, S. J. Tan, M. L. Kurth, and S. I. Bozhevolnyi, “Gap surface plasmon waveguides with enhanced integration and functionality,” Nano Lett.12, 359–363 (2012).
[CrossRef]

D. K. Gramotnev and S. I. Bozhelvonyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4, 83–91 (2010).
[CrossRef]

Grandidier, J.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett.10, 4851–4857 (2010).
[CrossRef]

Gruber, C.

C. Gruber, P. Kusar, A. Hohenau, and J. R. Krenn, “Controlled addressing of quantum dots by nanowire plasmons,” Appl. Phys. Lett.100, 231102 (2012).
[CrossRef]

Halas, N. J.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett.11, 471–475 (2011.
[CrossRef]

Hemmer, P. R.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450, 402–406 (2007).
[CrossRef] [PubMed]

Hickey, S. G.

Hohenau, A.

C. Gruber, P. Kusar, A. Hohenau, and J. R. Krenn, “Controlled addressing of quantum dots by nanowire plasmons,” Appl. Phys. Lett.100, 231102 (2012).
[CrossRef]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics2, 684–687 (2008).
[CrossRef]

Huang, K. C. Y.

P. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygård, A. F. i Morral, and M. L. Brongersma, “An Electrically-Driven GaAs Nanowire Surface Plasmon Source,” Nano Lett.12, 4943–4947 (2012).
[CrossRef] [PubMed]

Itoh, T.

Y. Masuda, T. Itoh, and K. Koumoto, “Self-assembly patterning of silica colloidal crystals,” Langmuir21, 4478–4481 (2005).
[CrossRef] [PubMed]

Jetté-Charbonneau, S.

P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahoud, and G. Mattiussi, “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys.103, 113114 (2007).
[CrossRef]

Kanemitsu, Y.

A. Ueda, T. Tayagaki, and Y. Kanemitsu, “Energy transfer from semiconductor nanocrystal monolayers to metal surfaces revealed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett.92, 133118 (2008).
[CrossRef]

Kobayashi, T.

J. Takahara and T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photonics News15, 54–59 (2004).
[CrossRef]

J. Takahara and T. Kobayashi, “Nano-optical waveguides breaking through diffraction limit of light,” Proc. SPIE5604, 158–172 (2004).
[CrossRef]

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one dimensional optical beam with nanometer diameter,” Opt. Lett.22, 475–477 (1997).
[CrossRef] [PubMed]

Koller, D. M.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics2, 684–687 (2008).
[CrossRef]

Koumoto, K.

Y. Masuda, T. Itoh, and K. Koumoto, “Self-assembly patterning of silica colloidal crystals,” Langmuir21, 4478–4481 (2005).
[CrossRef] [PubMed]

Krasavin, A. V.

Krenn, J. R.

C. Gruber, P. Kusar, A. Hohenau, and J. R. Krenn, “Controlled addressing of quantum dots by nanowire plasmons,” Appl. Phys. Lett.100, 231102 (2012).
[CrossRef]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics2, 684–687 (2008).
[CrossRef]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Krogstrup, P.

P. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygård, A. F. i Morral, and M. L. Brongersma, “An Electrically-Driven GaAs Nanowire Surface Plasmon Source,” Nano Lett.12, 4943–4947 (2012).
[CrossRef] [PubMed]

Kurth, M. L.

D. K. Gramotnev, M. G. Nielsen, S. J. Tan, M. L. Kurth, and S. I. Bozhevolnyi, “Gap surface plasmon waveguides with enhanced integration and functionality,” Nano Lett.12, 359–363 (2012).
[CrossRef]

Kusar, P.

C. Gruber, P. Kusar, A. Hohenau, and J. R. Krenn, “Controlled addressing of quantum dots by nanowire plasmons,” Appl. Phys. Lett.100, 231102 (2012).
[CrossRef]

Lagae, L.

P. Neutens, P. V. Dorpe, I. D. Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics3, 283–286 (2009).
[CrossRef]

Lahoud, N.

P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahoud, and G. Mattiussi, “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys.103, 113114 (2007).
[CrossRef]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys98, 043109 (2005).
[CrossRef]

Laluet, J. -Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. -Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonantors,” Nature440, 508–511 (2006).
[CrossRef] [PubMed]

Leitner, A.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics2, 684–687 (2008).
[CrossRef]

Lezec, H. J.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics1, 402–406 (2007).
[CrossRef]

Li, X. E.

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. -K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett.9, 4168–4171 (2009).
[CrossRef] [PubMed]

Li, Z.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett.11, 471–475 (2011.
[CrossRef]

Liebscher, L.

List, E. J. W.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics2, 684–687 (2008).
[CrossRef]

Liu, N.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett.11, 471–475 (2011.
[CrossRef]

Lukin, M. D.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450, 402–406 (2007).
[CrossRef] [PubMed]

Ma, R. -M.

R. -M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10, 110–113 (2010).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. -M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

MacDonald, K. F.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3, 55–58 (2008).
[CrossRef]

Masuda, Y.

Y. Masuda, T. Itoh, and K. Koumoto, “Self-assembly patterning of silica colloidal crystals,” Langmuir21, 4478–4481 (2005).
[CrossRef] [PubMed]

Mattiussi, G.

P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahoud, and G. Mattiussi, “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys.103, 113114 (2007).
[CrossRef]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys98, 043109 (2005).
[CrossRef]

Miyata, M.

M. Miyata and J. Takahara, “Field enhancement by longitudinal compression of plasmonic slow light,” J. Appl. Phys.111, 053102 (2012).
[CrossRef]

M. Miyata and J. Takahara, “Excitation control of long-range surface plasmons by two incident beams,” Opt. Express20, 9493–9500 (2012).
[CrossRef] [PubMed]

Morimoto, A.

Morral, A. F. i

P. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygård, A. F. i Morral, and M. L. Brongersma, “An Electrically-Driven GaAs Nanowire Surface Plasmon Source,” Nano Lett.12, 4943–4947 (2012).
[CrossRef] [PubMed]

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450, 402–406 (2007).
[CrossRef] [PubMed]

Neutens, P.

P. Neutens, P. V. Dorpe, I. D. Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics3, 283–286 (2009).
[CrossRef]

Nielsen, M. G.

D. K. Gramotnev, M. G. Nielsen, S. J. Tan, M. L. Kurth, and S. I. Bozhevolnyi, “Gap surface plasmon waveguides with enhanced integration and functionality,” Nano Lett.12, 359–363 (2012).
[CrossRef]

Nordlander, P.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett.11, 471–475 (2011.
[CrossRef]

Normandin, R.

M. Fukui, V. -C. Y. So, and R. Normandin, “Lifetimes of surface plasmons in thin silver films,” Phys. Status SolidiB91, K61 (1979).
[CrossRef]

Nygård, J.

P. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygård, A. F. i Morral, and M. L. Brongersma, “An Electrically-Driven GaAs Nanowire Surface Plasmon Source,” Nano Lett.12, 4943–4947 (2012).
[CrossRef] [PubMed]

Oulton, R. F.

R. -M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10, 110–113 (2010).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. -M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics2, 496–500 (2008).
[CrossRef]

Pacifici, D.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics1, 402–406 (2007).
[CrossRef]

Park, H.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450, 402–406 (2007).
[CrossRef] [PubMed]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics2, 496–500 (2008).
[CrossRef]

Polman, A.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9, 21–25 (2010).
[CrossRef]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Ratchford, D.

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. -K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett.9, 4168–4171 (2009).
[CrossRef] [PubMed]

Reil, F.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics2, 684–687 (2008).
[CrossRef]

Sámson, Z. L.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3, 55–58 (2008).
[CrossRef]

Schmitz, J.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9, 21–25 (2010).
[CrossRef]

Shih, C. -K.

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. -K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett.9, 4168–4171 (2009).
[CrossRef] [PubMed]

Skryabin, D. V.

So, V. -C. Y.

M. Fukui, V. -C. Y. So, and R. Normandin, “Lifetimes of surface plasmons in thin silver films,” Phys. Status SolidiB91, K61 (1979).
[CrossRef]

Sorger, V. J.

R. -M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10, 110–113 (2010).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. -M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics2, 496–500 (2008).
[CrossRef]

Stockman, M. I.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3, 55–58 (2008).
[CrossRef]

Takahara, J.

M. Miyata and J. Takahara, “Field enhancement by longitudinal compression of plasmonic slow light,” J. Appl. Phys.111, 053102 (2012).
[CrossRef]

M. Miyata and J. Takahara, “Excitation control of long-range surface plasmons by two incident beams,” Opt. Express20, 9493–9500 (2012).
[CrossRef] [PubMed]

J. Takahara and T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photonics News15, 54–59 (2004).
[CrossRef]

J. Takahara and T. Kobayashi, “Nano-optical waveguides breaking through diffraction limit of light,” Proc. SPIE5604, 158–172 (2004).
[CrossRef]

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one dimensional optical beam with nanometer diameter,” Opt. Lett.22, 475–477 (1997).
[CrossRef] [PubMed]

Taki, H.

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Tan, S. J.

D. K. Gramotnev, M. G. Nielsen, S. J. Tan, M. L. Kurth, and S. I. Bozhevolnyi, “Gap surface plasmon waveguides with enhanced integration and functionality,” Nano Lett.12, 359–363 (2012).
[CrossRef]

Tayagaki, T.

A. Ueda, T. Tayagaki, and Y. Kanemitsu, “Energy transfer from semiconductor nanocrystal monolayers to metal surfaces revealed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett.92, 133118 (2008).
[CrossRef]

Tian, X.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett.11, 471–475 (2011.
[CrossRef]

Ueda, A.

A. Ueda, T. Tayagaki, and Y. Kanemitsu, “Energy transfer from semiconductor nanocrystal monolayers to metal surfaces revealed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett.92, 133118 (2008).
[CrossRef]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

van Loon, R. V. A.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9, 21–25 (2010).
[CrossRef]

Vlaminck, I. D.

P. Neutens, P. V. Dorpe, I. D. Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics3, 283–286 (2009).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. -Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonantors,” Nature440, 508–511 (2006).
[CrossRef] [PubMed]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Walters, R. J.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9, 21–25 (2010).
[CrossRef]

Wang, Z.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett.11, 471–475 (2011.
[CrossRef]

Wei, H.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett.11, 471–475 (2011.
[CrossRef]

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. -K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett.9, 4168–4171 (2009).
[CrossRef] [PubMed]

Xu, H.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett.11, 471–475 (2011.
[CrossRef]

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. -K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett.9, 4168–4171 (2009).
[CrossRef] [PubMed]

Yamagishi, S.

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450, 402–406 (2007).
[CrossRef] [PubMed]

Zayats, A. V.

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. -M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

Zhang, S.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett.11, 471–475 (2011.
[CrossRef]

Zhang, X.

R. -M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10, 110–113 (2010).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. -M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics2, 496–500 (2008).
[CrossRef]

Zheludev, N. I.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3, 55–58 (2008).
[CrossRef]

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450, 402–406 (2007).
[CrossRef] [PubMed]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (2)

A. Ueda, T. Tayagaki, and Y. Kanemitsu, “Energy transfer from semiconductor nanocrystal monolayers to metal surfaces revealed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett.92, 133118 (2008).
[CrossRef]

C. Gruber, P. Kusar, A. Hohenau, and J. R. Krenn, “Controlled addressing of quantum dots by nanowire plasmons,” Appl. Phys. Lett.100, 231102 (2012).
[CrossRef]

J. Appl. Phys (1)

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys98, 043109 (2005).
[CrossRef]

J. Appl. Phys. (2)

M. Miyata and J. Takahara, “Field enhancement by longitudinal compression of plasmonic slow light,” J. Appl. Phys.111, 053102 (2012).
[CrossRef]

P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahoud, and G. Mattiussi, “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys.103, 113114 (2007).
[CrossRef]

Langmuir (1)

Y. Masuda, T. Itoh, and K. Koumoto, “Self-assembly patterning of silica colloidal crystals,” Langmuir21, 4478–4481 (2005).
[CrossRef] [PubMed]

Nano Lett. (1)

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett.11, 471–475 (2011.
[CrossRef]

Nano Lett. (4)

D. K. Gramotnev, M. G. Nielsen, S. J. Tan, M. L. Kurth, and S. I. Bozhevolnyi, “Gap surface plasmon waveguides with enhanced integration and functionality,” Nano Lett.12, 359–363 (2012).
[CrossRef]

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. -K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett.9, 4168–4171 (2009).
[CrossRef] [PubMed]

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett.10, 4851–4857 (2010).
[CrossRef]

P. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygård, A. F. i Morral, and M. L. Brongersma, “An Electrically-Driven GaAs Nanowire Surface Plasmon Source,” Nano Lett.12, 4943–4947 (2012).
[CrossRef] [PubMed]

Nat. Mater. (2)

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9, 21–25 (2010).
[CrossRef]

R. -M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10, 110–113 (2010).
[CrossRef] [PubMed]

Nat. Photonics (7)

P. Neutens, P. V. Dorpe, I. D. Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics3, 283–286 (2009).
[CrossRef]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics2, 684–687 (2008).
[CrossRef]

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3, 55–58 (2008).
[CrossRef]

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics4, 382–387 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhelvonyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4, 83–91 (2010).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics2, 496–500 (2008).
[CrossRef]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics1, 402–406 (2007).
[CrossRef]

Nature (3)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450, 402–406 (2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. -Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonantors,” Nature440, 508–511 (2006).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. -M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Opt. Photonics News (1)

J. Takahara and T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photonics News15, 54–59 (2004).
[CrossRef]

Phys. Status Solidi (1)

M. Fukui, V. -C. Y. So, and R. Normandin, “Lifetimes of surface plasmons in thin silver films,” Phys. Status SolidiB91, K61 (1979).
[CrossRef]

Phys. Today (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61, 44–50 (2008).
[CrossRef]

Proc. SPIE (1)

J. Takahara and T. Kobayashi, “Nano-optical waveguides breaking through diffraction limit of light,” Proc. SPIE5604, 158–172 (2004).
[CrossRef]

Science (1)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Other (1)

S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Direct coupling between QDs and SPPs on a thin metal film. (a) Schematic of the QD-based plasmon emitter. SPPs can be excited directly by illuminated QDs, resulting in the emission from an output slit. (b) Energy structure of the QD-SPP coupling system. The arrows show the transitions. Photons are first converted into excitons of QDs, and a part of the excitons can be coupled to SPPs in thin metal films. The excited plasmons then propagate and finally are absorbed in metal layers or coupled to far fields at an output coupler.

Fig. 2
Fig. 2

The fabrication of colloidal QD-based plasmon emitters. (a) Schematic drawing of the fabrication procedure, EB lithography, deposition of QDs and FIB milling. (b) Scanning electron microscope (SEM) image of the cross-section of Al2O3-Ag-Al2O3 layer (each thickness is 20 nm, and the image was obtained by SU9000, Hitachi High-Tech). (c) Optical image of the patterned polymer. (d) Fluorescence image of QDs trapped in fabricated holes. The image is observed with wide-field excitation by a 532 nm laser. (e) Scanning ion microscope (SIM) image of the fabricated system. QD area is 5 μm squares and the distance between the edge of the QD area and a slit is 15 μm.

Fig. 3
Fig. 3

Excitation and propagation of SPPs in QDs-metal film systems. (a) SIM image of the structure. The structural parameters are the same as for Fig. 2(e). (b) Fluorescence image with an excitation laser focused onto the QD layer. The arrow shows the polarization of an excitation laser. (c) Effective index of TM (SPP) and TE (dielectric) modes versus polymer thickness. (d,e) Field distribution of TM mode (300 nm polymer thickness) (d) and TE mode (600 nm polymer thickness) (e).

Fig. 4
Fig. 4

Two-dimensional isotropic plasmon guiding. (a) SIM image of the fabricated structure (tAg = 25 nm) with concentric output slits. (b) Fluorescence image in the system with concentric output slits. The emission direction angle (θp) and the polarization of an excitation laser are indicated. (c,d) Distribution of the emission intensity from a concentric slit when only collecting with the electric field component polarized along the transverse (c) and longitudinal (d) axis, respectively. The arrows show the transmission axis of the polarizer. (e,f) Polar plot of the emission intensity (a.u.) from the concentric slit at different points of θp. (e) and (f) present the results from (b) and (c), respectively. θp (degrees) is noted by numbers around the circle. The polarization direction of collection is highlighted by the blue dashed line in (f).

Fig. 5
Fig. 5

Propagation length of excited SPPs. (a) SIM image of a fabricated structure for the measurement of the propagation length for tAg = 25 nm. Slits are located concentrically in the place of each distance (10 μm, 15 μm, 20 μm, 25 μm and 30 μm). (b) The experimentally observed fluorescence from each slit. (c) The experimental (red dot) and theoretical (dashed curve) dependences of normalized emission from the slits plotted on the distance Lp. The theoretical results are calculated at the vacuum wavelength 625 nm by FEM. Error bars indicate ±1 s.d.

Fig. 6
Fig. 6

Propagation length as a function of the Ag film thickness tAg (the thickness of the polymer layer and the Al2O3 layers is fixed). The red dots and black dashed curve represent experiments and FEM calculations, respectively. Error bars indicate ±1 s.d. Inset: Fluorescence images of the system for two different Ag film thicknesses.

Fig. 7
Fig. 7

Broadband coupling and guiding. (a) Spectra from the QDs-metal film system. The black curve shows the fluorescence spectrum of deposited QD layers. The red curve represents the fluorescence spectrum acquired via emission from an output slit upon plasmon excitation by QDs. Inset: Observed fluorescence image. The structural parameters are the same as for Fig. 2(e). (b) Theoretical dependences of the real (black curve) and imaginary (red curve) parts of the effective index for the fundamental SPP mode (tAg = 25 nm) plotted on vacuum wavelength. The dark part indicates the QD spectrum width (625 nm ± 15 nm).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I = exp ( z L SP ) ,
η = I LR + I SR I QD + I LR + I SR > I LR I QD + I LR = ( I free + I sub ) I QD + ( I free + I sub ) 2 I free I QD + 2 I free ,

Metrics