Abstract

This study presents a novel numerical model for laser ablation and laser damage in glass including beam propagation and nonlinear absorption of multiple incident ultrashort laser pulses. The laser ablation and damage in the glass cutting process with a picosecond pulsed laser was studied. The numerical results were in good agreement with our experimental observations, thereby revealing the damage mechanism induced by laser ablation. Beam propagation effects such as interference, diffraction and refraction, play a major role in the evolution of the crater structure and the damage region. There are three different damage regions, a thin layer and two different kinds of spikes. Moreover, the electronic damage mechanism was verified and distinguished from heat modification using the experimental results with different pulse spatial overlaps.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
    [CrossRef]
  2. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009).
    [CrossRef]
  3. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
    [CrossRef] [PubMed]
  4. Y. Bellouard and M. O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express19(7), 6807–6821 (2011).
    [CrossRef] [PubMed]
  5. L. Shah, A. Y. Arai, S. M. Eaton, and P. R. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express13(6), 1999–2006 (2005).
    [CrossRef] [PubMed]
  6. A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D Appl. Phys.40(5), 1447–1459 (2007).
    [CrossRef]
  7. H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, and E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.65(4-5), 367–373 (1997).
    [CrossRef]
  8. L. Jiang and H. L. Tsai, “Prediction of crater shape in femtosecond laser ablation of dielectrics,” J. Phys. D Appl. Phys.37(10), 1492–1496 (2004).
    [CrossRef]
  9. J. R. Vázquez de Aldana, C. Méndez, L. Roso, and P. Moreno, “Propagation of ablation channels with multiple femtosecond laser pulses in dielectrics: numerical simulations and experiments,” J. Phys. D Appl. Phys.38, 3764 (2005).
  10. J. R. Vázquez de Aldana, C. Méndez, and L. Roso, “Saturation of ablation channels micro-machined in fused silica with many femtosecond laser pulses,” Opt. Express14(3), 1329–1338 (2006).
    [CrossRef] [PubMed]
  11. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
    [CrossRef]
  12. D. G. Papazoglou and S. Tzortzakis, “Physical mechanisms of fused silica restructuring and densification after femtosecond laser excitation,” Opt. Mater. Express1(4), 625–632 (2011).
    [CrossRef]
  13. S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interaction with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
    [CrossRef]
  14. K. I. Popov, C. McElcheran, K. Briggs, S. Mack, and L. Ramunno, “Morphology of femtosecond laser modification of bulk dielectrics,” Opt. Express19(1), 271–282 (2011).
    [CrossRef] [PubMed]
  15. D. Arnold, E. Cartier, and D. J. DiMaria, “Acoustic-phonon runaway and impact ionization by hot electrons in silicon dioxide,” Phys. Rev. B Condens. Matter45(3), 1477–1480 (1992).
    [CrossRef] [PubMed]
  16. J. R. Gulley, S. W. Winkler, W. M. Dennis, C. M. Liebig, and R. Stoian, “Interaction of ultrashort-laser pulses with induced undercritical plasmas in fused silica,” Phys. Rev. A85(1), 013808 (2012).
    [CrossRef]
  17. EAGLE XG® Material Information Sheet. http://www.corning.com/displaytechnologies/en/products/eaglexg/index.aspx .
  18. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
    [CrossRef]
  19. P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media: Part I—Theory,” IEEE J. Quantum Electron.31(12), 2241–2249 (1995).
    [CrossRef]
  20. Y. Wang, Y. Zhao, J. Shao, and Z. Fan, “Effect of native effect and laser-induced defects on multi-shot laser-induced damage in multilayer mirrors,” Chin. Opt. Lett.9(9), 093102–093105 (2011).
    [CrossRef]
  21. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP20, 1307–1314 (1965).
  22. S. Quan, J. Hong-Bing, L. Yi, Z. Yong-Heng, Y. Hong, and G. Qi-Huang, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett.23(1), 189–192 (2006).
    [CrossRef]
  23. Types of Glass. http://www.cmog.org/article/types-glass .
  24. J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi15(2), 627–637 (1966).
    [CrossRef]
  25. D. Ashkenasi and A. Lemke, “Picosecond laser-induced color centers in glass optics,” J. Laser Appl.23(1), 012007 (2011).
    [CrossRef]

2012 (1)

J. R. Gulley, S. W. Winkler, W. M. Dennis, C. M. Liebig, and R. Stoian, “Interaction of ultrashort-laser pulses with induced undercritical plasmas in fused silica,” Phys. Rev. A85(1), 013808 (2012).
[CrossRef]

2011 (5)

2009 (1)

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009).
[CrossRef]

2008 (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

2007 (2)

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D Appl. Phys.40(5), 1447–1459 (2007).
[CrossRef]

2006 (2)

S. Quan, J. Hong-Bing, L. Yi, Z. Yong-Heng, Y. Hong, and G. Qi-Huang, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett.23(1), 189–192 (2006).
[CrossRef]

J. R. Vázquez de Aldana, C. Méndez, and L. Roso, “Saturation of ablation channels micro-machined in fused silica with many femtosecond laser pulses,” Opt. Express14(3), 1329–1338 (2006).
[CrossRef] [PubMed]

2005 (3)

J. R. Vázquez de Aldana, C. Méndez, L. Roso, and P. Moreno, “Propagation of ablation channels with multiple femtosecond laser pulses in dielectrics: numerical simulations and experiments,” J. Phys. D Appl. Phys.38, 3764 (2005).

L. Shah, A. Y. Arai, S. M. Eaton, and P. R. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express13(6), 1999–2006 (2005).
[CrossRef] [PubMed]

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

2004 (2)

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interaction with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

L. Jiang and H. L. Tsai, “Prediction of crater shape in femtosecond laser ablation of dielectrics,” J. Phys. D Appl. Phys.37(10), 1492–1496 (2004).
[CrossRef]

2002 (1)

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
[CrossRef] [PubMed]

1997 (1)

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, and E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.65(4-5), 367–373 (1997).
[CrossRef]

1995 (1)

P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media: Part I—Theory,” IEEE J. Quantum Electron.31(12), 2241–2249 (1995).
[CrossRef]

1992 (1)

D. Arnold, E. Cartier, and D. J. DiMaria, “Acoustic-phonon runaway and impact ionization by hot electrons in silicon dioxide,” Phys. Rev. B Condens. Matter45(3), 1477–1480 (1992).
[CrossRef] [PubMed]

1966 (1)

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi15(2), 627–637 (1966).
[CrossRef]

1965 (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP20, 1307–1314 (1965).

Arai, A. Y.

Arnold, D.

D. Arnold, E. Cartier, and D. J. DiMaria, “Acoustic-phonon runaway and impact ionization by hot electrons in silicon dioxide,” Phys. Rev. B Condens. Matter45(3), 1477–1480 (1992).
[CrossRef] [PubMed]

Ashkenasi, D.

D. Ashkenasi and A. Lemke, “Picosecond laser-induced color centers in glass optics,” J. Laser Appl.23(1), 012007 (2011).
[CrossRef]

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, and E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.65(4-5), 367–373 (1997).
[CrossRef]

Ashmore, J.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D Appl. Phys.40(5), 1447–1459 (2007).
[CrossRef]

Audouard, E.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

Bellouard, Y.

Ben-Yakar, A.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D Appl. Phys.40(5), 1447–1459 (2007).
[CrossRef]

Briggs, K.

Bulgakova, N. M.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

Burakov, I. M.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

Byer, R. L.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D Appl. Phys.40(5), 1447–1459 (2007).
[CrossRef]

Campbell, E. E. B.

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, and E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.65(4-5), 367–373 (1997).
[CrossRef]

Cartier, E.

D. Arnold, E. Cartier, and D. J. DiMaria, “Acoustic-phonon runaway and impact ionization by hot electrons in silicon dioxide,” Phys. Rev. B Condens. Matter45(3), 1477–1480 (1992).
[CrossRef] [PubMed]

Couairon, A.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
[CrossRef] [PubMed]

Della Valle, G.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009).
[CrossRef]

Dennis, W. M.

J. R. Gulley, S. W. Winkler, W. M. Dennis, C. M. Liebig, and R. Stoian, “Interaction of ultrashort-laser pulses with induced undercritical plasmas in fused silica,” Phys. Rev. A85(1), 013808 (2012).
[CrossRef]

DiMaria, D. J.

D. Arnold, E. Cartier, and D. J. DiMaria, “Acoustic-phonon runaway and impact ionization by hot electrons in silicon dioxide,” Phys. Rev. B Condens. Matter45(3), 1477–1480 (1992).
[CrossRef] [PubMed]

Eaton, S. M.

Fan, Z.

Franco, M.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
[CrossRef] [PubMed]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Grigorovici, R.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi15(2), 627–637 (1966).
[CrossRef]

Guizard, S.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interaction with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

Gulley, J. R.

J. R. Gulley, S. W. Winkler, W. M. Dennis, C. M. Liebig, and R. Stoian, “Interaction of ultrashort-laser pulses with induced undercritical plasmas in fused silica,” Phys. Rev. A85(1), 013808 (2012).
[CrossRef]

Harkin, A.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D Appl. Phys.40(5), 1447–1459 (2007).
[CrossRef]

Herman, P. R.

Hertel, I. V.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

Hong, Y.

S. Quan, J. Hong-Bing, L. Yi, Z. Yong-Heng, Y. Hong, and G. Qi-Huang, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett.23(1), 189–192 (2006).
[CrossRef]

Hong-Bing, J.

S. Quan, J. Hong-Bing, L. Yi, Z. Yong-Heng, Y. Hong, and G. Qi-Huang, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett.23(1), 189–192 (2006).
[CrossRef]

Hongler, M. O.

Husakou, A.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

Jiang, L.

L. Jiang and H. L. Tsai, “Prediction of crater shape in femtosecond laser ablation of dielectrics,” J. Phys. D Appl. Phys.37(10), 1492–1496 (2004).
[CrossRef]

Keldysh, L. V.

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP20, 1307–1314 (1965).

Kennedy, P. K.

P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media: Part I—Theory,” IEEE J. Quantum Electron.31(12), 2241–2249 (1995).
[CrossRef]

Lamouroux, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
[CrossRef] [PubMed]

Laporta, P.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009).
[CrossRef]

Lemke, A.

D. Ashkenasi and A. Lemke, “Picosecond laser-induced color centers in glass optics,” J. Laser Appl.23(1), 012007 (2011).
[CrossRef]

Liebig, C. M.

J. R. Gulley, S. W. Winkler, W. M. Dennis, C. M. Liebig, and R. Stoian, “Interaction of ultrashort-laser pulses with induced undercritical plasmas in fused silica,” Phys. Rev. A85(1), 013808 (2012).
[CrossRef]

Mack, S.

Mao, S. S.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interaction with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

Mao, X.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interaction with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

Martin, P.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interaction with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

McElcheran, C.

Méndez, C.

J. R. Vázquez de Aldana, C. Méndez, and L. Roso, “Saturation of ablation channels micro-machined in fused silica with many femtosecond laser pulses,” Opt. Express14(3), 1329–1338 (2006).
[CrossRef] [PubMed]

J. R. Vázquez de Aldana, C. Méndez, L. Roso, and P. Moreno, “Propagation of ablation channels with multiple femtosecond laser pulses in dielectrics: numerical simulations and experiments,” J. Phys. D Appl. Phys.38, 3764 (2005).

Mermillod-Blondin, A.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

Moreno, P.

J. R. Vázquez de Aldana, C. Méndez, L. Roso, and P. Moreno, “Propagation of ablation channels with multiple femtosecond laser pulses in dielectrics: numerical simulations and experiments,” J. Phys. D Appl. Phys.38, 3764 (2005).

Mysyrowicz, A.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
[CrossRef] [PubMed]

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

Osellame, R.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009).
[CrossRef]

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

Papazoglou, D. G.

Petite, G.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interaction with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

Popov, K. I.

Prade, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
[CrossRef] [PubMed]

Qi-Huang, G.

S. Quan, J. Hong-Bing, L. Yi, Z. Yong-Heng, Y. Hong, and G. Qi-Huang, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett.23(1), 189–192 (2006).
[CrossRef]

Quan, S.

S. Quan, J. Hong-Bing, L. Yi, Z. Yong-Heng, Y. Hong, and G. Qi-Huang, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett.23(1), 189–192 (2006).
[CrossRef]

Quéré, F.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interaction with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

Ramunno, L.

Rosenfeld, A.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, and E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.65(4-5), 367–373 (1997).
[CrossRef]

Roso, L.

J. R. Vázquez de Aldana, C. Méndez, and L. Roso, “Saturation of ablation channels micro-machined in fused silica with many femtosecond laser pulses,” Opt. Express14(3), 1329–1338 (2006).
[CrossRef] [PubMed]

J. R. Vázquez de Aldana, C. Méndez, L. Roso, and P. Moreno, “Propagation of ablation channels with multiple femtosecond laser pulses in dielectrics: numerical simulations and experiments,” J. Phys. D Appl. Phys.38, 3764 (2005).

Russo, R. E.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interaction with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

Shah, L.

Shao, J.

Stoian, R.

J. R. Gulley, S. W. Winkler, W. M. Dennis, C. M. Liebig, and R. Stoian, “Interaction of ultrashort-laser pulses with induced undercritical plasmas in fused silica,” Phys. Rev. A85(1), 013808 (2012).
[CrossRef]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

Stone, H. A.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D Appl. Phys.40(5), 1447–1459 (2007).
[CrossRef]

Sudrie, L.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
[CrossRef] [PubMed]

Tauc, J.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi15(2), 627–637 (1966).
[CrossRef]

Tsai, H. L.

L. Jiang and H. L. Tsai, “Prediction of crater shape in femtosecond laser ablation of dielectrics,” J. Phys. D Appl. Phys.37(10), 1492–1496 (2004).
[CrossRef]

Tzortzakis, S.

D. G. Papazoglou and S. Tzortzakis, “Physical mechanisms of fused silica restructuring and densification after femtosecond laser excitation,” Opt. Mater. Express1(4), 625–632 (2011).
[CrossRef]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
[CrossRef] [PubMed]

Vancu, A.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi15(2), 627–637 (1966).
[CrossRef]

Varel, H.

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, and E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.65(4-5), 367–373 (1997).
[CrossRef]

Vázquez de Aldana, J. R.

J. R. Vázquez de Aldana, C. Méndez, and L. Roso, “Saturation of ablation channels micro-machined in fused silica with many femtosecond laser pulses,” Opt. Express14(3), 1329–1338 (2006).
[CrossRef] [PubMed]

J. R. Vázquez de Aldana, C. Méndez, L. Roso, and P. Moreno, “Propagation of ablation channels with multiple femtosecond laser pulses in dielectrics: numerical simulations and experiments,” J. Phys. D Appl. Phys.38, 3764 (2005).

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

Wähmer, M.

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, and E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.65(4-5), 367–373 (1997).
[CrossRef]

Wang, Y.

Winkler, S. W.

J. R. Gulley, S. W. Winkler, W. M. Dennis, C. M. Liebig, and R. Stoian, “Interaction of ultrashort-laser pulses with induced undercritical plasmas in fused silica,” Phys. Rev. A85(1), 013808 (2012).
[CrossRef]

Yi, L.

S. Quan, J. Hong-Bing, L. Yi, Z. Yong-Heng, Y. Hong, and G. Qi-Huang, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett.23(1), 189–192 (2006).
[CrossRef]

Yong-Heng, Z.

S. Quan, J. Hong-Bing, L. Yi, Z. Yong-Heng, Y. Hong, and G. Qi-Huang, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett.23(1), 189–192 (2006).
[CrossRef]

Zhao, Y.

Appl. Phys. B (1)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, and E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.65(4-5), 367–373 (1997).
[CrossRef]

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interaction with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

Chin. Opt. Lett. (1)

Chin. Phys. Lett. (1)

S. Quan, J. Hong-Bing, L. Yi, Z. Yong-Heng, Y. Hong, and G. Qi-Huang, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett.23(1), 189–192 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media: Part I—Theory,” IEEE J. Quantum Electron.31(12), 2241–2249 (1995).
[CrossRef]

J. Appl. Phys. (1)

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

J. Laser Appl. (1)

D. Ashkenasi and A. Lemke, “Picosecond laser-induced color centers in glass optics,” J. Laser Appl.23(1), 012007 (2011).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009).
[CrossRef]

J. Phys. D Appl. Phys. (3)

L. Jiang and H. L. Tsai, “Prediction of crater shape in femtosecond laser ablation of dielectrics,” J. Phys. D Appl. Phys.37(10), 1492–1496 (2004).
[CrossRef]

J. R. Vázquez de Aldana, C. Méndez, L. Roso, and P. Moreno, “Propagation of ablation channels with multiple femtosecond laser pulses in dielectrics: numerical simulations and experiments,” J. Phys. D Appl. Phys.38, 3764 (2005).

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D Appl. Phys.40(5), 1447–1459 (2007).
[CrossRef]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Opt. Express (4)

Opt. Mater. Express (1)

Phys. Rev. A (1)

J. R. Gulley, S. W. Winkler, W. M. Dennis, C. M. Liebig, and R. Stoian, “Interaction of ultrashort-laser pulses with induced undercritical plasmas in fused silica,” Phys. Rev. A85(1), 013808 (2012).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

D. Arnold, E. Cartier, and D. J. DiMaria, “Acoustic-phonon runaway and impact ionization by hot electrons in silicon dioxide,” Phys. Rev. B Condens. Matter45(3), 1477–1480 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
[CrossRef] [PubMed]

Phys. Status Solidi (1)

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi15(2), 627–637 (1966).
[CrossRef]

Sov. Phys. JETP (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP20, 1307–1314 (1965).

Other (2)

Types of Glass. http://www.cmog.org/article/types-glass .

EAGLE XG® Material Information Sheet. http://www.corning.com/displaytechnologies/en/products/eaglexg/index.aspx .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Photo-ionization rate for the glass sample at 532 nm calculated with the complete Keldysh model (red solid line), with Keldysh’s approximation in the tunnel limit (green dash-dotted line) and in the MPI limit (blue dotted line) [21], and with Kennedy’s approximation of Keldysh model in the MPI limit (black dashed line) [19].

Fig. 2
Fig. 2

Schematic diagram (work flow) of the numerical model for laser ablation and laser damage.

Fig. 3
Fig. 3

Numerical results of the cross sections for the intensity distributions in air (a) and in glass (b), the free-electron density (c) during the nth pulse, the ablated crater profile (d) and the damage region (e) after the nth pulse. The pulse number n is shown in the lower left corner of each graph, the intensity in (a) is in 1016 W/m2 unit, in (b) is logarithmic in W/m2, electron densities in (c) and (e) are logarithmic in cm−3. For each graph in (e), the damage region is denoted by the red contour region where the electron density is larger than 1020 cm−3. All the graphs have the same coordinate as shown in the first one of (e).

Fig. 4
Fig. 4

Cross sections of the ablated craters and the damage regions after experimental 5 pulses (a) and 10 pulses (b) and after the numerical 5 pulses (c) and 10 pulses (d). In (c) and (d), the damage region is denoted by the red contour region where the electron density is larger than 1020 cm−3.

Fig. 5
Fig. 5

Numerical results obtained with the TE model. The ablated crater profiles (green dashed line) for 1, 5, and 10 pulses are compared with that obtained with BPM (purple solid line) (a), and the damage regions after 1 pulse (b), 5 pulses (c), and 10 pulses (d) are shown to reveal the role of diffraction and refraction in the formation of damage regions. All the graphs have the same coordinate as that for (c). In (b), (c) and (d), the damage region is denoted by the red contour region where the electron density is larger than 1020 cm−3.

Fig. 6
Fig. 6

Cross sections of the damage regions with different spatial overlaps (a) 0%, (b) 54%, (c) 85%, and (d) 90%. The conditions for all the cases are carried out with pulse energy of 40 μJ, except for 54% overlap with 50 μJ, 5 passes, and a repetition rate of 400 kHz.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Ε ˜ (x,y,z)=E(x,y,z)exp(i k 0 n 0 z),
2i k 0 E z = Δ E k 0 2 (ε1)E.
ε=1 ρ B e 2 ε 0 m e ω 2 ω 0 2 iχω ( ω 2 ω 0 2 ) 2 + χ 2 ω 2 ,
ρ t =σ I k + α c I ρ η rec ρ 2 ,
σ= 2ω 9π ( mω ) 3/2 ( e 2 16 ω 2 c ε 0 n 0 mΔ ) k exp{ 2k } Φ[ ( 2k2 Δ ω ) 1/2 ],
α c = 1 ω 2 τ 2 +1 e 2 τ c n 0 ε 0 m e E crit ,
2i k 0 E z = k 0 2 (ε1)E.

Metrics