Abstract

Abstract: We demonstrate a novel polarization diversity differential phase-shift keying (DPSK) demodulator on the SOI platform, which is fabricated in a single lithography and etching step. The polarization diversity DPSK demodulator is based on a novel polarization splitter and rotator, which consists of a tapered waveguide followed by a 2 × 2 multimode interferometer. A lowest insertion loss of 0.5 dB with low polarization dependent loss of 1.6 dB and low polarization dependent extinction ratio smaller than 3 dB are measured for the polarization diversity circuit. Clear eye-diagrams and a finite power penalty of only 3 dB when the input state of polarization is scrambled are obtained for 40 Gbit/s non return-to-zero DPSK (NRZ-DPSK) demodulation.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol.23(1), 115–130 (2005).
    [CrossRef]
  2. I. P. Kaminow, “Balanced optical discriminator,” Appl. Opt.3(4), 507–510 (1964).
    [CrossRef]
  3. I. Lyubomirsky and C.-C. Chien, “DPSK demodulator based on optical discriminator filter,” IEEE Photon. Technol. Lett.17(2), 492–494 (2005).
    [CrossRef]
  4. C. W. Chow and H. K. Tsang, “Polarization-independent DPSK demodulation using a birefringent fiber loop,” IEEE Photon. Technol. Lett.17(6), 1313–1315 (2005).
    [CrossRef]
  5. R. Kou, H. Nishi, T. Tsuchizawa, H. Fukuda, H. Shinojima, and K. Yamada, “Single silicon wire waveguide based delay line interferometer for DPSK demodulation,” Opt. Express20(10), 11037–11045 (2012).
    [CrossRef] [PubMed]
  6. L. Zhang, J. Y. Yang, M. Song, Y. Li, B. Zhang, R. G. Beausoleil, and A. E. Willner, “Microring-based modulation and demodulation of DPSK signal,” Opt. Express15(18), 11564–11569 (2007).
    [CrossRef] [PubMed]
  7. L. Xu, C. Li, C. Wong, and H. K. Tsang, “Optical differential phase shift keying demodulation using a silicon microring resonator,” IEEE Photon. Technol. Lett.21(5), 295–297 (2009).
    [CrossRef]
  8. Y. Ding, J. Xu, C. Peucheret, M. Pu, L. Liu, J. Seoane, H. Ou, X. Zhang, and D. Huang, “Multi-channel 40 Gbit/s NRZ-DPSK demodulation using a single silicon microring resonator,” J. Lightwave Technol.29(5), 677–684 (2011).
    [CrossRef]
  9. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express15(4), 1567–1578 (2007).
    [CrossRef] [PubMed]
  10. X. Chen, C. Li, Y. Gao, L. Xu, H. Tsang, and C. Shu, “Characterization of integrated polarization-diversity DPSK demodulator with two-dimensional chirped grating couplers and ring resonators,” Proc Optical Fiber Communication Conference (Optical Society of America, 2010), paper JWA26.
  11. F. Van Laere, T. Stomeo, C. Cambournac, M. Ayre, R. Brenot, H. Benisty, G. Roelkens, T. Krauss, D. Van Thourhout, and R. Baets, “Nanophotonic polarization diversity demultiplexer chip,” J. Lightwave Technol.27(4), 417–425 (2009).
    [CrossRef]
  12. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” Opt. Express20(26), B493–B500 (2012).
    [CrossRef] [PubMed]
  13. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
    [CrossRef]
  14. L. Chen, C. R. Doerr, and Y. K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett.36(4), 469–471 (2011).
    [CrossRef] [PubMed]
  15. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express19(13), 12646–12651 (2011).
    [CrossRef] [PubMed]
  16. Y. Ding, L. Liu, C. Peucheret, and H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express20(18), 20021–20027 (2012).
    [CrossRef] [PubMed]
  17. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. I. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express16(7), 4872–4880 (2008).
    [CrossRef] [PubMed]
  18. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express19(11), 10940–10949 (2011).
    [CrossRef] [PubMed]
  19. Y. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, and D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” IEEE Photon. Technol. Lett.23(23), 1808–1810 (2011).
    [CrossRef]
  20. Y. Ding, H. Ou, and C. Peucheret, “Wide-band polarization splitter and rotator with large fabrication tolerance and simple fabrication process,” Opt. Lett., doc. ID 184241, (posted 06 March 2013, in press).
  21. D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express20(12), 13425–13439 (2012).
    [CrossRef] [PubMed]
  22. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995).
    [CrossRef]
  23. A. Sakai, T. Fukazawa, and T. Baba, “Low loss ultra-small branches in a silicon photonic wire waveguide,” IEICE Trans. Electron.E85-C(4), 1033–1038 (2002).

2012 (4)

2011 (5)

2009 (2)

L. Xu, C. Li, C. Wong, and H. K. Tsang, “Optical differential phase shift keying demodulation using a silicon microring resonator,” IEEE Photon. Technol. Lett.21(5), 295–297 (2009).
[CrossRef]

F. Van Laere, T. Stomeo, C. Cambournac, M. Ayre, R. Brenot, H. Benisty, G. Roelkens, T. Krauss, D. Van Thourhout, and R. Baets, “Nanophotonic polarization diversity demultiplexer chip,” J. Lightwave Technol.27(4), 417–425 (2009).
[CrossRef]

2008 (1)

2007 (3)

2005 (3)

I. Lyubomirsky and C.-C. Chien, “DPSK demodulator based on optical discriminator filter,” IEEE Photon. Technol. Lett.17(2), 492–494 (2005).
[CrossRef]

C. W. Chow and H. K. Tsang, “Polarization-independent DPSK demodulation using a birefringent fiber loop,” IEEE Photon. Technol. Lett.17(6), 1313–1315 (2005).
[CrossRef]

A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol.23(1), 115–130 (2005).
[CrossRef]

2002 (1)

A. Sakai, T. Fukazawa, and T. Baba, “Low loss ultra-small branches in a silicon photonic wire waveguide,” IEICE Trans. Electron.E85-C(4), 1033–1038 (2002).

1995 (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

1964 (1)

Ayre, M.

Baba, T.

A. Sakai, T. Fukazawa, and T. Baba, “Low loss ultra-small branches in a silicon photonic wire waveguide,” IEICE Trans. Electron.E85-C(4), 1033–1038 (2002).

Baets, R.

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Beausoleil, R. G.

Benisty, H.

Bogaerts, W.

Bowers, J. E.

Brenot, R.

Cambournac, C.

Chen, L.

Chen, Y. K.

Chien, C.-C.

I. Lyubomirsky and C.-C. Chien, “DPSK demodulator based on optical discriminator filter,” IEEE Photon. Technol. Lett.17(2), 492–494 (2005).
[CrossRef]

Chow, C. W.

C. W. Chow and H. K. Tsang, “Polarization-independent DPSK demodulation using a birefringent fiber loop,” IEEE Photon. Technol. Lett.17(6), 1313–1315 (2005).
[CrossRef]

Dai, D.

Ding, Y.

Doerr, C. R.

Dumon, P.

Fukazawa, T.

A. Sakai, T. Fukazawa, and T. Baba, “Low loss ultra-small branches in a silicon photonic wire waveguide,” IEICE Trans. Electron.E85-C(4), 1033–1038 (2002).

Fukuda, H.

Gnauck, A. H.

Huang, D.

Y. Ding, J. Xu, C. Peucheret, M. Pu, L. Liu, J. Seoane, H. Ou, X. Zhang, and D. Huang, “Multi-channel 40 Gbit/s NRZ-DPSK demodulation using a single silicon microring resonator,” J. Lightwave Technol.29(5), 677–684 (2011).
[CrossRef]

Y. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, and D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” IEEE Photon. Technol. Lett.23(23), 1808–1810 (2011).
[CrossRef]

Hvam, J. M.

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Itabashi, S. I.

Kaminow, I. P.

Kartner, F. X.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Kou, R.

Krauss, T.

Li, C.

L. Xu, C. Li, C. Wong, and H. K. Tsang, “Optical differential phase shift keying demodulation using a silicon microring resonator,” IEEE Photon. Technol. Lett.21(5), 295–297 (2009).
[CrossRef]

Li, Y.

Liu, L.

Lyubomirsky, I.

I. Lyubomirsky and C.-C. Chien, “DPSK demodulator based on optical discriminator filter,” IEEE Photon. Technol. Lett.17(2), 492–494 (2005).
[CrossRef]

Nishi, H.

Ou, H.

Pathak, S.

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

Peucheret, C.

Pluk, E.

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Pu, M.

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Roelkens, G.

Sakai, A.

A. Sakai, T. Fukazawa, and T. Baba, “Low loss ultra-small branches in a silicon photonic wire waveguide,” IEICE Trans. Electron.E85-C(4), 1033–1038 (2002).

Seoane, J.

Shinojima, H.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

Song, M.

Stomeo, T.

Taillaert, D.

Tang, Y.

Tsang, H. K.

L. Xu, C. Li, C. Wong, and H. K. Tsang, “Optical differential phase shift keying demodulation using a silicon microring resonator,” IEEE Photon. Technol. Lett.21(5), 295–297 (2009).
[CrossRef]

C. W. Chow and H. K. Tsang, “Polarization-independent DPSK demodulation using a birefringent fiber loop,” IEEE Photon. Technol. Lett.17(6), 1313–1315 (2005).
[CrossRef]

Tsuchizawa, T.

Van Laere, F.

Van Thourhout, D.

Vanslembrouck, M.

Watanabe, T.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Willner, A. E.

Winzer, P. J.

Wong, C.

L. Xu, C. Li, C. Wong, and H. K. Tsang, “Optical differential phase shift keying demodulation using a silicon microring resonator,” IEEE Photon. Technol. Lett.21(5), 295–297 (2009).
[CrossRef]

Xu, J.

Y. Ding, J. Xu, C. Peucheret, M. Pu, L. Liu, J. Seoane, H. Ou, X. Zhang, and D. Huang, “Multi-channel 40 Gbit/s NRZ-DPSK demodulation using a single silicon microring resonator,” J. Lightwave Technol.29(5), 677–684 (2011).
[CrossRef]

Y. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, and D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” IEEE Photon. Technol. Lett.23(23), 1808–1810 (2011).
[CrossRef]

Xu, L.

L. Xu, C. Li, C. Wong, and H. K. Tsang, “Optical differential phase shift keying demodulation using a silicon microring resonator,” IEEE Photon. Technol. Lett.21(5), 295–297 (2009).
[CrossRef]

Yamada, K.

Yang, J. Y.

Yvind, K.

Y. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, and D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” IEEE Photon. Technol. Lett.23(23), 1808–1810 (2011).
[CrossRef]

L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express19(13), 12646–12651 (2011).
[CrossRef] [PubMed]

Zhang, B.

Zhang, L.

Zhang, X.

Y. Ding, J. Xu, C. Peucheret, M. Pu, L. Liu, J. Seoane, H. Ou, X. Zhang, and D. Huang, “Multi-channel 40 Gbit/s NRZ-DPSK demodulation using a single silicon microring resonator,” J. Lightwave Technol.29(5), 677–684 (2011).
[CrossRef]

Y. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, and D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” IEEE Photon. Technol. Lett.23(23), 1808–1810 (2011).
[CrossRef]

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (4)

I. Lyubomirsky and C.-C. Chien, “DPSK demodulator based on optical discriminator filter,” IEEE Photon. Technol. Lett.17(2), 492–494 (2005).
[CrossRef]

C. W. Chow and H. K. Tsang, “Polarization-independent DPSK demodulation using a birefringent fiber loop,” IEEE Photon. Technol. Lett.17(6), 1313–1315 (2005).
[CrossRef]

L. Xu, C. Li, C. Wong, and H. K. Tsang, “Optical differential phase shift keying demodulation using a silicon microring resonator,” IEEE Photon. Technol. Lett.21(5), 295–297 (2009).
[CrossRef]

Y. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, and D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” IEEE Photon. Technol. Lett.23(23), 1808–1810 (2011).
[CrossRef]

IEICE Trans. Electron. (1)

A. Sakai, T. Fukazawa, and T. Baba, “Low loss ultra-small branches in a silicon photonic wire waveguide,” IEICE Trans. Electron.E85-C(4), 1033–1038 (2002).

J. Lightwave Technol. (4)

Nat. Photonics (1)

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Opt. Express (9)

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express19(11), 10940–10949 (2011).
[CrossRef] [PubMed]

L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express19(13), 12646–12651 (2011).
[CrossRef] [PubMed]

R. Kou, H. Nishi, T. Tsuchizawa, H. Fukuda, H. Shinojima, and K. Yamada, “Single silicon wire waveguide based delay line interferometer for DPSK demodulation,” Opt. Express20(10), 11037–11045 (2012).
[CrossRef] [PubMed]

D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express20(12), 13425–13439 (2012).
[CrossRef] [PubMed]

Y. Ding, L. Liu, C. Peucheret, and H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express20(18), 20021–20027 (2012).
[CrossRef] [PubMed]

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” Opt. Express20(26), B493–B500 (2012).
[CrossRef] [PubMed]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express15(4), 1567–1578 (2007).
[CrossRef] [PubMed]

L. Zhang, J. Y. Yang, M. Song, Y. Li, B. Zhang, R. G. Beausoleil, and A. E. Willner, “Microring-based modulation and demodulation of DPSK signal,” Opt. Express15(18), 11564–11569 (2007).
[CrossRef] [PubMed]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. I. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express16(7), 4872–4880 (2008).
[CrossRef] [PubMed]

Opt. Lett. (1)

Other (2)

X. Chen, C. Li, Y. Gao, L. Xu, H. Tsang, and C. Shu, “Characterization of integrated polarization-diversity DPSK demodulator with two-dimensional chirped grating couplers and ring resonators,” Proc Optical Fiber Communication Conference (Optical Society of America, 2010), paper JWA26.

Y. Ding, H. Ou, and C. Peucheret, “Wide-band polarization splitter and rotator with large fabrication tolerance and simple fabrication process,” Opt. Lett., doc. ID 184241, (posted 06 March 2013, in press).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Structure of the PSR. TE0 (b) and TM0 (c) light are input to the PSR, and output from arm 1 and 2, respectively, on the TE0 mode.

Fig. 2
Fig. 2

Pol-D circuit with a single MRR and two identical PSRs.

Fig. 3
Fig. 3

Scanning electron microscope (SEM) pictures of (a) the Pol-D circuit with a single MRR and (b) detail of the Y splitter of one of the PSRs. (c) Measured transmission of the Pol-D MRR over a 60 nm wavelength range and (d) details of the transmission around the resonance wavelength of 1546.52 nm for 15 randomly chosen input polarization states.

Fig. 4
Fig. 4

Experimental setup for Pol-D MRR-based NRZ-DPSK demodulation. The insets show the measured eye-diagrams of the NRZ-DPSK signal, and the demodulated AMI signal obtained at the output of the Pol-D MRR.

Fig. 5
Fig. 5

Measured spectra of the NRZ-DPSK signal, as well as the AMI signals demodulated by the Pol-D MRR (a) and a single MRR (d) with and without polarization scrambling. Measured eye-diagrams of the AMI signal demodulated by the Pol-D MRR without (b) and with (c) polarization scrambling. Measured eye-diagrams of the signal demodulated by a single MRR without (e) and with (f) polarization scrambling.

Fig. 6
Fig. 6

BER measurements for the AMI signal demodulated by the Pol-D MRR with and without the polarization scrambler.

Metrics