Abstract

Symmetry breaking of metallic nanoparticles results in many unique optical properties. We use the discrete dipole approximation method to study the optical properties of overlapped nanoshells which further break the rotational symmetry compared with the semishells. The optical properties of the nanoparticles can be tuned from the visible to near infrared regime by varying the geometry parameters and the hybrid components of nanoparticles. The calculated extinction spectra show the two-dimensional anisotropy of the angular optical response of the nanoparticles. The plasmon hybridization model provides a way to interpret the resonance modes of the nanoparticles. The tunable plasmon resonances, the enhanced local fields and the anisotropic optical properties suggest that the overlapped nanoshells have potential applications in surface-enhanced spectroscopy and “smart” coating in windows or display devices.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
    [CrossRef] [PubMed]
  2. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev.111(6), 3828–3857 (2011).
    [CrossRef] [PubMed]
  3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
    [CrossRef] [PubMed]
  4. S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998).
    [CrossRef]
  5. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
    [CrossRef] [PubMed]
  6. H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.103(29), 10856–10860 (2006).
    [CrossRef] [PubMed]
  7. Y. Hu, S. J. Noelck, and R. A. Drezek, “Symmetry Breaking in Gold-Silica-Gold Multilayer Nanoshells,” ACS Nano4(3), 1521–1528 (2010).
    [CrossRef] [PubMed]
  8. P. Van Dorpe and J. Ye, “Semishells: versatile plasmonic nanoparticles,” ACS Nano5(9), 6774–6778 (2011).
    [CrossRef] [PubMed]
  9. S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett.10(7), 2694–2701 (2010).
    [CrossRef] [PubMed]
  10. M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology18(23), 235704 (2007).
    [CrossRef]
  11. J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express17(26), 23765–23771 (2009).
    [CrossRef] [PubMed]
  12. J. Ye, P. Van Dorpe, W. Van Roy, K. Lodewijks, I. De Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C113(8), 3110–3115 (2009).
    [CrossRef]
  13. X. Liu, N. C. Linn, C. H. Sun, and P. Jiang, “Templated fabrication of metal half-shells for surface-enhanced Raman scattering,” Phys. Chem. Chem. Phys.12(6), 1379–1387 (2010).
    [CrossRef] [PubMed]
  14. J. Ye, C. Chen, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Strong location dependent surface enhanced Raman scattering on individual gold semishell and nanobowl particles,” Phys. Chem. Chem. Phys.12(37), 11222–11224 (2010).
    [CrossRef] [PubMed]
  15. N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano5(9), 7254–7262 (2011).
    [CrossRef] [PubMed]
  16. Y. Zhang, A. Barhoumi, J. B. Lassiter, and N. J. Halas, “Orientation-preserving transfer and directional light scattering from individual light-bending nanoparticles,” Nano Lett.11(4), 1838–1844 (2011).
    [CrossRef] [PubMed]
  17. N. A. Mirin, T. A. Ali, P. Nordlander, and N. J. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano4(5), 2701–2712 (2010).
    [CrossRef] [PubMed]
  18. J. Qian, Z. Chen, J. Chen, Y. Li, J. Xu, and Q. Sun, “Two-dimensional angularly selective optical properties of gold nanoshell with holes,” Opt. Express20(13), 14614–14620 (2012).
    [CrossRef] [PubMed]
  19. Y. Yu, L. Gan, G. Zhang, and B. Yang, “Asymmetric microparticles and heterogeneous microshells via angled colloidal lithography,” Colloids Surf. A Physicochem. Eng. Asp.405(5), 51–58 (2012).
    [CrossRef]
  20. M. B. Cortie and A. M. McDonagh, “Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles,” Chem. Rev.111(6), 3713–3735 (2011).
    [CrossRef] [PubMed]
  21. G. C. Schatz, M. A. Young, and R. P. Van Duyne, “Electromagnetic mechanism of SERS,” Top. Appl. Phys.103, 19–45 (2006).
    [CrossRef]
  22. J. H. Weaver and H. P. R. Frederikse, “Optical properties of selected elements,” in CRC Handbook of Chemistry and Physics, D. R. Lide, ed. (CRC Press, Boca Raton, Fla., 2001).
  23. M. B. Cortie, X. Xu, and M. J. Ford, “Effect of composition and packing configuration on the dichroic optical properties of coinage metal nanorods,” Phys. Chem. Chem. Phys.8(30), 3520–3527 (2006).
    [CrossRef] [PubMed]
  24. M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit,” New J. Phys.10(10), 105006 (2008).
    [CrossRef]
  25. A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B109(22), 11279–11285 (2005).
    [CrossRef] [PubMed]
  26. R. Bukasov and J. S. Shumaker-Parry, “Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy,” Anal. Chem.81(11), 4531–4535 (2009).
    [CrossRef] [PubMed]
  27. B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kielyet, and L. M. Liz Marzán, “Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties,” J. Mater. Chem.15(17), 1755–1759 (2005).
    [CrossRef]
  28. J. H. Kim, W. W. Bryan, and T. R. Lee, “Preparation, Characterization, and Optical Properties of Gold, Silver, and Gold-Silver Alloy Nanoshells Having Silica Cores,” Langmuir24(19), 11147–11152 (2008).
    [CrossRef] [PubMed]
  29. S. Link, Z. L. Wang, and M. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B103(18), 3529–3533 (1999).
    [CrossRef]

2012 (2)

J. Qian, Z. Chen, J. Chen, Y. Li, J. Xu, and Q. Sun, “Two-dimensional angularly selective optical properties of gold nanoshell with holes,” Opt. Express20(13), 14614–14620 (2012).
[CrossRef] [PubMed]

Y. Yu, L. Gan, G. Zhang, and B. Yang, “Asymmetric microparticles and heterogeneous microshells via angled colloidal lithography,” Colloids Surf. A Physicochem. Eng. Asp.405(5), 51–58 (2012).
[CrossRef]

2011 (5)

M. B. Cortie and A. M. McDonagh, “Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles,” Chem. Rev.111(6), 3713–3735 (2011).
[CrossRef] [PubMed]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev.111(6), 3828–3857 (2011).
[CrossRef] [PubMed]

P. Van Dorpe and J. Ye, “Semishells: versatile plasmonic nanoparticles,” ACS Nano5(9), 6774–6778 (2011).
[CrossRef] [PubMed]

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano5(9), 7254–7262 (2011).
[CrossRef] [PubMed]

Y. Zhang, A. Barhoumi, J. B. Lassiter, and N. J. Halas, “Orientation-preserving transfer and directional light scattering from individual light-bending nanoparticles,” Nano Lett.11(4), 1838–1844 (2011).
[CrossRef] [PubMed]

2010 (5)

N. A. Mirin, T. A. Ali, P. Nordlander, and N. J. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano4(5), 2701–2712 (2010).
[CrossRef] [PubMed]

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett.10(7), 2694–2701 (2010).
[CrossRef] [PubMed]

Y. Hu, S. J. Noelck, and R. A. Drezek, “Symmetry Breaking in Gold-Silica-Gold Multilayer Nanoshells,” ACS Nano4(3), 1521–1528 (2010).
[CrossRef] [PubMed]

X. Liu, N. C. Linn, C. H. Sun, and P. Jiang, “Templated fabrication of metal half-shells for surface-enhanced Raman scattering,” Phys. Chem. Chem. Phys.12(6), 1379–1387 (2010).
[CrossRef] [PubMed]

J. Ye, C. Chen, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Strong location dependent surface enhanced Raman scattering on individual gold semishell and nanobowl particles,” Phys. Chem. Chem. Phys.12(37), 11222–11224 (2010).
[CrossRef] [PubMed]

2009 (3)

J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express17(26), 23765–23771 (2009).
[CrossRef] [PubMed]

J. Ye, P. Van Dorpe, W. Van Roy, K. Lodewijks, I. De Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C113(8), 3110–3115 (2009).
[CrossRef]

R. Bukasov and J. S. Shumaker-Parry, “Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy,” Anal. Chem.81(11), 4531–4535 (2009).
[CrossRef] [PubMed]

2008 (3)

J. H. Kim, W. W. Bryan, and T. R. Lee, “Preparation, Characterization, and Optical Properties of Gold, Silver, and Gold-Silver Alloy Nanoshells Having Silica Cores,” Langmuir24(19), 11147–11152 (2008).
[CrossRef] [PubMed]

M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit,” New J. Phys.10(10), 105006 (2008).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

2007 (2)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
[CrossRef] [PubMed]

M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology18(23), 235704 (2007).
[CrossRef]

2006 (3)

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

G. C. Schatz, M. A. Young, and R. P. Van Duyne, “Electromagnetic mechanism of SERS,” Top. Appl. Phys.103, 19–45 (2006).
[CrossRef]

M. B. Cortie, X. Xu, and M. J. Ford, “Effect of composition and packing configuration on the dichroic optical properties of coinage metal nanorods,” Phys. Chem. Chem. Phys.8(30), 3520–3527 (2006).
[CrossRef] [PubMed]

2005 (2)

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kielyet, and L. M. Liz Marzán, “Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties,” J. Mater. Chem.15(17), 1755–1759 (2005).
[CrossRef]

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

1999 (1)

S. Link, Z. L. Wang, and M. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B103(18), 3529–3533 (1999).
[CrossRef]

1998 (1)

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998).
[CrossRef]

Ali, T. A.

N. A. Mirin, T. A. Ali, P. Nordlander, and N. J. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano4(5), 2701–2712 (2010).
[CrossRef] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Averitt, R.

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998).
[CrossRef]

Ayala-Orozco, C.

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano5(9), 7254–7262 (2011).
[CrossRef] [PubMed]

Bardhan, R.

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett.10(7), 2694–2701 (2010).
[CrossRef] [PubMed]

Barhoumi, A.

Y. Zhang, A. Barhoumi, J. B. Lassiter, and N. J. Halas, “Orientation-preserving transfer and directional light scattering from individual light-bending nanoparticles,” Nano Lett.11(4), 1838–1844 (2011).
[CrossRef] [PubMed]

Borghs, G.

J. Ye, C. Chen, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Strong location dependent surface enhanced Raman scattering on individual gold semishell and nanobowl particles,” Phys. Chem. Chem. Phys.12(37), 11222–11224 (2010).
[CrossRef] [PubMed]

J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express17(26), 23765–23771 (2009).
[CrossRef] [PubMed]

J. Ye, P. Van Dorpe, W. Van Roy, K. Lodewijks, I. De Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C113(8), 3110–3115 (2009).
[CrossRef]

Brannan, T.

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano5(9), 7254–7262 (2011).
[CrossRef] [PubMed]

Bryan, W. W.

J. H. Kim, W. W. Bryan, and T. R. Lee, “Preparation, Characterization, and Optical Properties of Gold, Silver, and Gold-Silver Alloy Nanoshells Having Silica Cores,” Langmuir24(19), 11147–11152 (2008).
[CrossRef] [PubMed]

Bukasov, R.

R. Bukasov and J. S. Shumaker-Parry, “Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy,” Anal. Chem.81(11), 4531–4535 (2009).
[CrossRef] [PubMed]

Burrows, A.

B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kielyet, and L. M. Liz Marzán, “Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties,” J. Mater. Chem.15(17), 1755–1759 (2005).
[CrossRef]

Chen, C.

J. Ye, C. Chen, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Strong location dependent surface enhanced Raman scattering on individual gold semishell and nanobowl particles,” Phys. Chem. Chem. Phys.12(37), 11222–11224 (2010).
[CrossRef] [PubMed]

Chen, J.

Chen, Z.

Cortie, M.

M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology18(23), 235704 (2007).
[CrossRef]

Cortie, M. B.

M. B. Cortie and A. M. McDonagh, “Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles,” Chem. Rev.111(6), 3713–3735 (2011).
[CrossRef] [PubMed]

M. B. Cortie, X. Xu, and M. J. Ford, “Effect of composition and packing configuration on the dichroic optical properties of coinage metal nanorods,” Phys. Chem. Chem. Phys.8(30), 3520–3527 (2006).
[CrossRef] [PubMed]

De Vlaminck, I.

J. Ye, P. Van Dorpe, W. Van Roy, K. Lodewijks, I. De Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C113(8), 3110–3115 (2009).
[CrossRef]

Dieringer, J. A.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

Drezek, R. A.

Y. Hu, S. J. Noelck, and R. A. Drezek, “Symmetry Breaking in Gold-Silica-Gold Multilayer Nanoshells,” ACS Nano4(3), 1521–1528 (2010).
[CrossRef] [PubMed]

El-Sayed, M.

S. Link, Z. L. Wang, and M. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B103(18), 3529–3533 (1999).
[CrossRef]

Ford, M.

M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology18(23), 235704 (2007).
[CrossRef]

Ford, M. J.

M. B. Cortie, X. Xu, and M. J. Ford, “Effect of composition and packing configuration on the dichroic optical properties of coinage metal nanorods,” Phys. Chem. Chem. Phys.8(30), 3520–3527 (2006).
[CrossRef] [PubMed]

Gan, L.

Y. Yu, L. Gan, G. Zhang, and B. Yang, “Asymmetric microparticles and heterogeneous microshells via angled colloidal lithography,” Colloids Surf. A Physicochem. Eng. Asp.405(5), 51–58 (2012).
[CrossRef]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev.111(6), 3828–3857 (2011).
[CrossRef] [PubMed]

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Halas, N.

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998).
[CrossRef]

Halas, N. J.

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano5(9), 7254–7262 (2011).
[CrossRef] [PubMed]

Y. Zhang, A. Barhoumi, J. B. Lassiter, and N. J. Halas, “Orientation-preserving transfer and directional light scattering from individual light-bending nanoparticles,” Nano Lett.11(4), 1838–1844 (2011).
[CrossRef] [PubMed]

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett.10(7), 2694–2701 (2010).
[CrossRef] [PubMed]

N. A. Mirin, T. A. Ali, P. Nordlander, and N. J. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano4(5), 2701–2712 (2010).
[CrossRef] [PubMed]

M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit,” New J. Phys.10(10), 105006 (2008).
[CrossRef]

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Hu, Y.

Y. Hu, S. J. Noelck, and R. A. Drezek, “Symmetry Breaking in Gold-Silica-Gold Multilayer Nanoshells,” ACS Nano4(3), 1521–1528 (2010).
[CrossRef] [PubMed]

Jiang, P.

X. Liu, N. C. Linn, C. H. Sun, and P. Jiang, “Templated fabrication of metal half-shells for surface-enhanced Raman scattering,” Phys. Chem. Chem. Phys.12(6), 1379–1387 (2010).
[CrossRef] [PubMed]

Kielyet, C. J.

B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kielyet, and L. M. Liz Marzán, “Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties,” J. Mater. Chem.15(17), 1755–1759 (2005).
[CrossRef]

Kim, J. H.

J. H. Kim, W. W. Bryan, and T. R. Lee, “Preparation, Characterization, and Optical Properties of Gold, Silver, and Gold-Silver Alloy Nanoshells Having Silica Cores,” Langmuir24(19), 11147–11152 (2008).
[CrossRef] [PubMed]

King, N. S.

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano5(9), 7254–7262 (2011).
[CrossRef] [PubMed]

Knight, M. W.

M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit,” New J. Phys.10(10), 105006 (2008).
[CrossRef]

Lagae, L.

J. Ye, C. Chen, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Strong location dependent surface enhanced Raman scattering on individual gold semishell and nanobowl particles,” Phys. Chem. Chem. Phys.12(37), 11222–11224 (2010).
[CrossRef] [PubMed]

J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express17(26), 23765–23771 (2009).
[CrossRef] [PubMed]

Lassiter, B.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Lassiter, J. B.

Y. Zhang, A. Barhoumi, J. B. Lassiter, and N. J. Halas, “Orientation-preserving transfer and directional light scattering from individual light-bending nanoparticles,” Nano Lett.11(4), 1838–1844 (2011).
[CrossRef] [PubMed]

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett.10(7), 2694–2701 (2010).
[CrossRef] [PubMed]

Lee, T. R.

J. H. Kim, W. W. Bryan, and T. R. Lee, “Preparation, Characterization, and Optical Properties of Gold, Silver, and Gold-Silver Alloy Nanoshells Having Silica Cores,” Langmuir24(19), 11147–11152 (2008).
[CrossRef] [PubMed]

Li, Y.

J. Qian, Z. Chen, J. Chen, Y. Li, J. Xu, and Q. Sun, “Two-dimensional angularly selective optical properties of gold nanoshell with holes,” Opt. Express20(13), 14614–14620 (2012).
[CrossRef] [PubMed]

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano5(9), 7254–7262 (2011).
[CrossRef] [PubMed]

Link, S.

S. Link, Z. L. Wang, and M. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B103(18), 3529–3533 (1999).
[CrossRef]

Linn, N. C.

X. Liu, N. C. Linn, C. H. Sun, and P. Jiang, “Templated fabrication of metal half-shells for surface-enhanced Raman scattering,” Phys. Chem. Chem. Phys.12(6), 1379–1387 (2010).
[CrossRef] [PubMed]

Liu, X.

X. Liu, N. C. Linn, C. H. Sun, and P. Jiang, “Templated fabrication of metal half-shells for surface-enhanced Raman scattering,” Phys. Chem. Chem. Phys.12(6), 1379–1387 (2010).
[CrossRef] [PubMed]

Liz Marzán, L. M.

B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kielyet, and L. M. Liz Marzán, “Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties,” J. Mater. Chem.15(17), 1755–1759 (2005).
[CrossRef]

Lodewijks, K.

J. Ye, P. Van Dorpe, W. Van Roy, K. Lodewijks, I. De Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C113(8), 3110–3115 (2009).
[CrossRef]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Maes, G.

J. Ye, C. Chen, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Strong location dependent surface enhanced Raman scattering on individual gold semishell and nanobowl particles,” Phys. Chem. Chem. Phys.12(37), 11222–11224 (2010).
[CrossRef] [PubMed]

J. Ye, P. Van Dorpe, W. Van Roy, K. Lodewijks, I. De Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C113(8), 3110–3115 (2009).
[CrossRef]

J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express17(26), 23765–23771 (2009).
[CrossRef] [PubMed]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev.111(6), 3828–3857 (2011).
[CrossRef] [PubMed]

McDonagh, A. M.

M. B. Cortie and A. M. McDonagh, “Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles,” Chem. Rev.111(6), 3713–3735 (2011).
[CrossRef] [PubMed]

McFarland, A. D.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

Mirin, N. A.

N. A. Mirin, T. A. Ali, P. Nordlander, and N. J. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano4(5), 2701–2712 (2010).
[CrossRef] [PubMed]

Mukherjee, S.

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett.10(7), 2694–2701 (2010).
[CrossRef] [PubMed]

Nehl, C. L.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Noelck, S. J.

Y. Hu, S. J. Noelck, and R. A. Drezek, “Symmetry Breaking in Gold-Silica-Gold Multilayer Nanoshells,” ACS Nano4(3), 1521–1528 (2010).
[CrossRef] [PubMed]

Nordlander, P.

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano5(9), 7254–7262 (2011).
[CrossRef] [PubMed]

N. A. Mirin, T. A. Ali, P. Nordlander, and N. J. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano4(5), 2701–2712 (2010).
[CrossRef] [PubMed]

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett.10(7), 2694–2701 (2010).
[CrossRef] [PubMed]

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Oldenburg, S.

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998).
[CrossRef]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Qian, J.

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Rodríguez-González, B.

B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kielyet, and L. M. Liz Marzán, “Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties,” J. Mater. Chem.15(17), 1755–1759 (2005).
[CrossRef]

Schatz, G. C.

G. C. Schatz, M. A. Young, and R. P. Van Duyne, “Electromagnetic mechanism of SERS,” Top. Appl. Phys.103, 19–45 (2006).
[CrossRef]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Shumaker-Parry, J. S.

R. Bukasov and J. S. Shumaker-Parry, “Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy,” Anal. Chem.81(11), 4531–4535 (2009).
[CrossRef] [PubMed]

Sobhani, H.

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett.10(7), 2694–2701 (2010).
[CrossRef] [PubMed]

Sun, C. H.

X. Liu, N. C. Linn, C. H. Sun, and P. Jiang, “Templated fabrication of metal half-shells for surface-enhanced Raman scattering,” Phys. Chem. Chem. Phys.12(6), 1379–1387 (2010).
[CrossRef] [PubMed]

Sun, Q.

Van Dorpe, P.

P. Van Dorpe and J. Ye, “Semishells: versatile plasmonic nanoparticles,” ACS Nano5(9), 6774–6778 (2011).
[CrossRef] [PubMed]

J. Ye, C. Chen, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Strong location dependent surface enhanced Raman scattering on individual gold semishell and nanobowl particles,” Phys. Chem. Chem. Phys.12(37), 11222–11224 (2010).
[CrossRef] [PubMed]

J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express17(26), 23765–23771 (2009).
[CrossRef] [PubMed]

J. Ye, P. Van Dorpe, W. Van Roy, K. Lodewijks, I. De Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C113(8), 3110–3115 (2009).
[CrossRef]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
[CrossRef] [PubMed]

G. C. Schatz, M. A. Young, and R. P. Van Duyne, “Electromagnetic mechanism of SERS,” Top. Appl. Phys.103, 19–45 (2006).
[CrossRef]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

Van Roy, W.

J. Ye, P. Van Dorpe, W. Van Roy, K. Lodewijks, I. De Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C113(8), 3110–3115 (2009).
[CrossRef]

Wang, H.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Wang, Z. L.

S. Link, Z. L. Wang, and M. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B103(18), 3529–3533 (1999).
[CrossRef]

Watanabe, M.

B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kielyet, and L. M. Liz Marzán, “Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties,” J. Mater. Chem.15(17), 1755–1759 (2005).
[CrossRef]

Westcott, S.

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998).
[CrossRef]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
[CrossRef] [PubMed]

Wu, Y.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Xu, J.

Xu, X.

M. B. Cortie, X. Xu, and M. J. Ford, “Effect of composition and packing configuration on the dichroic optical properties of coinage metal nanorods,” Phys. Chem. Chem. Phys.8(30), 3520–3527 (2006).
[CrossRef] [PubMed]

Yang, B.

Y. Yu, L. Gan, G. Zhang, and B. Yang, “Asymmetric microparticles and heterogeneous microshells via angled colloidal lithography,” Colloids Surf. A Physicochem. Eng. Asp.405(5), 51–58 (2012).
[CrossRef]

Ye, J.

P. Van Dorpe and J. Ye, “Semishells: versatile plasmonic nanoparticles,” ACS Nano5(9), 6774–6778 (2011).
[CrossRef] [PubMed]

J. Ye, C. Chen, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Strong location dependent surface enhanced Raman scattering on individual gold semishell and nanobowl particles,” Phys. Chem. Chem. Phys.12(37), 11222–11224 (2010).
[CrossRef] [PubMed]

J. Ye, P. Van Dorpe, W. Van Roy, K. Lodewijks, I. De Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C113(8), 3110–3115 (2009).
[CrossRef]

J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express17(26), 23765–23771 (2009).
[CrossRef] [PubMed]

Young, M. A.

G. C. Schatz, M. A. Young, and R. P. Van Duyne, “Electromagnetic mechanism of SERS,” Top. Appl. Phys.103, 19–45 (2006).
[CrossRef]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

Yu, Y.

Y. Yu, L. Gan, G. Zhang, and B. Yang, “Asymmetric microparticles and heterogeneous microshells via angled colloidal lithography,” Colloids Surf. A Physicochem. Eng. Asp.405(5), 51–58 (2012).
[CrossRef]

Zhang, G.

Y. Yu, L. Gan, G. Zhang, and B. Yang, “Asymmetric microparticles and heterogeneous microshells via angled colloidal lithography,” Colloids Surf. A Physicochem. Eng. Asp.405(5), 51–58 (2012).
[CrossRef]

Zhang, Y.

Y. Zhang, A. Barhoumi, J. B. Lassiter, and N. J. Halas, “Orientation-preserving transfer and directional light scattering from individual light-bending nanoparticles,” Nano Lett.11(4), 1838–1844 (2011).
[CrossRef] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

ACS Nano (4)

Y. Hu, S. J. Noelck, and R. A. Drezek, “Symmetry Breaking in Gold-Silica-Gold Multilayer Nanoshells,” ACS Nano4(3), 1521–1528 (2010).
[CrossRef] [PubMed]

P. Van Dorpe and J. Ye, “Semishells: versatile plasmonic nanoparticles,” ACS Nano5(9), 6774–6778 (2011).
[CrossRef] [PubMed]

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano5(9), 7254–7262 (2011).
[CrossRef] [PubMed]

N. A. Mirin, T. A. Ali, P. Nordlander, and N. J. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano4(5), 2701–2712 (2010).
[CrossRef] [PubMed]

Anal. Chem. (1)

R. Bukasov and J. S. Shumaker-Parry, “Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy,” Anal. Chem.81(11), 4531–4535 (2009).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998).
[CrossRef]

Chem. Rev. (2)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev.111(6), 3828–3857 (2011).
[CrossRef] [PubMed]

M. B. Cortie and A. M. McDonagh, “Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles,” Chem. Rev.111(6), 3713–3735 (2011).
[CrossRef] [PubMed]

Colloids Surf. A Physicochem. Eng. Asp. (1)

Y. Yu, L. Gan, G. Zhang, and B. Yang, “Asymmetric microparticles and heterogeneous microshells via angled colloidal lithography,” Colloids Surf. A Physicochem. Eng. Asp.405(5), 51–58 (2012).
[CrossRef]

J. Mater. Chem. (1)

B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kielyet, and L. M. Liz Marzán, “Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties,” J. Mater. Chem.15(17), 1755–1759 (2005).
[CrossRef]

J. Phys. Chem. B (2)

S. Link, Z. L. Wang, and M. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B103(18), 3529–3533 (1999).
[CrossRef]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

J. Ye, P. Van Dorpe, W. Van Roy, K. Lodewijks, I. De Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C113(8), 3110–3115 (2009).
[CrossRef]

Langmuir (1)

J. H. Kim, W. W. Bryan, and T. R. Lee, “Preparation, Characterization, and Optical Properties of Gold, Silver, and Gold-Silver Alloy Nanoshells Having Silica Cores,” Langmuir24(19), 11147–11152 (2008).
[CrossRef] [PubMed]

Nano Lett. (2)

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett.10(7), 2694–2701 (2010).
[CrossRef] [PubMed]

Y. Zhang, A. Barhoumi, J. B. Lassiter, and N. J. Halas, “Orientation-preserving transfer and directional light scattering from individual light-bending nanoparticles,” Nano Lett.11(4), 1838–1844 (2011).
[CrossRef] [PubMed]

Nanotechnology (1)

M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology18(23), 235704 (2007).
[CrossRef]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

New J. Phys. (1)

M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit,” New J. Phys.10(10), 105006 (2008).
[CrossRef]

Opt. Express (2)

Phys. Chem. Chem. Phys. (3)

X. Liu, N. C. Linn, C. H. Sun, and P. Jiang, “Templated fabrication of metal half-shells for surface-enhanced Raman scattering,” Phys. Chem. Chem. Phys.12(6), 1379–1387 (2010).
[CrossRef] [PubMed]

J. Ye, C. Chen, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Strong location dependent surface enhanced Raman scattering on individual gold semishell and nanobowl particles,” Phys. Chem. Chem. Phys.12(37), 11222–11224 (2010).
[CrossRef] [PubMed]

M. B. Cortie, X. Xu, and M. J. Ford, “Effect of composition and packing configuration on the dichroic optical properties of coinage metal nanorods,” Phys. Chem. Chem. Phys.8(30), 3520–3527 (2006).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Top. Appl. Phys. (1)

G. C. Schatz, M. A. Young, and R. P. Van Duyne, “Electromagnetic mechanism of SERS,” Top. Appl. Phys.103, 19–45 (2006).
[CrossRef]

Other (1)

J. H. Weaver and H. P. R. Frederikse, “Optical properties of selected elements,” in CRC Handbook of Chemistry and Physics, D. R. Lide, ed. (CRC Press, Boca Raton, Fla., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Two-step angled vapor deposition. (b) The orientation of the OLNSs with respect to the incident light. The (c) side and (d) front mid-sectional views of the OLNSs.

Fig. 2
Fig. 2

(a) Schematic of the semishells. The semishells orientations with (Θ, Φ) set at (b) (0°, 0°-90°) and (c) (90°, 0°), respectively. The extinction spectra of Au semishells with (d) Φ is fixed at 0°, Θ = 0°, 30°, 45°, 60°, 90° and (e) Θ is fixed at 0°, Φ = 0°, 30°, 45°, 60°, 90°.

Fig. 3
Fig. 3

The extinction spectra of Au OLNSs with (a) Φ is fixed at 0°, Θ = 0°, 30°, 45°, 60°, 90°, (b) Θ is fixed at 0°, Φ = 0°, 30°, 45°, 60°, 90°, and (c) Θ = 30°-60°, Φ = 30°-60°. The OLNSs orientations and mid-sectional LFE profiles with (Θ, Φ) set at (d) (0°, 0°), (e) (90°, 0°), and (f) (0°, 90°), respectively.

Fig. 4
Fig. 4

(a) An energy-level diagram describing the plasmon hybridization in the OLNSs resulting from the interaction between the plasmons of nonconcentric ellipsoid and cavity. (b) The two resonance modes of ellipsoid. (c) The extinction spectra of the model nanostructure with (Θ, Φ) set at (0°, 0°), (90°, 0°), and (0°, 90°).

Fig. 5
Fig. 5

The calculated extinction spectra and the front mid-sectional profiles of LFE of Au OLNSs with different θ: (a) θ = 60°, (b) θ = 90°, (c) θ = 120°, (d) θ = 150°, (e) θ = 180°.

Fig. 6
Fig. 6

(a) The influence of inner radius r on the optical properties of Au OLNSs. The front mid-sectional profiles of LFE of Au OLNSs at resonance wavelengths: (b) ~630 nm, (c) ~780 nm, (d) ~1670 nm.

Fig. 7
Fig. 7

The extinction spectra of (a) Ag, Cu, Al and Pt OLNSs and (b) Au-Ag, Au-Cu, Au-Al and Au-Pt hybrid metallic OLNSs.

Fig. 8
Fig. 8

(a) The extinction spectra of the slab, the substrate and the OLNS supported on the substrate. (b) The front mid-sectional view of the OLNS supported on the substrate. The LFE profiles of OLNS supported on the substrate at resonance wavelengths: (c) 1370 nm and (d) 1690 nm.

Metrics