Abstract

ZnTe is an important p-type semiconductor with great applications as field-effect transistors and photodetectors. In this paper, individual ZnTe nanowires based field-effect transistors was fabricated, showing evident p-type conductivity with an effect mobility of 11.3 cm2/Vs. Single ZnTe nanowire based photodetectors on rigid silicon substrate exhibited high sensitivity and excellent stability to visible incident light with responstivity and quantum efficiency as high as 1.87 × 105 A/W and 4.36 × 107% respectively and are stable in a wide temperature range (25-250 °C). The polarization-sensitivity of the ZnTe nanowires was studied for the first time. The results revealed a periodic oscillation with the continuous variation of polarization angles. Besides, flexible photodetectors were also fabricated with the features of excellent flexibility, stability and sensitivity to visible incident light. Our work would enable application opportunities in using ZnTe nanowires for ultrahigh-performance photodetectors in scientific, commercial and industrial applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature409(6816), 66–69 (2001).
    [CrossRef] [PubMed]
  2. Y. Cui and C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science291(5505), 851–853 (2001).
    [CrossRef] [PubMed]
  3. Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science294(5545), 1313–1317 (2001).
    [CrossRef] [PubMed]
  4. J. J. Chen, K. Wang, L. Hartman, and W. L. Zhou, “H2S detection by vertically aligned CuO nanowire array sensors,” J. Phys. Chem. C112(41), 16017–16021 (2008).
    [CrossRef]
  5. B. J. Hansen, N. Kouklin, G. H. Lu, I. K. Lin, J. H. Chen, and X. Zhang, “Transport, analyte detection, and opto-electronic response of p-type CuO nanowires,” J. Phys. Chem. C114(6), 2440–2447 (2010).
    [CrossRef]
  6. Y. Cui, Z. H. Zhong, D. L. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett.3(2), 149–152 (2003).
    [CrossRef]
  7. Z. H. Zhong, F. Qian, D. L. Wang, and C. M. Lieber, “Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices,” Nano Lett.3(3), 343–346 (2003).
    [CrossRef]
  8. J. S. Tang, C. Y. Wang, F. X. Xiu, M. R. Lang, L. W. Chu, C. J. Tsai, Y. L. Chueh, L. J. Chen, and K. L. Wang, “Oxide-confined formation of germanium nanowire heterostructures for high-performance transistors,” ACS Nano5(7), 6008–6015 (2011).
    [CrossRef] [PubMed]
  9. G. Z. Shen, P. C. Chen, Y. Bando, D. Golberg, and C. W. Zhou, “Bicrystalline Zn3P2 and Cd3P2 nanobelts and their electronic transport properties,” Chem. Mater.20(23), 7319–7323 (2008).
    [CrossRef]
  10. C. Liu, J. W. Sun, J. Y. Tang, and P. D. Yang, “Zn-doped p- Type gallium phosphide nanowire photocathodes from a surfactant-free solution synthesis,” Nano Lett.12(10), 5407–5411 (2012).
    [CrossRef] [PubMed]
  11. E. C. Garnett and P. D. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc.130, 9224–9225 (2008).
    [PubMed]
  12. M. P. Lu, J. H. Song, M. Y. Lu, M. T. Chen, Y. F. Gao, L. J. Chen, and Z. L. Wang, “Piezoelectric nanogenerator using p-type ZnO nanowire arrays,” Nano Lett.9(3), 1223–1227 (2009).
    [CrossRef] [PubMed]
  13. A. Zhang, H. K. Kim, J. Cheng, and Y. H. Lo, “Ultrahigh responsivity visible and infrared detection using silicon nanowire phototransistors,” Nano Lett.10(6), 2117–2120 (2010).
    [CrossRef] [PubMed]
  14. X. W. Zhang, J. S. Jie, Z. Wang, C. Y. Wu, L. Wang, Q. Peng, Y. Q. Yu, P. Jiang, and C. Xie, “Surface induced negative photoconductivity in p-type ZnSe: Bi nanowires and their nano-optoelectronic applications,” J. Mater. Chem.21(18), 6736–6741 (2011).
    [CrossRef]
  15. G. Z. Shen, P. C. Chen, Y. Bando, D. Golberg, and C. W. Zhou, “Pearl-like ZnS-decorated InP nanowire heterostructures and their electric behaviors,” Chem. Mater.20(21), 6779–6783 (2008).
    [CrossRef]
  16. D. Wu, Y. Jiang, Y. G. Zhang, J. W. Li, Y. Q. Yu, Z. F. Zhu, L. Wang, C. Y. Wu, L. B. Luo, and J. S. Jie, “Device structure-dependent field-effect and photoresponse performances of p-type ZnTe:Sb nanoribbons,” J. Mater. Chem.22(13), 6206–6212 (2012).
    [CrossRef]
  17. J. Zhang, P. C. Chen, G. Z. Shen, J. B. He, A. Kumbhar, C. W. Zhou, and J. Y. Fang, “P-type field-effect transistors of single-crystal zinc telluride nanobelts,” Angew. Chem. Int. Ed. Engl.47(49), 9469–9471 (2008).
    [CrossRef] [PubMed]
  18. Z. Li, J. Salfi, C. D. Souza, P. Sun, S. V. Nair, and H. E. Ruda, “Room temperature single nanowire ZnTe photoconductors grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 97, 063510 (2010).
  19. S. Y. Li, Y. Jiang, D. Wu, B. B. Wang, Y. G. Zhang, J. W. Li, X. M. Liu, H. H. Zhong, L. Chen, and J. S. Jie, “Structure and electrical properties of p-type twin ZnTe nanowires,” Appl. Phys., A Mater. Sci. Process.102(2), 469–475 (2011).
    [CrossRef]
  20. Q. F. Meng, C. B. Jiang, and S. X. Mao, “Ohmic contacts and photoconductivity of individual ZnTe nanowires,” Appl. Phys. Lett.4, 043111 (2009).
  21. Y. L. Cao, Z. T. Liu, L. M. Chen, Y. B. Tang, L. B. Luo, J. S. Jie, W. J. Zhang, S. T. Lee, and C. S. Lee, “Single-crystalline ZnTe nanowires for application as high-performance green/ultraviolet photodetector,” Opt. Express19(7), 6100–6108 (2011).
    [CrossRef] [PubMed]
  22. Y. C. Che, C. Wang, J. Liu, B. L. Liu, X. Lin, J. Parker, C. Beasley, H. S. Wong, and C. Zhou, “Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock,” ACS Nano6(8), 7454–7462 (2012).
    [CrossRef] [PubMed]
  23. G. Z. Shen, B. Liang, X. F. Wang, P. C. Chen, and C. W. Zhou, “Indium oxide nanospirals made of kinked nanowires,” ACS Nano5(3), 2155–2161 (2011).
    [CrossRef] [PubMed]
  24. G. Z. Shen, B. Liang, X. F. Wang, H. T. Huang, D. Chen, and Z. L. Wang, “Ultrathin In2O3 nanowires with diameters below 4 nm: synthesis, reversible wettability switching behavior, and transparent thin-film transistor applications,” ACS Nano5(8), 6148–6155 (2011).
    [CrossRef] [PubMed]
  25. F. N. Ishikawa, H. K. Chang, K. M. Ryu, P. C. Chen, A. Badmaev, L. Gomez De Arco, G. Z. Shen, and C. W. Zhou, “Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates,” ACS Nano3(1), 73–79 (2009).
    [CrossRef] [PubMed]
  26. J. L. Zhang, C. Wang, and C. W. Zhou, “Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics,” ACS Nano6(8), 7412–7419 (2012).
    [CrossRef] [PubMed]
  27. G. Z. Shen, J. Xu, X. F. Wang, H. T. Huang, and D. Chen, “Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications,” Adv. Mater.23(6), 771–775 (2011).
    [CrossRef] [PubMed]
  28. H. T. Huang, B. Liang, Z. Liu, X. F. Wang, D. Chen, and G. Z. Shen, “Metal oxide nanowire transistors,” J. Mater. Chem.22(27), 13428–13445 (2012).
    [CrossRef]
  29. P. C. Wu, Y. Dai, Y. Ye, Y. Yin, and L. Dai, “Fast-speed and high-gain photodetectors of individual single crystalline Zn3P2 nanowires,” J. Mater. Chem.21(8), 2563–2567 (2011).
    [CrossRef]
  30. L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In₂Ge₂O₇ nanobelts,” Adv. Mater.22(45), 5145–5149 (2010).
    [CrossRef] [PubMed]
  31. L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Y. Koide, H. Q. Wang, Y. Bando, and D. Golberg, “Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors,” Adv. Mater.22(29), 3161–3165 (2010).
    [CrossRef] [PubMed]
  32. T. Y. Zhai, Y. Ma, L. Li, X. S. Fang, M. Y. Liao, Y. Koide, J. N. Yao, Y. Bando, and D. Golberg, “Morphology-tunable In2Se3 nanostructures with enhanced electrical and photoelectrical performances via sulfur doping,” J. Mater. Chem.20(32), 6630–6637 (2010).
    [CrossRef]
  33. Z. Li, J. Salfi, C. D. Souza, P. Sun, S. V. Nair, and H. E. Ruda, “Room temperature single nanowire ZnTe photoconductors grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 97, 063510 (2010).
  34. J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett.6(9), 1887–1892 (2006).
    [CrossRef] [PubMed]
  35. Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S.-T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater.17(11), 1795–1800 (2007).
    [CrossRef]
  36. D. P. Amalnerkar, “Photoconducting and allied properties of CdS thick film,” Mater. Chem. Phys.60(1), 1–21 (1999).
    [CrossRef]
  37. A. Singh, X. Y. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett.7(10), 2999–3006 (2007).
    [CrossRef] [PubMed]
  38. C. Y. Wu, J. S. Jie, L Wang, Y. Q. Yu, Q. Peng, X. W. Zhang, J. J. Cai, H. E. Guo, D. Wu, and Y. Jiang, “Chlorine-doped n-type CdS nanowires with enhanced photoconductivity,” Nanotechnology 21, 505203 (2010).
  39. J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science293(5534), 1455–1457 (2001).
    [CrossRef] [PubMed]
  40. S. Han, W. Jin, D. H. Zhang, T. Tang, C. Li, X. L. Liu, Z. Q. Liu, B. Lei, and C. W. Zhou, “Photoconduction studies on GaN nanowire transistors under UV and polarized UV illumination,” Chem. Phys. Lett.389(1-3), 176–180 (2004).
    [CrossRef]
  41. A. Singh, X. Y. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett.7(10), 2999–3006 (2007).
    [CrossRef] [PubMed]
  42. Z. Y. Fan, P. C. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C.- Lin, and H. P. Lee, “Photoluminescence and polarized photodetection of single ZnO nanowires,” Appl. Phys. Lett.85(25), 6128–6130 (2004).
    [CrossRef]
  43. Z. Liu, H. T. Huang, B. Liang, X. F. Wang, Z. R. Wang, D. Chen, and G. Z. Shen, “Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates,” Opt. Express20(3), 2982–2991 (2012).
    [CrossRef] [PubMed]
  44. X. F. Wang, Z. Xie, H. T. Huang, Z. Liu, D. Chen, and G. Z. Shen, “Gas sensors, thermistor and photodetector based on ZnS nanowires,” J. Mater. Chem.22(14), 6845–6850 (2012).
    [CrossRef]

2012

C. Liu, J. W. Sun, J. Y. Tang, and P. D. Yang, “Zn-doped p- Type gallium phosphide nanowire photocathodes from a surfactant-free solution synthesis,” Nano Lett.12(10), 5407–5411 (2012).
[CrossRef] [PubMed]

D. Wu, Y. Jiang, Y. G. Zhang, J. W. Li, Y. Q. Yu, Z. F. Zhu, L. Wang, C. Y. Wu, L. B. Luo, and J. S. Jie, “Device structure-dependent field-effect and photoresponse performances of p-type ZnTe:Sb nanoribbons,” J. Mater. Chem.22(13), 6206–6212 (2012).
[CrossRef]

Y. C. Che, C. Wang, J. Liu, B. L. Liu, X. Lin, J. Parker, C. Beasley, H. S. Wong, and C. Zhou, “Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock,” ACS Nano6(8), 7454–7462 (2012).
[CrossRef] [PubMed]

J. L. Zhang, C. Wang, and C. W. Zhou, “Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics,” ACS Nano6(8), 7412–7419 (2012).
[CrossRef] [PubMed]

H. T. Huang, B. Liang, Z. Liu, X. F. Wang, D. Chen, and G. Z. Shen, “Metal oxide nanowire transistors,” J. Mater. Chem.22(27), 13428–13445 (2012).
[CrossRef]

X. F. Wang, Z. Xie, H. T. Huang, Z. Liu, D. Chen, and G. Z. Shen, “Gas sensors, thermistor and photodetector based on ZnS nanowires,” J. Mater. Chem.22(14), 6845–6850 (2012).
[CrossRef]

Z. Liu, H. T. Huang, B. Liang, X. F. Wang, Z. R. Wang, D. Chen, and G. Z. Shen, “Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates,” Opt. Express20(3), 2982–2991 (2012).
[CrossRef] [PubMed]

2011

Y. L. Cao, Z. T. Liu, L. M. Chen, Y. B. Tang, L. B. Luo, J. S. Jie, W. J. Zhang, S. T. Lee, and C. S. Lee, “Single-crystalline ZnTe nanowires for application as high-performance green/ultraviolet photodetector,” Opt. Express19(7), 6100–6108 (2011).
[CrossRef] [PubMed]

P. C. Wu, Y. Dai, Y. Ye, Y. Yin, and L. Dai, “Fast-speed and high-gain photodetectors of individual single crystalline Zn3P2 nanowires,” J. Mater. Chem.21(8), 2563–2567 (2011).
[CrossRef]

G. Z. Shen, J. Xu, X. F. Wang, H. T. Huang, and D. Chen, “Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications,” Adv. Mater.23(6), 771–775 (2011).
[CrossRef] [PubMed]

S. Y. Li, Y. Jiang, D. Wu, B. B. Wang, Y. G. Zhang, J. W. Li, X. M. Liu, H. H. Zhong, L. Chen, and J. S. Jie, “Structure and electrical properties of p-type twin ZnTe nanowires,” Appl. Phys., A Mater. Sci. Process.102(2), 469–475 (2011).
[CrossRef]

G. Z. Shen, B. Liang, X. F. Wang, P. C. Chen, and C. W. Zhou, “Indium oxide nanospirals made of kinked nanowires,” ACS Nano5(3), 2155–2161 (2011).
[CrossRef] [PubMed]

G. Z. Shen, B. Liang, X. F. Wang, H. T. Huang, D. Chen, and Z. L. Wang, “Ultrathin In2O3 nanowires with diameters below 4 nm: synthesis, reversible wettability switching behavior, and transparent thin-film transistor applications,” ACS Nano5(8), 6148–6155 (2011).
[CrossRef] [PubMed]

X. W. Zhang, J. S. Jie, Z. Wang, C. Y. Wu, L. Wang, Q. Peng, Y. Q. Yu, P. Jiang, and C. Xie, “Surface induced negative photoconductivity in p-type ZnSe: Bi nanowires and their nano-optoelectronic applications,” J. Mater. Chem.21(18), 6736–6741 (2011).
[CrossRef]

J. S. Tang, C. Y. Wang, F. X. Xiu, M. R. Lang, L. W. Chu, C. J. Tsai, Y. L. Chueh, L. J. Chen, and K. L. Wang, “Oxide-confined formation of germanium nanowire heterostructures for high-performance transistors,” ACS Nano5(7), 6008–6015 (2011).
[CrossRef] [PubMed]

2010

B. J. Hansen, N. Kouklin, G. H. Lu, I. K. Lin, J. H. Chen, and X. Zhang, “Transport, analyte detection, and opto-electronic response of p-type CuO nanowires,” J. Phys. Chem. C114(6), 2440–2447 (2010).
[CrossRef]

A. Zhang, H. K. Kim, J. Cheng, and Y. H. Lo, “Ultrahigh responsivity visible and infrared detection using silicon nanowire phototransistors,” Nano Lett.10(6), 2117–2120 (2010).
[CrossRef] [PubMed]

Z. Li, J. Salfi, C. D. Souza, P. Sun, S. V. Nair, and H. E. Ruda, “Room temperature single nanowire ZnTe photoconductors grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 97, 063510 (2010).

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In₂Ge₂O₇ nanobelts,” Adv. Mater.22(45), 5145–5149 (2010).
[CrossRef] [PubMed]

L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Y. Koide, H. Q. Wang, Y. Bando, and D. Golberg, “Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors,” Adv. Mater.22(29), 3161–3165 (2010).
[CrossRef] [PubMed]

T. Y. Zhai, Y. Ma, L. Li, X. S. Fang, M. Y. Liao, Y. Koide, J. N. Yao, Y. Bando, and D. Golberg, “Morphology-tunable In2Se3 nanostructures with enhanced electrical and photoelectrical performances via sulfur doping,” J. Mater. Chem.20(32), 6630–6637 (2010).
[CrossRef]

Z. Li, J. Salfi, C. D. Souza, P. Sun, S. V. Nair, and H. E. Ruda, “Room temperature single nanowire ZnTe photoconductors grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 97, 063510 (2010).

C. Y. Wu, J. S. Jie, L Wang, Y. Q. Yu, Q. Peng, X. W. Zhang, J. J. Cai, H. E. Guo, D. Wu, and Y. Jiang, “Chlorine-doped n-type CdS nanowires with enhanced photoconductivity,” Nanotechnology 21, 505203 (2010).

2009

F. N. Ishikawa, H. K. Chang, K. M. Ryu, P. C. Chen, A. Badmaev, L. Gomez De Arco, G. Z. Shen, and C. W. Zhou, “Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates,” ACS Nano3(1), 73–79 (2009).
[CrossRef] [PubMed]

Q. F. Meng, C. B. Jiang, and S. X. Mao, “Ohmic contacts and photoconductivity of individual ZnTe nanowires,” Appl. Phys. Lett.4, 043111 (2009).

M. P. Lu, J. H. Song, M. Y. Lu, M. T. Chen, Y. F. Gao, L. J. Chen, and Z. L. Wang, “Piezoelectric nanogenerator using p-type ZnO nanowire arrays,” Nano Lett.9(3), 1223–1227 (2009).
[CrossRef] [PubMed]

2008

J. J. Chen, K. Wang, L. Hartman, and W. L. Zhou, “H2S detection by vertically aligned CuO nanowire array sensors,” J. Phys. Chem. C112(41), 16017–16021 (2008).
[CrossRef]

G. Z. Shen, P. C. Chen, Y. Bando, D. Golberg, and C. W. Zhou, “Pearl-like ZnS-decorated InP nanowire heterostructures and their electric behaviors,” Chem. Mater.20(21), 6779–6783 (2008).
[CrossRef]

J. Zhang, P. C. Chen, G. Z. Shen, J. B. He, A. Kumbhar, C. W. Zhou, and J. Y. Fang, “P-type field-effect transistors of single-crystal zinc telluride nanobelts,” Angew. Chem. Int. Ed. Engl.47(49), 9469–9471 (2008).
[CrossRef] [PubMed]

G. Z. Shen, P. C. Chen, Y. Bando, D. Golberg, and C. W. Zhou, “Bicrystalline Zn3P2 and Cd3P2 nanobelts and their electronic transport properties,” Chem. Mater.20(23), 7319–7323 (2008).
[CrossRef]

E. C. Garnett and P. D. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc.130, 9224–9225 (2008).
[PubMed]

2007

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S.-T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater.17(11), 1795–1800 (2007).
[CrossRef]

A. Singh, X. Y. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett.7(10), 2999–3006 (2007).
[CrossRef] [PubMed]

A. Singh, X. Y. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett.7(10), 2999–3006 (2007).
[CrossRef] [PubMed]

2006

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett.6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

2004

Z. Y. Fan, P. C. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C.- Lin, and H. P. Lee, “Photoluminescence and polarized photodetection of single ZnO nanowires,” Appl. Phys. Lett.85(25), 6128–6130 (2004).
[CrossRef]

S. Han, W. Jin, D. H. Zhang, T. Tang, C. Li, X. L. Liu, Z. Q. Liu, B. Lei, and C. W. Zhou, “Photoconduction studies on GaN nanowire transistors under UV and polarized UV illumination,” Chem. Phys. Lett.389(1-3), 176–180 (2004).
[CrossRef]

2003

Y. Cui, Z. H. Zhong, D. L. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett.3(2), 149–152 (2003).
[CrossRef]

Z. H. Zhong, F. Qian, D. L. Wang, and C. M. Lieber, “Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices,” Nano Lett.3(3), 343–346 (2003).
[CrossRef]

2001

X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature409(6816), 66–69 (2001).
[CrossRef] [PubMed]

Y. Cui and C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science291(5505), 851–853 (2001).
[CrossRef] [PubMed]

Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science293(5534), 1455–1457 (2001).
[CrossRef] [PubMed]

1999

D. P. Amalnerkar, “Photoconducting and allied properties of CdS thick film,” Mater. Chem. Phys.60(1), 1–21 (1999).
[CrossRef]

Amalnerkar, D. P.

D. P. Amalnerkar, “Photoconducting and allied properties of CdS thick film,” Mater. Chem. Phys.60(1), 1–21 (1999).
[CrossRef]

Badmaev, A.

F. N. Ishikawa, H. K. Chang, K. M. Ryu, P. C. Chen, A. Badmaev, L. Gomez De Arco, G. Z. Shen, and C. W. Zhou, “Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates,” ACS Nano3(1), 73–79 (2009).
[CrossRef] [PubMed]

Bando, Y.

L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Y. Koide, H. Q. Wang, Y. Bando, and D. Golberg, “Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors,” Adv. Mater.22(29), 3161–3165 (2010).
[CrossRef] [PubMed]

T. Y. Zhai, Y. Ma, L. Li, X. S. Fang, M. Y. Liao, Y. Koide, J. N. Yao, Y. Bando, and D. Golberg, “Morphology-tunable In2Se3 nanostructures with enhanced electrical and photoelectrical performances via sulfur doping,” J. Mater. Chem.20(32), 6630–6637 (2010).
[CrossRef]

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In₂Ge₂O₇ nanobelts,” Adv. Mater.22(45), 5145–5149 (2010).
[CrossRef] [PubMed]

G. Z. Shen, P. C. Chen, Y. Bando, D. Golberg, and C. W. Zhou, “Pearl-like ZnS-decorated InP nanowire heterostructures and their electric behaviors,” Chem. Mater.20(21), 6779–6783 (2008).
[CrossRef]

G. Z. Shen, P. C. Chen, Y. Bando, D. Golberg, and C. W. Zhou, “Bicrystalline Zn3P2 and Cd3P2 nanobelts and their electronic transport properties,” Chem. Mater.20(23), 7319–7323 (2008).
[CrossRef]

Beasley, C.

Y. C. Che, C. Wang, J. Liu, B. L. Liu, X. Lin, J. Parker, C. Beasley, H. S. Wong, and C. Zhou, “Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock,” ACS Nano6(8), 7454–7462 (2012).
[CrossRef] [PubMed]

Cai, J. J.

C. Y. Wu, J. S. Jie, L Wang, Y. Q. Yu, Q. Peng, X. W. Zhang, J. J. Cai, H. E. Guo, D. Wu, and Y. Jiang, “Chlorine-doped n-type CdS nanowires with enhanced photoconductivity,” Nanotechnology 21, 505203 (2010).

Cao, Y. L.

Chang, H. K.

F. N. Ishikawa, H. K. Chang, K. M. Ryu, P. C. Chen, A. Badmaev, L. Gomez De Arco, G. Z. Shen, and C. W. Zhou, “Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates,” ACS Nano3(1), 73–79 (2009).
[CrossRef] [PubMed]

Chang, P. C.

Z. Y. Fan, P. C. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C.- Lin, and H. P. Lee, “Photoluminescence and polarized photodetection of single ZnO nanowires,” Appl. Phys. Lett.85(25), 6128–6130 (2004).
[CrossRef]

Che, Y. C.

Y. C. Che, C. Wang, J. Liu, B. L. Liu, X. Lin, J. Parker, C. Beasley, H. S. Wong, and C. Zhou, “Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock,” ACS Nano6(8), 7454–7462 (2012).
[CrossRef] [PubMed]

Chen, D.

H. T. Huang, B. Liang, Z. Liu, X. F. Wang, D. Chen, and G. Z. Shen, “Metal oxide nanowire transistors,” J. Mater. Chem.22(27), 13428–13445 (2012).
[CrossRef]

Z. Liu, H. T. Huang, B. Liang, X. F. Wang, Z. R. Wang, D. Chen, and G. Z. Shen, “Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates,” Opt. Express20(3), 2982–2991 (2012).
[CrossRef] [PubMed]

X. F. Wang, Z. Xie, H. T. Huang, Z. Liu, D. Chen, and G. Z. Shen, “Gas sensors, thermistor and photodetector based on ZnS nanowires,” J. Mater. Chem.22(14), 6845–6850 (2012).
[CrossRef]

G. Z. Shen, J. Xu, X. F. Wang, H. T. Huang, and D. Chen, “Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications,” Adv. Mater.23(6), 771–775 (2011).
[CrossRef] [PubMed]

G. Z. Shen, B. Liang, X. F. Wang, H. T. Huang, D. Chen, and Z. L. Wang, “Ultrathin In2O3 nanowires with diameters below 4 nm: synthesis, reversible wettability switching behavior, and transparent thin-film transistor applications,” ACS Nano5(8), 6148–6155 (2011).
[CrossRef] [PubMed]

Chen, J. H.

B. J. Hansen, N. Kouklin, G. H. Lu, I. K. Lin, J. H. Chen, and X. Zhang, “Transport, analyte detection, and opto-electronic response of p-type CuO nanowires,” J. Phys. Chem. C114(6), 2440–2447 (2010).
[CrossRef]

Chen, J. J.

J. J. Chen, K. Wang, L. Hartman, and W. L. Zhou, “H2S detection by vertically aligned CuO nanowire array sensors,” J. Phys. Chem. C112(41), 16017–16021 (2008).
[CrossRef]

Chen, L.

S. Y. Li, Y. Jiang, D. Wu, B. B. Wang, Y. G. Zhang, J. W. Li, X. M. Liu, H. H. Zhong, L. Chen, and J. S. Jie, “Structure and electrical properties of p-type twin ZnTe nanowires,” Appl. Phys., A Mater. Sci. Process.102(2), 469–475 (2011).
[CrossRef]

Chen, L. J.

J. S. Tang, C. Y. Wang, F. X. Xiu, M. R. Lang, L. W. Chu, C. J. Tsai, Y. L. Chueh, L. J. Chen, and K. L. Wang, “Oxide-confined formation of germanium nanowire heterostructures for high-performance transistors,” ACS Nano5(7), 6008–6015 (2011).
[CrossRef] [PubMed]

M. P. Lu, J. H. Song, M. Y. Lu, M. T. Chen, Y. F. Gao, L. J. Chen, and Z. L. Wang, “Piezoelectric nanogenerator using p-type ZnO nanowire arrays,” Nano Lett.9(3), 1223–1227 (2009).
[CrossRef] [PubMed]

Chen, L. M.

Chen, M. T.

M. P. Lu, J. H. Song, M. Y. Lu, M. T. Chen, Y. F. Gao, L. J. Chen, and Z. L. Wang, “Piezoelectric nanogenerator using p-type ZnO nanowire arrays,” Nano Lett.9(3), 1223–1227 (2009).
[CrossRef] [PubMed]

Chen, P. C.

G. Z. Shen, B. Liang, X. F. Wang, P. C. Chen, and C. W. Zhou, “Indium oxide nanospirals made of kinked nanowires,” ACS Nano5(3), 2155–2161 (2011).
[CrossRef] [PubMed]

F. N. Ishikawa, H. K. Chang, K. M. Ryu, P. C. Chen, A. Badmaev, L. Gomez De Arco, G. Z. Shen, and C. W. Zhou, “Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates,” ACS Nano3(1), 73–79 (2009).
[CrossRef] [PubMed]

J. Zhang, P. C. Chen, G. Z. Shen, J. B. He, A. Kumbhar, C. W. Zhou, and J. Y. Fang, “P-type field-effect transistors of single-crystal zinc telluride nanobelts,” Angew. Chem. Int. Ed. Engl.47(49), 9469–9471 (2008).
[CrossRef] [PubMed]

G. Z. Shen, P. C. Chen, Y. Bando, D. Golberg, and C. W. Zhou, “Pearl-like ZnS-decorated InP nanowire heterostructures and their electric behaviors,” Chem. Mater.20(21), 6779–6783 (2008).
[CrossRef]

G. Z. Shen, P. C. Chen, Y. Bando, D. Golberg, and C. W. Zhou, “Bicrystalline Zn3P2 and Cd3P2 nanobelts and their electronic transport properties,” Chem. Mater.20(23), 7319–7323 (2008).
[CrossRef]

Cheng, J.

A. Zhang, H. K. Kim, J. Cheng, and Y. H. Lo, “Ultrahigh responsivity visible and infrared detection using silicon nanowire phototransistors,” Nano Lett.10(6), 2117–2120 (2010).
[CrossRef] [PubMed]

Chu, L. W.

J. S. Tang, C. Y. Wang, F. X. Xiu, M. R. Lang, L. W. Chu, C. J. Tsai, Y. L. Chueh, L. J. Chen, and K. L. Wang, “Oxide-confined formation of germanium nanowire heterostructures for high-performance transistors,” ACS Nano5(7), 6008–6015 (2011).
[CrossRef] [PubMed]

Chueh, Y. L.

J. S. Tang, C. Y. Wang, F. X. Xiu, M. R. Lang, L. W. Chu, C. J. Tsai, Y. L. Chueh, L. J. Chen, and K. L. Wang, “Oxide-confined formation of germanium nanowire heterostructures for high-performance transistors,” ACS Nano5(7), 6008–6015 (2011).
[CrossRef] [PubMed]

Cui, Y.

Y. Cui, Z. H. Zhong, D. L. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett.3(2), 149–152 (2003).
[CrossRef]

Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science293(5534), 1455–1457 (2001).
[CrossRef] [PubMed]

X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature409(6816), 66–69 (2001).
[CrossRef] [PubMed]

Y. Cui and C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science291(5505), 851–853 (2001).
[CrossRef] [PubMed]

Dai, L.

P. C. Wu, Y. Dai, Y. Ye, Y. Yin, and L. Dai, “Fast-speed and high-gain photodetectors of individual single crystalline Zn3P2 nanowires,” J. Mater. Chem.21(8), 2563–2567 (2011).
[CrossRef]

L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Y. Koide, H. Q. Wang, Y. Bando, and D. Golberg, “Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors,” Adv. Mater.22(29), 3161–3165 (2010).
[CrossRef] [PubMed]

Dai, Y.

P. C. Wu, Y. Dai, Y. Ye, Y. Yin, and L. Dai, “Fast-speed and high-gain photodetectors of individual single crystalline Zn3P2 nanowires,” J. Mater. Chem.21(8), 2563–2567 (2011).
[CrossRef]

Duan, X. F.

J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science293(5534), 1455–1457 (2001).
[CrossRef] [PubMed]

Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature409(6816), 66–69 (2001).
[CrossRef] [PubMed]

Fan, X.

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S.-T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater.17(11), 1795–1800 (2007).
[CrossRef]

Fan, Z. Y.

Z. Y. Fan, P. C. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C.- Lin, and H. P. Lee, “Photoluminescence and polarized photodetection of single ZnO nanowires,” Appl. Phys. Lett.85(25), 6128–6130 (2004).
[CrossRef]

Fang, J. Y.

J. Zhang, P. C. Chen, G. Z. Shen, J. B. He, A. Kumbhar, C. W. Zhou, and J. Y. Fang, “P-type field-effect transistors of single-crystal zinc telluride nanobelts,” Angew. Chem. Int. Ed. Engl.47(49), 9469–9471 (2008).
[CrossRef] [PubMed]

Fang, X. S.

T. Y. Zhai, Y. Ma, L. Li, X. S. Fang, M. Y. Liao, Y. Koide, J. N. Yao, Y. Bando, and D. Golberg, “Morphology-tunable In2Se3 nanostructures with enhanced electrical and photoelectrical performances via sulfur doping,” J. Mater. Chem.20(32), 6630–6637 (2010).
[CrossRef]

L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Y. Koide, H. Q. Wang, Y. Bando, and D. Golberg, “Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors,” Adv. Mater.22(29), 3161–3165 (2010).
[CrossRef] [PubMed]

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In₂Ge₂O₇ nanobelts,” Adv. Mater.22(45), 5145–5149 (2010).
[CrossRef] [PubMed]

Galantai, G.

A. Singh, X. Y. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett.7(10), 2999–3006 (2007).
[CrossRef] [PubMed]

A. Singh, X. Y. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett.7(10), 2999–3006 (2007).
[CrossRef] [PubMed]

Gao, Y. F.

M. P. Lu, J. H. Song, M. Y. Lu, M. T. Chen, Y. F. Gao, L. J. Chen, and Z. L. Wang, “Piezoelectric nanogenerator using p-type ZnO nanowire arrays,” Nano Lett.9(3), 1223–1227 (2009).
[CrossRef] [PubMed]

Garnett, E. C.

E. C. Garnett and P. D. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc.130, 9224–9225 (2008).
[PubMed]

Golberg, D.

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In₂Ge₂O₇ nanobelts,” Adv. Mater.22(45), 5145–5149 (2010).
[CrossRef] [PubMed]

L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Y. Koide, H. Q. Wang, Y. Bando, and D. Golberg, “Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors,” Adv. Mater.22(29), 3161–3165 (2010).
[CrossRef] [PubMed]

T. Y. Zhai, Y. Ma, L. Li, X. S. Fang, M. Y. Liao, Y. Koide, J. N. Yao, Y. Bando, and D. Golberg, “Morphology-tunable In2Se3 nanostructures with enhanced electrical and photoelectrical performances via sulfur doping,” J. Mater. Chem.20(32), 6630–6637 (2010).
[CrossRef]

G. Z. Shen, P. C. Chen, Y. Bando, D. Golberg, and C. W. Zhou, “Bicrystalline Zn3P2 and Cd3P2 nanobelts and their electronic transport properties,” Chem. Mater.20(23), 7319–7323 (2008).
[CrossRef]

G. Z. Shen, P. C. Chen, Y. Bando, D. Golberg, and C. W. Zhou, “Pearl-like ZnS-decorated InP nanowire heterostructures and their electric behaviors,” Chem. Mater.20(21), 6779–6783 (2008).
[CrossRef]

Gomez De Arco, L.

F. N. Ishikawa, H. K. Chang, K. M. Ryu, P. C. Chen, A. Badmaev, L. Gomez De Arco, G. Z. Shen, and C. W. Zhou, “Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates,” ACS Nano3(1), 73–79 (2009).
[CrossRef] [PubMed]

Gudiksen, M. S.

J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science293(5534), 1455–1457 (2001).
[CrossRef] [PubMed]

Guo, H. E.

C. Y. Wu, J. S. Jie, L Wang, Y. Q. Yu, Q. Peng, X. W. Zhang, J. J. Cai, H. E. Guo, D. Wu, and Y. Jiang, “Chlorine-doped n-type CdS nanowires with enhanced photoconductivity,” Nanotechnology 21, 505203 (2010).

Han, S.

S. Han, W. Jin, D. H. Zhang, T. Tang, C. Li, X. L. Liu, Z. Q. Liu, B. Lei, and C. W. Zhou, “Photoconduction studies on GaN nanowire transistors under UV and polarized UV illumination,” Chem. Phys. Lett.389(1-3), 176–180 (2004).
[CrossRef]

Hansen, B. J.

B. J. Hansen, N. Kouklin, G. H. Lu, I. K. Lin, J. H. Chen, and X. Zhang, “Transport, analyte detection, and opto-electronic response of p-type CuO nanowires,” J. Phys. Chem. C114(6), 2440–2447 (2010).
[CrossRef]

Hartman, L.

J. J. Chen, K. Wang, L. Hartman, and W. L. Zhou, “H2S detection by vertically aligned CuO nanowire array sensors,” J. Phys. Chem. C112(41), 16017–16021 (2008).
[CrossRef]

He, J. B.

J. Zhang, P. C. Chen, G. Z. Shen, J. B. He, A. Kumbhar, C. W. Zhou, and J. Y. Fang, “P-type field-effect transistors of single-crystal zinc telluride nanobelts,” Angew. Chem. Int. Ed. Engl.47(49), 9469–9471 (2008).
[CrossRef] [PubMed]

Huang, H. T.

X. F. Wang, Z. Xie, H. T. Huang, Z. Liu, D. Chen, and G. Z. Shen, “Gas sensors, thermistor and photodetector based on ZnS nanowires,” J. Mater. Chem.22(14), 6845–6850 (2012).
[CrossRef]

H. T. Huang, B. Liang, Z. Liu, X. F. Wang, D. Chen, and G. Z. Shen, “Metal oxide nanowire transistors,” J. Mater. Chem.22(27), 13428–13445 (2012).
[CrossRef]

Z. Liu, H. T. Huang, B. Liang, X. F. Wang, Z. R. Wang, D. Chen, and G. Z. Shen, “Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates,” Opt. Express20(3), 2982–2991 (2012).
[CrossRef] [PubMed]

G. Z. Shen, B. Liang, X. F. Wang, H. T. Huang, D. Chen, and Z. L. Wang, “Ultrathin In2O3 nanowires with diameters below 4 nm: synthesis, reversible wettability switching behavior, and transparent thin-film transistor applications,” ACS Nano5(8), 6148–6155 (2011).
[CrossRef] [PubMed]

G. Z. Shen, J. Xu, X. F. Wang, H. T. Huang, and D. Chen, “Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications,” Adv. Mater.23(6), 771–775 (2011).
[CrossRef] [PubMed]

Huang, Y.

Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature409(6816), 66–69 (2001).
[CrossRef] [PubMed]

Ishikawa, F. N.

F. N. Ishikawa, H. K. Chang, K. M. Ryu, P. C. Chen, A. Badmaev, L. Gomez De Arco, G. Z. Shen, and C. W. Zhou, “Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates,” ACS Nano3(1), 73–79 (2009).
[CrossRef] [PubMed]

Jena, D.

A. Singh, X. Y. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett.7(10), 2999–3006 (2007).
[CrossRef] [PubMed]

A. Singh, X. Y. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett.7(10), 2999–3006 (2007).
[CrossRef] [PubMed]

Jiang, C. B.

Q. F. Meng, C. B. Jiang, and S. X. Mao, “Ohmic contacts and photoconductivity of individual ZnTe nanowires,” Appl. Phys. Lett.4, 043111 (2009).

Jiang, P.

X. W. Zhang, J. S. Jie, Z. Wang, C. Y. Wu, L. Wang, Q. Peng, Y. Q. Yu, P. Jiang, and C. Xie, “Surface induced negative photoconductivity in p-type ZnSe: Bi nanowires and their nano-optoelectronic applications,” J. Mater. Chem.21(18), 6736–6741 (2011).
[CrossRef]

Jiang, Y.

D. Wu, Y. Jiang, Y. G. Zhang, J. W. Li, Y. Q. Yu, Z. F. Zhu, L. Wang, C. Y. Wu, L. B. Luo, and J. S. Jie, “Device structure-dependent field-effect and photoresponse performances of p-type ZnTe:Sb nanoribbons,” J. Mater. Chem.22(13), 6206–6212 (2012).
[CrossRef]

S. Y. Li, Y. Jiang, D. Wu, B. B. Wang, Y. G. Zhang, J. W. Li, X. M. Liu, H. H. Zhong, L. Chen, and J. S. Jie, “Structure and electrical properties of p-type twin ZnTe nanowires,” Appl. Phys., A Mater. Sci. Process.102(2), 469–475 (2011).
[CrossRef]

C. Y. Wu, J. S. Jie, L Wang, Y. Q. Yu, Q. Peng, X. W. Zhang, J. J. Cai, H. E. Guo, D. Wu, and Y. Jiang, “Chlorine-doped n-type CdS nanowires with enhanced photoconductivity,” Nanotechnology 21, 505203 (2010).

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S.-T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater.17(11), 1795–1800 (2007).
[CrossRef]

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett.6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

Jie, J. S.

D. Wu, Y. Jiang, Y. G. Zhang, J. W. Li, Y. Q. Yu, Z. F. Zhu, L. Wang, C. Y. Wu, L. B. Luo, and J. S. Jie, “Device structure-dependent field-effect and photoresponse performances of p-type ZnTe:Sb nanoribbons,” J. Mater. Chem.22(13), 6206–6212 (2012).
[CrossRef]

S. Y. Li, Y. Jiang, D. Wu, B. B. Wang, Y. G. Zhang, J. W. Li, X. M. Liu, H. H. Zhong, L. Chen, and J. S. Jie, “Structure and electrical properties of p-type twin ZnTe nanowires,” Appl. Phys., A Mater. Sci. Process.102(2), 469–475 (2011).
[CrossRef]

X. W. Zhang, J. S. Jie, Z. Wang, C. Y. Wu, L. Wang, Q. Peng, Y. Q. Yu, P. Jiang, and C. Xie, “Surface induced negative photoconductivity in p-type ZnSe: Bi nanowires and their nano-optoelectronic applications,” J. Mater. Chem.21(18), 6736–6741 (2011).
[CrossRef]

Y. L. Cao, Z. T. Liu, L. M. Chen, Y. B. Tang, L. B. Luo, J. S. Jie, W. J. Zhang, S. T. Lee, and C. S. Lee, “Single-crystalline ZnTe nanowires for application as high-performance green/ultraviolet photodetector,” Opt. Express19(7), 6100–6108 (2011).
[CrossRef] [PubMed]

C. Y. Wu, J. S. Jie, L Wang, Y. Q. Yu, Q. Peng, X. W. Zhang, J. J. Cai, H. E. Guo, D. Wu, and Y. Jiang, “Chlorine-doped n-type CdS nanowires with enhanced photoconductivity,” Nanotechnology 21, 505203 (2010).

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S.-T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater.17(11), 1795–1800 (2007).
[CrossRef]

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett.6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

Jin, W.

S. Han, W. Jin, D. H. Zhang, T. Tang, C. Li, X. L. Liu, Z. Q. Liu, B. Lei, and C. W. Zhou, “Photoconduction studies on GaN nanowire transistors under UV and polarized UV illumination,” Chem. Phys. Lett.389(1-3), 176–180 (2004).
[CrossRef]

Kim, H. K.

A. Zhang, H. K. Kim, J. Cheng, and Y. H. Lo, “Ultrahigh responsivity visible and infrared detection using silicon nanowire phototransistors,” Nano Lett.10(6), 2117–2120 (2010).
[CrossRef] [PubMed]

Kim, K. H.

Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

Koide, Y.

T. Y. Zhai, Y. Ma, L. Li, X. S. Fang, M. Y. Liao, Y. Koide, J. N. Yao, Y. Bando, and D. Golberg, “Morphology-tunable In2Se3 nanostructures with enhanced electrical and photoelectrical performances via sulfur doping,” J. Mater. Chem.20(32), 6630–6637 (2010).
[CrossRef]

L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Y. Koide, H. Q. Wang, Y. Bando, and D. Golberg, “Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors,” Adv. Mater.22(29), 3161–3165 (2010).
[CrossRef] [PubMed]

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In₂Ge₂O₇ nanobelts,” Adv. Mater.22(45), 5145–5149 (2010).
[CrossRef] [PubMed]

Kouklin, N.

B. J. Hansen, N. Kouklin, G. H. Lu, I. K. Lin, J. H. Chen, and X. Zhang, “Transport, analyte detection, and opto-electronic response of p-type CuO nanowires,” J. Phys. Chem. C114(6), 2440–2447 (2010).
[CrossRef]

Kumbhar, A.

J. Zhang, P. C. Chen, G. Z. Shen, J. B. He, A. Kumbhar, C. W. Zhou, and J. Y. Fang, “P-type field-effect transistors of single-crystal zinc telluride nanobelts,” Angew. Chem. Int. Ed. Engl.47(49), 9469–9471 (2008).
[CrossRef] [PubMed]

Kuno, M.

A. Singh, X. Y. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett.7(10), 2999–3006 (2007).
[CrossRef] [PubMed]

A. Singh, X. Y. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett.7(10), 2999–3006 (2007).
[CrossRef] [PubMed]

Lang, M. R.

J. S. Tang, C. Y. Wang, F. X. Xiu, M. R. Lang, L. W. Chu, C. J. Tsai, Y. L. Chueh, L. J. Chen, and K. L. Wang, “Oxide-confined formation of germanium nanowire heterostructures for high-performance transistors,” ACS Nano5(7), 6008–6015 (2011).
[CrossRef] [PubMed]

Lauhon, L. J.

Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

Lee, C. S.

Lee, H. P.

Z. Y. Fan, P. C. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C.- Lin, and H. P. Lee, “Photoluminescence and polarized photodetection of single ZnO nanowires,” Appl. Phys. Lett.85(25), 6128–6130 (2004).
[CrossRef]

Lee, P. S.

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In₂Ge₂O₇ nanobelts,” Adv. Mater.22(45), 5145–5149 (2010).
[CrossRef] [PubMed]

Lee, S. T.

Lee, S.-T.

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S.-T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater.17(11), 1795–1800 (2007).
[CrossRef]

Lei, B.

S. Han, W. Jin, D. H. Zhang, T. Tang, C. Li, X. L. Liu, Z. Q. Liu, B. Lei, and C. W. Zhou, “Photoconduction studies on GaN nanowire transistors under UV and polarized UV illumination,” Chem. Phys. Lett.389(1-3), 176–180 (2004).
[CrossRef]

Li, C.

S. Han, W. Jin, D. H. Zhang, T. Tang, C. Li, X. L. Liu, Z. Q. Liu, B. Lei, and C. W. Zhou, “Photoconduction studies on GaN nanowire transistors under UV and polarized UV illumination,” Chem. Phys. Lett.389(1-3), 176–180 (2004).
[CrossRef]

Li, J. W.

D. Wu, Y. Jiang, Y. G. Zhang, J. W. Li, Y. Q. Yu, Z. F. Zhu, L. Wang, C. Y. Wu, L. B. Luo, and J. S. Jie, “Device structure-dependent field-effect and photoresponse performances of p-type ZnTe:Sb nanoribbons,” J. Mater. Chem.22(13), 6206–6212 (2012).
[CrossRef]

S. Y. Li, Y. Jiang, D. Wu, B. B. Wang, Y. G. Zhang, J. W. Li, X. M. Liu, H. H. Zhong, L. Chen, and J. S. Jie, “Structure and electrical properties of p-type twin ZnTe nanowires,” Appl. Phys., A Mater. Sci. Process.102(2), 469–475 (2011).
[CrossRef]

Li, L.

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In₂Ge₂O₇ nanobelts,” Adv. Mater.22(45), 5145–5149 (2010).
[CrossRef] [PubMed]

L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Y. Koide, H. Q. Wang, Y. Bando, and D. Golberg, “Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors,” Adv. Mater.22(29), 3161–3165 (2010).
[CrossRef] [PubMed]

T. Y. Zhai, Y. Ma, L. Li, X. S. Fang, M. Y. Liao, Y. Koide, J. N. Yao, Y. Bando, and D. Golberg, “Morphology-tunable In2Se3 nanostructures with enhanced electrical and photoelectrical performances via sulfur doping,” J. Mater. Chem.20(32), 6630–6637 (2010).
[CrossRef]

Li, S. Y.

S. Y. Li, Y. Jiang, D. Wu, B. B. Wang, Y. G. Zhang, J. W. Li, X. M. Liu, H. H. Zhong, L. Chen, and J. S. Jie, “Structure and electrical properties of p-type twin ZnTe nanowires,” Appl. Phys., A Mater. Sci. Process.102(2), 469–475 (2011).
[CrossRef]

Li, X. Y.

A. Singh, X. Y. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett.7(10), 2999–3006 (2007).
[CrossRef] [PubMed]

A. Singh, X. Y. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett.7(10), 2999–3006 (2007).
[CrossRef] [PubMed]

Li, Y. Q.

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett.6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

Li, Z.

Z. Li, J. Salfi, C. D. Souza, P. Sun, S. V. Nair, and H. E. Ruda, “Room temperature single nanowire ZnTe photoconductors grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 97, 063510 (2010).

Z. Li, J. Salfi, C. D. Souza, P. Sun, S. V. Nair, and H. E. Ruda, “Room temperature single nanowire ZnTe photoconductors grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 97, 063510 (2010).

Liang, B.

Z. Liu, H. T. Huang, B. Liang, X. F. Wang, Z. R. Wang, D. Chen, and G. Z. Shen, “Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates,” Opt. Express20(3), 2982–2991 (2012).
[CrossRef] [PubMed]

H. T. Huang, B. Liang, Z. Liu, X. F. Wang, D. Chen, and G. Z. Shen, “Metal oxide nanowire transistors,” J. Mater. Chem.22(27), 13428–13445 (2012).
[CrossRef]

G. Z. Shen, B. Liang, X. F. Wang, H. T. Huang, D. Chen, and Z. L. Wang, “Ultrathin In2O3 nanowires with diameters below 4 nm: synthesis, reversible wettability switching behavior, and transparent thin-film transistor applications,” ACS Nano5(8), 6148–6155 (2011).
[CrossRef] [PubMed]

G. Z. Shen, B. Liang, X. F. Wang, P. C. Chen, and C. W. Zhou, “Indium oxide nanospirals made of kinked nanowires,” ACS Nano5(3), 2155–2161 (2011).
[CrossRef] [PubMed]

Liao, M. Y.

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In₂Ge₂O₇ nanobelts,” Adv. Mater.22(45), 5145–5149 (2010).
[CrossRef] [PubMed]

L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Y. Koide, H. Q. Wang, Y. Bando, and D. Golberg, “Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors,” Adv. Mater.22(29), 3161–3165 (2010).
[CrossRef] [PubMed]

T. Y. Zhai, Y. Ma, L. Li, X. S. Fang, M. Y. Liao, Y. Koide, J. N. Yao, Y. Bando, and D. Golberg, “Morphology-tunable In2Se3 nanostructures with enhanced electrical and photoelectrical performances via sulfur doping,” J. Mater. Chem.20(32), 6630–6637 (2010).
[CrossRef]

Lieber, C. M.

Z. H. Zhong, F. Qian, D. L. Wang, and C. M. Lieber, “Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices,” Nano Lett.3(3), 343–346 (2003).
[CrossRef]

Y. Cui, Z. H. Zhong, D. L. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett.3(2), 149–152 (2003).
[CrossRef]

J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science293(5534), 1455–1457 (2001).
[CrossRef] [PubMed]

Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature409(6816), 66–69 (2001).
[CrossRef] [PubMed]

Y. Cui and C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science291(5505), 851–853 (2001).
[CrossRef] [PubMed]

Lin, C.-

Z. Y. Fan, P. C. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C.- Lin, and H. P. Lee, “Photoluminescence and polarized photodetection of single ZnO nanowires,” Appl. Phys. Lett.85(25), 6128–6130 (2004).
[CrossRef]

Lin, I. K.

B. J. Hansen, N. Kouklin, G. H. Lu, I. K. Lin, J. H. Chen, and X. Zhang, “Transport, analyte detection, and opto-electronic response of p-type CuO nanowires,” J. Phys. Chem. C114(6), 2440–2447 (2010).
[CrossRef]

Lin, X.

Y. C. Che, C. Wang, J. Liu, B. L. Liu, X. Lin, J. Parker, C. Beasley, H. S. Wong, and C. Zhou, “Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock,” ACS Nano6(8), 7454–7462 (2012).
[CrossRef] [PubMed]

Liu, B. L.

Y. C. Che, C. Wang, J. Liu, B. L. Liu, X. Lin, J. Parker, C. Beasley, H. S. Wong, and C. Zhou, “Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock,” ACS Nano6(8), 7454–7462 (2012).
[CrossRef] [PubMed]

Liu, C.

C. Liu, J. W. Sun, J. Y. Tang, and P. D. Yang, “Zn-doped p- Type gallium phosphide nanowire photocathodes from a surfactant-free solution synthesis,” Nano Lett.12(10), 5407–5411 (2012).
[CrossRef] [PubMed]

Liu, J.

Y. C. Che, C. Wang, J. Liu, B. L. Liu, X. Lin, J. Parker, C. Beasley, H. S. Wong, and C. Zhou, “Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock,” ACS Nano6(8), 7454–7462 (2012).
[CrossRef] [PubMed]

Liu, X. L.

S. Han, W. Jin, D. H. Zhang, T. Tang, C. Li, X. L. Liu, Z. Q. Liu, B. Lei, and C. W. Zhou, “Photoconduction studies on GaN nanowire transistors under UV and polarized UV illumination,” Chem. Phys. Lett.389(1-3), 176–180 (2004).
[CrossRef]

Liu, X. M.

S. Y. Li, Y. Jiang, D. Wu, B. B. Wang, Y. G. Zhang, J. W. Li, X. M. Liu, H. H. Zhong, L. Chen, and J. S. Jie, “Structure and electrical properties of p-type twin ZnTe nanowires,” Appl. Phys., A Mater. Sci. Process.102(2), 469–475 (2011).
[CrossRef]

Liu, Z.

H. T. Huang, B. Liang, Z. Liu, X. F. Wang, D. Chen, and G. Z. Shen, “Metal oxide nanowire transistors,” J. Mater. Chem.22(27), 13428–13445 (2012).
[CrossRef]

Z. Liu, H. T. Huang, B. Liang, X. F. Wang, Z. R. Wang, D. Chen, and G. Z. Shen, “Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates,” Opt. Express20(3), 2982–2991 (2012).
[CrossRef] [PubMed]

X. F. Wang, Z. Xie, H. T. Huang, Z. Liu, D. Chen, and G. Z. Shen, “Gas sensors, thermistor and photodetector based on ZnS nanowires,” J. Mater. Chem.22(14), 6845–6850 (2012).
[CrossRef]

Liu, Z. Q.

S. Han, W. Jin, D. H. Zhang, T. Tang, C. Li, X. L. Liu, Z. Q. Liu, B. Lei, and C. W. Zhou, “Photoconduction studies on GaN nanowire transistors under UV and polarized UV illumination,” Chem. Phys. Lett.389(1-3), 176–180 (2004).
[CrossRef]

Liu, Z. T.

Lo, Y. H.

A. Zhang, H. K. Kim, J. Cheng, and Y. H. Lo, “Ultrahigh responsivity visible and infrared detection using silicon nanowire phototransistors,” Nano Lett.10(6), 2117–2120 (2010).
[CrossRef] [PubMed]

Lu, G. H.

B. J. Hansen, N. Kouklin, G. H. Lu, I. K. Lin, J. H. Chen, and X. Zhang, “Transport, analyte detection, and opto-electronic response of p-type CuO nanowires,” J. Phys. Chem. C114(6), 2440–2447 (2010).
[CrossRef]

Lu, J. G.

Z. Y. Fan, P. C. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C.- Lin, and H. P. Lee, “Photoluminescence and polarized photodetection of single ZnO nanowires,” Appl. Phys. Lett.85(25), 6128–6130 (2004).
[CrossRef]

Lu, M. P.

M. P. Lu, J. H. Song, M. Y. Lu, M. T. Chen, Y. F. Gao, L. J. Chen, and Z. L. Wang, “Piezoelectric nanogenerator using p-type ZnO nanowire arrays,” Nano Lett.9(3), 1223–1227 (2009).
[CrossRef] [PubMed]

Lu, M. Y.

M. P. Lu, J. H. Song, M. Y. Lu, M. T. Chen, Y. F. Gao, L. J. Chen, and Z. L. Wang, “Piezoelectric nanogenerator using p-type ZnO nanowire arrays,” Nano Lett.9(3), 1223–1227 (2009).
[CrossRef] [PubMed]

Luo, L. B.

D. Wu, Y. Jiang, Y. G. Zhang, J. W. Li, Y. Q. Yu, Z. F. Zhu, L. Wang, C. Y. Wu, L. B. Luo, and J. S. Jie, “Device structure-dependent field-effect and photoresponse performances of p-type ZnTe:Sb nanoribbons,” J. Mater. Chem.22(13), 6206–6212 (2012).
[CrossRef]

Y. L. Cao, Z. T. Liu, L. M. Chen, Y. B. Tang, L. B. Luo, J. S. Jie, W. J. Zhang, S. T. Lee, and C. S. Lee, “Single-crystalline ZnTe nanowires for application as high-performance green/ultraviolet photodetector,” Opt. Express19(7), 6100–6108 (2011).
[CrossRef] [PubMed]

Ma, Y.

T. Y. Zhai, Y. Ma, L. Li, X. S. Fang, M. Y. Liao, Y. Koide, J. N. Yao, Y. Bando, and D. Golberg, “Morphology-tunable In2Se3 nanostructures with enhanced electrical and photoelectrical performances via sulfur doping,” J. Mater. Chem.20(32), 6630–6637 (2010).
[CrossRef]

Mao, S. X.

Q. F. Meng, C. B. Jiang, and S. X. Mao, “Ohmic contacts and photoconductivity of individual ZnTe nanowires,” Appl. Phys. Lett.4, 043111 (2009).

Meng, Q. F.

Q. F. Meng, C. B. Jiang, and S. X. Mao, “Ohmic contacts and photoconductivity of individual ZnTe nanowires,” Appl. Phys. Lett.4, 043111 (2009).

Meng, X. M.

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S.-T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater.17(11), 1795–1800 (2007).
[CrossRef]

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett.6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

Nair, S. V.

Z. Li, J. Salfi, C. D. Souza, P. Sun, S. V. Nair, and H. E. Ruda, “Room temperature single nanowire ZnTe photoconductors grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 97, 063510 (2010).

Z. Li, J. Salfi, C. D. Souza, P. Sun, S. V. Nair, and H. E. Ruda, “Room temperature single nanowire ZnTe photoconductors grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 97, 063510 (2010).

Parker, J.

Y. C. Che, C. Wang, J. Liu, B. L. Liu, X. Lin, J. Parker, C. Beasley, H. S. Wong, and C. Zhou, “Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock,” ACS Nano6(8), 7454–7462 (2012).
[CrossRef] [PubMed]

Peng, Q.

X. W. Zhang, J. S. Jie, Z. Wang, C. Y. Wu, L. Wang, Q. Peng, Y. Q. Yu, P. Jiang, and C. Xie, “Surface induced negative photoconductivity in p-type ZnSe: Bi nanowires and their nano-optoelectronic applications,” J. Mater. Chem.21(18), 6736–6741 (2011).
[CrossRef]

C. Y. Wu, J. S. Jie, L Wang, Y. Q. Yu, Q. Peng, X. W. Zhang, J. J. Cai, H. E. Guo, D. Wu, and Y. Jiang, “Chlorine-doped n-type CdS nanowires with enhanced photoconductivity,” Nanotechnology 21, 505203 (2010).

Penner, R. M.

Z. Y. Fan, P. C. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C.- Lin, and H. P. Lee, “Photoluminescence and polarized photodetection of single ZnO nanowires,” Appl. Phys. Lett.85(25), 6128–6130 (2004).
[CrossRef]

Protasenko, V.

A. Singh, X. Y. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett.7(10), 2999–3006 (2007).
[CrossRef] [PubMed]

A. Singh, X. Y. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett.7(10), 2999–3006 (2007).
[CrossRef] [PubMed]

Qian, F.

Z. H. Zhong, F. Qian, D. L. Wang, and C. M. Lieber, “Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices,” Nano Lett.3(3), 343–346 (2003).
[CrossRef]

Ruda, H. E.

Z. Li, J. Salfi, C. D. Souza, P. Sun, S. V. Nair, and H. E. Ruda, “Room temperature single nanowire ZnTe photoconductors grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 97, 063510 (2010).

Z. Li, J. Salfi, C. D. Souza, P. Sun, S. V. Nair, and H. E. Ruda, “Room temperature single nanowire ZnTe photoconductors grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 97, 063510 (2010).

Ryu, K. M.

F. N. Ishikawa, H. K. Chang, K. M. Ryu, P. C. Chen, A. Badmaev, L. Gomez De Arco, G. Z. Shen, and C. W. Zhou, “Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates,” ACS Nano3(1), 73–79 (2009).
[CrossRef] [PubMed]

Salfi, J.

Z. Li, J. Salfi, C. D. Souza, P. Sun, S. V. Nair, and H. E. Ruda, “Room temperature single nanowire ZnTe photoconductors grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 97, 063510 (2010).

Z. Li, J. Salfi, C. D. Souza, P. Sun, S. V. Nair, and H. E. Ruda, “Room temperature single nanowire ZnTe photoconductors grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 97, 063510 (2010).

Shen, G. Z.

X. F. Wang, Z. Xie, H. T. Huang, Z. Liu, D. Chen, and G. Z. Shen, “Gas sensors, thermistor and photodetector based on ZnS nanowires,” J. Mater. Chem.22(14), 6845–6850 (2012).
[CrossRef]

Z. Liu, H. T. Huang, B. Liang, X. F. Wang, Z. R. Wang, D. Chen, and G. Z. Shen, “Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates,” Opt. Express20(3), 2982–2991 (2012).
[CrossRef] [PubMed]

H. T. Huang, B. Liang, Z. Liu, X. F. Wang, D. Chen, and G. Z. Shen, “Metal oxide nanowire transistors,” J. Mater. Chem.22(27), 13428–13445 (2012).
[CrossRef]

G. Z. Shen, B. Liang, X. F. Wang, H. T. Huang, D. Chen, and Z. L. Wang, “Ultrathin In2O3 nanowires with diameters below 4 nm: synthesis, reversible wettability switching behavior, and transparent thin-film transistor applications,” ACS Nano5(8), 6148–6155 (2011).
[CrossRef] [PubMed]

G. Z. Shen, B. Liang, X. F. Wang, P. C. Chen, and C. W. Zhou, “Indium oxide nanospirals made of kinked nanowires,” ACS Nano5(3), 2155–2161 (2011).
[CrossRef] [PubMed]

G. Z. Shen, J. Xu, X. F. Wang, H. T. Huang, and D. Chen, “Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications,” Adv. Mater.23(6), 771–775 (2011).
[CrossRef] [PubMed]

F. N. Ishikawa, H. K. Chang, K. M. Ryu, P. C. Chen, A. Badmaev, L. Gomez De Arco, G. Z. Shen, and C. W. Zhou, “Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates,” ACS Nano3(1), 73–79 (2009).
[CrossRef] [PubMed]

J. Zhang, P. C. Chen, G. Z. Shen, J. B. He, A. Kumbhar, C. W. Zhou, and J. Y. Fang, “P-type field-effect transistors of single-crystal zinc telluride nanobelts,” Angew. Chem. Int. Ed. Engl.47(49), 9469–9471 (2008).
[CrossRef] [PubMed]

G. Z. Shen, P. C. Chen, Y. Bando, D. Golberg, and C. W. Zhou, “Pearl-like ZnS-decorated InP nanowire heterostructures and their electric behaviors,” Chem. Mater.20(21), 6779–6783 (2008).
[CrossRef]

G. Z. Shen, P. C. Chen, Y. Bando, D. Golberg, and C. W. Zhou, “Bicrystalline Zn3P2 and Cd3P2 nanobelts and their electronic transport properties,” Chem. Mater.20(23), 7319–7323 (2008).
[CrossRef]

Singh, A.

A. Singh, X. Y. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett.7(10), 2999–3006 (2007).
[CrossRef] [PubMed]

A. Singh, X. Y. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett.7(10), 2999–3006 (2007).
[CrossRef] [PubMed]

Song, J. H.

M. P. Lu, J. H. Song, M. Y. Lu, M. T. Chen, Y. F. Gao, L. J. Chen, and Z. L. Wang, “Piezoelectric nanogenerator using p-type ZnO nanowire arrays,” Nano Lett.9(3), 1223–1227 (2009).
[CrossRef] [PubMed]

Souza, C. D.

Z. Li, J. Salfi, C. D. Souza, P. Sun, S. V. Nair, and H. E. Ruda, “Room temperature single nanowire ZnTe photoconductors grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 97, 063510 (2010).

Z. Li, J. Salfi, C. D. Souza, P. Sun, S. V. Nair, and H. E. Ruda, “Room temperature single nanowire ZnTe photoconductors grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 97, 063510 (2010).

Sun, J. W.

C. Liu, J. W. Sun, J. Y. Tang, and P. D. Yang, “Zn-doped p- Type gallium phosphide nanowire photocathodes from a surfactant-free solution synthesis,” Nano Lett.12(10), 5407–5411 (2012).
[CrossRef] [PubMed]

Sun, P.

Z. Li, J. Salfi, C. D. Souza, P. Sun, S. V. Nair, and H. E. Ruda, “Room temperature single nanowire ZnTe photoconductors grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 97, 063510 (2010).

Z. Li, J. Salfi, C. D. Souza, P. Sun, S. V. Nair, and H. E. Ruda, “Room temperature single nanowire ZnTe photoconductors grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 97, 063510 (2010).

Tang, J. S.

J. S. Tang, C. Y. Wang, F. X. Xiu, M. R. Lang, L. W. Chu, C. J. Tsai, Y. L. Chueh, L. J. Chen, and K. L. Wang, “Oxide-confined formation of germanium nanowire heterostructures for high-performance transistors,” ACS Nano5(7), 6008–6015 (2011).
[CrossRef] [PubMed]

Tang, J. Y.

C. Liu, J. W. Sun, J. Y. Tang, and P. D. Yang, “Zn-doped p- Type gallium phosphide nanowire photocathodes from a surfactant-free solution synthesis,” Nano Lett.12(10), 5407–5411 (2012).
[CrossRef] [PubMed]

Tang, T.

S. Han, W. Jin, D. H. Zhang, T. Tang, C. Li, X. L. Liu, Z. Q. Liu, B. Lei, and C. W. Zhou, “Photoconduction studies on GaN nanowire transistors under UV and polarized UV illumination,” Chem. Phys. Lett.389(1-3), 176–180 (2004).
[CrossRef]

Tang, Y. B.

Tsai, C. J.

J. S. Tang, C. Y. Wang, F. X. Xiu, M. R. Lang, L. W. Chu, C. J. Tsai, Y. L. Chueh, L. J. Chen, and K. L. Wang, “Oxide-confined formation of germanium nanowire heterostructures for high-performance transistors,” ACS Nano5(7), 6008–6015 (2011).
[CrossRef] [PubMed]

Walter, E. C.

Z. Y. Fan, P. C. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C.- Lin, and H. P. Lee, “Photoluminescence and polarized photodetection of single ZnO nanowires,” Appl. Phys. Lett.85(25), 6128–6130 (2004).
[CrossRef]

Wang, B. B.

S. Y. Li, Y. Jiang, D. Wu, B. B. Wang, Y. G. Zhang, J. W. Li, X. M. Liu, H. H. Zhong, L. Chen, and J. S. Jie, “Structure and electrical properties of p-type twin ZnTe nanowires,” Appl. Phys., A Mater. Sci. Process.102(2), 469–475 (2011).
[CrossRef]

Wang, C.

J. L. Zhang, C. Wang, and C. W. Zhou, “Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics,” ACS Nano6(8), 7412–7419 (2012).
[CrossRef] [PubMed]

Y. C. Che, C. Wang, J. Liu, B. L. Liu, X. Lin, J. Parker, C. Beasley, H. S. Wong, and C. Zhou, “Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock,” ACS Nano6(8), 7454–7462 (2012).
[CrossRef] [PubMed]

Wang, C. Y.

J. S. Tang, C. Y. Wang, F. X. Xiu, M. R. Lang, L. W. Chu, C. J. Tsai, Y. L. Chueh, L. J. Chen, and K. L. Wang, “Oxide-confined formation of germanium nanowire heterostructures for high-performance transistors,” ACS Nano5(7), 6008–6015 (2011).
[CrossRef] [PubMed]

Wang, D. L.

Y. Cui, Z. H. Zhong, D. L. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett.3(2), 149–152 (2003).
[CrossRef]

Z. H. Zhong, F. Qian, D. L. Wang, and C. M. Lieber, “Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices,” Nano Lett.3(3), 343–346 (2003).
[CrossRef]

Wang, H. Q.

L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Y. Koide, H. Q. Wang, Y. Bando, and D. Golberg, “Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors,” Adv. Mater.22(29), 3161–3165 (2010).
[CrossRef] [PubMed]

Wang, J. F.

J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science293(5534), 1455–1457 (2001).
[CrossRef] [PubMed]

X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature409(6816), 66–69 (2001).
[CrossRef] [PubMed]

Wang, K.

J. J. Chen, K. Wang, L. Hartman, and W. L. Zhou, “H2S detection by vertically aligned CuO nanowire array sensors,” J. Phys. Chem. C112(41), 16017–16021 (2008).
[CrossRef]

Wang, K. L.

J. S. Tang, C. Y. Wang, F. X. Xiu, M. R. Lang, L. W. Chu, C. J. Tsai, Y. L. Chueh, L. J. Chen, and K. L. Wang, “Oxide-confined formation of germanium nanowire heterostructures for high-performance transistors,” ACS Nano5(7), 6008–6015 (2011).
[CrossRef] [PubMed]

Wang, L

C. Y. Wu, J. S. Jie, L Wang, Y. Q. Yu, Q. Peng, X. W. Zhang, J. J. Cai, H. E. Guo, D. Wu, and Y. Jiang, “Chlorine-doped n-type CdS nanowires with enhanced photoconductivity,” Nanotechnology 21, 505203 (2010).

Wang, L.

D. Wu, Y. Jiang, Y. G. Zhang, J. W. Li, Y. Q. Yu, Z. F. Zhu, L. Wang, C. Y. Wu, L. B. Luo, and J. S. Jie, “Device structure-dependent field-effect and photoresponse performances of p-type ZnTe:Sb nanoribbons,” J. Mater. Chem.22(13), 6206–6212 (2012).
[CrossRef]

X. W. Zhang, J. S. Jie, Z. Wang, C. Y. Wu, L. Wang, Q. Peng, Y. Q. Yu, P. Jiang, and C. Xie, “Surface induced negative photoconductivity in p-type ZnSe: Bi nanowires and their nano-optoelectronic applications,” J. Mater. Chem.21(18), 6736–6741 (2011).
[CrossRef]

Wang, W. U.

Y. Cui, Z. H. Zhong, D. L. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett.3(2), 149–152 (2003).
[CrossRef]

Wang, X. F.

X. F. Wang, Z. Xie, H. T. Huang, Z. Liu, D. Chen, and G. Z. Shen, “Gas sensors, thermistor and photodetector based on ZnS nanowires,” J. Mater. Chem.22(14), 6845–6850 (2012).
[CrossRef]

Z. Liu, H. T. Huang, B. Liang, X. F. Wang, Z. R. Wang, D. Chen, and G. Z. Shen, “Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates,” Opt. Express20(3), 2982–2991 (2012).
[CrossRef] [PubMed]

H. T. Huang, B. Liang, Z. Liu, X. F. Wang, D. Chen, and G. Z. Shen, “Metal oxide nanowire transistors,” J. Mater. Chem.22(27), 13428–13445 (2012).
[CrossRef]

G. Z. Shen, B. Liang, X. F. Wang, H. T. Huang, D. Chen, and Z. L. Wang, “Ultrathin In2O3 nanowires with diameters below 4 nm: synthesis, reversible wettability switching behavior, and transparent thin-film transistor applications,” ACS Nano5(8), 6148–6155 (2011).
[CrossRef] [PubMed]

G. Z. Shen, B. Liang, X. F. Wang, P. C. Chen, and C. W. Zhou, “Indium oxide nanospirals made of kinked nanowires,” ACS Nano5(3), 2155–2161 (2011).
[CrossRef] [PubMed]

G. Z. Shen, J. Xu, X. F. Wang, H. T. Huang, and D. Chen, “Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications,” Adv. Mater.23(6), 771–775 (2011).
[CrossRef] [PubMed]

Wang, Z.

X. W. Zhang, J. S. Jie, Z. Wang, C. Y. Wu, L. Wang, Q. Peng, Y. Q. Yu, P. Jiang, and C. Xie, “Surface induced negative photoconductivity in p-type ZnSe: Bi nanowires and their nano-optoelectronic applications,” J. Mater. Chem.21(18), 6736–6741 (2011).
[CrossRef]

Wang, Z. L.

G. Z. Shen, B. Liang, X. F. Wang, H. T. Huang, D. Chen, and Z. L. Wang, “Ultrathin In2O3 nanowires with diameters below 4 nm: synthesis, reversible wettability switching behavior, and transparent thin-film transistor applications,” ACS Nano5(8), 6148–6155 (2011).
[CrossRef] [PubMed]

M. P. Lu, J. H. Song, M. Y. Lu, M. T. Chen, Y. F. Gao, L. J. Chen, and Z. L. Wang, “Piezoelectric nanogenerator using p-type ZnO nanowire arrays,” Nano Lett.9(3), 1223–1227 (2009).
[CrossRef] [PubMed]

Wang, Z. R.

Wong, H. S.

Y. C. Che, C. Wang, J. Liu, B. L. Liu, X. Lin, J. Parker, C. Beasley, H. S. Wong, and C. Zhou, “Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock,” ACS Nano6(8), 7454–7462 (2012).
[CrossRef] [PubMed]

Wu, C. Y.

D. Wu, Y. Jiang, Y. G. Zhang, J. W. Li, Y. Q. Yu, Z. F. Zhu, L. Wang, C. Y. Wu, L. B. Luo, and J. S. Jie, “Device structure-dependent field-effect and photoresponse performances of p-type ZnTe:Sb nanoribbons,” J. Mater. Chem.22(13), 6206–6212 (2012).
[CrossRef]

X. W. Zhang, J. S. Jie, Z. Wang, C. Y. Wu, L. Wang, Q. Peng, Y. Q. Yu, P. Jiang, and C. Xie, “Surface induced negative photoconductivity in p-type ZnSe: Bi nanowires and their nano-optoelectronic applications,” J. Mater. Chem.21(18), 6736–6741 (2011).
[CrossRef]

C. Y. Wu, J. S. Jie, L Wang, Y. Q. Yu, Q. Peng, X. W. Zhang, J. J. Cai, H. E. Guo, D. Wu, and Y. Jiang, “Chlorine-doped n-type CdS nanowires with enhanced photoconductivity,” Nanotechnology 21, 505203 (2010).

Wu, D.

D. Wu, Y. Jiang, Y. G. Zhang, J. W. Li, Y. Q. Yu, Z. F. Zhu, L. Wang, C. Y. Wu, L. B. Luo, and J. S. Jie, “Device structure-dependent field-effect and photoresponse performances of p-type ZnTe:Sb nanoribbons,” J. Mater. Chem.22(13), 6206–6212 (2012).
[CrossRef]

S. Y. Li, Y. Jiang, D. Wu, B. B. Wang, Y. G. Zhang, J. W. Li, X. M. Liu, H. H. Zhong, L. Chen, and J. S. Jie, “Structure and electrical properties of p-type twin ZnTe nanowires,” Appl. Phys., A Mater. Sci. Process.102(2), 469–475 (2011).
[CrossRef]

C. Y. Wu, J. S. Jie, L Wang, Y. Q. Yu, Q. Peng, X. W. Zhang, J. J. Cai, H. E. Guo, D. Wu, and Y. Jiang, “Chlorine-doped n-type CdS nanowires with enhanced photoconductivity,” Nanotechnology 21, 505203 (2010).

Wu, P. C.

P. C. Wu, Y. Dai, Y. Ye, Y. Yin, and L. Dai, “Fast-speed and high-gain photodetectors of individual single crystalline Zn3P2 nanowires,” J. Mater. Chem.21(8), 2563–2567 (2011).
[CrossRef]

L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Y. Koide, H. Q. Wang, Y. Bando, and D. Golberg, “Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors,” Adv. Mater.22(29), 3161–3165 (2010).
[CrossRef] [PubMed]

Xie, C.

X. W. Zhang, J. S. Jie, Z. Wang, C. Y. Wu, L. Wang, Q. Peng, Y. Q. Yu, P. Jiang, and C. Xie, “Surface induced negative photoconductivity in p-type ZnSe: Bi nanowires and their nano-optoelectronic applications,” J. Mater. Chem.21(18), 6736–6741 (2011).
[CrossRef]

Xie, Z.

X. F. Wang, Z. Xie, H. T. Huang, Z. Liu, D. Chen, and G. Z. Shen, “Gas sensors, thermistor and photodetector based on ZnS nanowires,” J. Mater. Chem.22(14), 6845–6850 (2012).
[CrossRef]

Xing, H. G.

A. Singh, X. Y. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett.7(10), 2999–3006 (2007).
[CrossRef] [PubMed]

A. Singh, X. Y. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett.7(10), 2999–3006 (2007).
[CrossRef] [PubMed]

Xiu, F. X.

J. S. Tang, C. Y. Wang, F. X. Xiu, M. R. Lang, L. W. Chu, C. J. Tsai, Y. L. Chueh, L. J. Chen, and K. L. Wang, “Oxide-confined formation of germanium nanowire heterostructures for high-performance transistors,” ACS Nano5(7), 6008–6015 (2011).
[CrossRef] [PubMed]

Xu, J.

G. Z. Shen, J. Xu, X. F. Wang, H. T. Huang, and D. Chen, “Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications,” Adv. Mater.23(6), 771–775 (2011).
[CrossRef] [PubMed]

Yan, C. Y.

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In₂Ge₂O₇ nanobelts,” Adv. Mater.22(45), 5145–5149 (2010).
[CrossRef] [PubMed]

Yang, P. D.

C. Liu, J. W. Sun, J. Y. Tang, and P. D. Yang, “Zn-doped p- Type gallium phosphide nanowire photocathodes from a surfactant-free solution synthesis,” Nano Lett.12(10), 5407–5411 (2012).
[CrossRef] [PubMed]

E. C. Garnett and P. D. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc.130, 9224–9225 (2008).
[PubMed]

Yao, J. N.

T. Y. Zhai, Y. Ma, L. Li, X. S. Fang, M. Y. Liao, Y. Koide, J. N. Yao, Y. Bando, and D. Golberg, “Morphology-tunable In2Se3 nanostructures with enhanced electrical and photoelectrical performances via sulfur doping,” J. Mater. Chem.20(32), 6630–6637 (2010).
[CrossRef]

Ye, Y.

P. C. Wu, Y. Dai, Y. Ye, Y. Yin, and L. Dai, “Fast-speed and high-gain photodetectors of individual single crystalline Zn3P2 nanowires,” J. Mater. Chem.21(8), 2563–2567 (2011).
[CrossRef]

Yin, Y.

P. C. Wu, Y. Dai, Y. Ye, Y. Yin, and L. Dai, “Fast-speed and high-gain photodetectors of individual single crystalline Zn3P2 nanowires,” J. Mater. Chem.21(8), 2563–2567 (2011).
[CrossRef]

Yu, Y. Q.

D. Wu, Y. Jiang, Y. G. Zhang, J. W. Li, Y. Q. Yu, Z. F. Zhu, L. Wang, C. Y. Wu, L. B. Luo, and J. S. Jie, “Device structure-dependent field-effect and photoresponse performances of p-type ZnTe:Sb nanoribbons,” J. Mater. Chem.22(13), 6206–6212 (2012).
[CrossRef]

X. W. Zhang, J. S. Jie, Z. Wang, C. Y. Wu, L. Wang, Q. Peng, Y. Q. Yu, P. Jiang, and C. Xie, “Surface induced negative photoconductivity in p-type ZnSe: Bi nanowires and their nano-optoelectronic applications,” J. Mater. Chem.21(18), 6736–6741 (2011).
[CrossRef]

C. Y. Wu, J. S. Jie, L Wang, Y. Q. Yu, Q. Peng, X. W. Zhang, J. J. Cai, H. E. Guo, D. Wu, and Y. Jiang, “Chlorine-doped n-type CdS nanowires with enhanced photoconductivity,” Nanotechnology 21, 505203 (2010).

Zhai, T. Y.

L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Y. Koide, H. Q. Wang, Y. Bando, and D. Golberg, “Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors,” Adv. Mater.22(29), 3161–3165 (2010).
[CrossRef] [PubMed]

T. Y. Zhai, Y. Ma, L. Li, X. S. Fang, M. Y. Liao, Y. Koide, J. N. Yao, Y. Bando, and D. Golberg, “Morphology-tunable In2Se3 nanostructures with enhanced electrical and photoelectrical performances via sulfur doping,” J. Mater. Chem.20(32), 6630–6637 (2010).
[CrossRef]

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In₂Ge₂O₇ nanobelts,” Adv. Mater.22(45), 5145–5149 (2010).
[CrossRef] [PubMed]

Zhang, A.

A. Zhang, H. K. Kim, J. Cheng, and Y. H. Lo, “Ultrahigh responsivity visible and infrared detection using silicon nanowire phototransistors,” Nano Lett.10(6), 2117–2120 (2010).
[CrossRef] [PubMed]

Zhang, D. H.

S. Han, W. Jin, D. H. Zhang, T. Tang, C. Li, X. L. Liu, Z. Q. Liu, B. Lei, and C. W. Zhou, “Photoconduction studies on GaN nanowire transistors under UV and polarized UV illumination,” Chem. Phys. Lett.389(1-3), 176–180 (2004).
[CrossRef]

Zhang, J.

J. Zhang, P. C. Chen, G. Z. Shen, J. B. He, A. Kumbhar, C. W. Zhou, and J. Y. Fang, “P-type field-effect transistors of single-crystal zinc telluride nanobelts,” Angew. Chem. Int. Ed. Engl.47(49), 9469–9471 (2008).
[CrossRef] [PubMed]

Zhang, J. L.

J. L. Zhang, C. Wang, and C. W. Zhou, “Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics,” ACS Nano6(8), 7412–7419 (2012).
[CrossRef] [PubMed]

Zhang, W. J.

Y. L. Cao, Z. T. Liu, L. M. Chen, Y. B. Tang, L. B. Luo, J. S. Jie, W. J. Zhang, S. T. Lee, and C. S. Lee, “Single-crystalline ZnTe nanowires for application as high-performance green/ultraviolet photodetector,” Opt. Express19(7), 6100–6108 (2011).
[CrossRef] [PubMed]

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S.-T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater.17(11), 1795–1800 (2007).
[CrossRef]

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett.6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

Zhang, X.

B. J. Hansen, N. Kouklin, G. H. Lu, I. K. Lin, J. H. Chen, and X. Zhang, “Transport, analyte detection, and opto-electronic response of p-type CuO nanowires,” J. Phys. Chem. C114(6), 2440–2447 (2010).
[CrossRef]

Zhang, X. W.

X. W. Zhang, J. S. Jie, Z. Wang, C. Y. Wu, L. Wang, Q. Peng, Y. Q. Yu, P. Jiang, and C. Xie, “Surface induced negative photoconductivity in p-type ZnSe: Bi nanowires and their nano-optoelectronic applications,” J. Mater. Chem.21(18), 6736–6741 (2011).
[CrossRef]

C. Y. Wu, J. S. Jie, L Wang, Y. Q. Yu, Q. Peng, X. W. Zhang, J. J. Cai, H. E. Guo, D. Wu, and Y. Jiang, “Chlorine-doped n-type CdS nanowires with enhanced photoconductivity,” Nanotechnology 21, 505203 (2010).

Zhang, Y. G.

D. Wu, Y. Jiang, Y. G. Zhang, J. W. Li, Y. Q. Yu, Z. F. Zhu, L. Wang, C. Y. Wu, L. B. Luo, and J. S. Jie, “Device structure-dependent field-effect and photoresponse performances of p-type ZnTe:Sb nanoribbons,” J. Mater. Chem.22(13), 6206–6212 (2012).
[CrossRef]

S. Y. Li, Y. Jiang, D. Wu, B. B. Wang, Y. G. Zhang, J. W. Li, X. M. Liu, H. H. Zhong, L. Chen, and J. S. Jie, “Structure and electrical properties of p-type twin ZnTe nanowires,” Appl. Phys., A Mater. Sci. Process.102(2), 469–475 (2011).
[CrossRef]

Zhong, H. H.

S. Y. Li, Y. Jiang, D. Wu, B. B. Wang, Y. G. Zhang, J. W. Li, X. M. Liu, H. H. Zhong, L. Chen, and J. S. Jie, “Structure and electrical properties of p-type twin ZnTe nanowires,” Appl. Phys., A Mater. Sci. Process.102(2), 469–475 (2011).
[CrossRef]

Zhong, Z. H.

Y. Cui, Z. H. Zhong, D. L. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett.3(2), 149–152 (2003).
[CrossRef]

Z. H. Zhong, F. Qian, D. L. Wang, and C. M. Lieber, “Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices,” Nano Lett.3(3), 343–346 (2003).
[CrossRef]

Zhou, C.

Y. C. Che, C. Wang, J. Liu, B. L. Liu, X. Lin, J. Parker, C. Beasley, H. S. Wong, and C. Zhou, “Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock,” ACS Nano6(8), 7454–7462 (2012).
[CrossRef] [PubMed]

Zhou, C. W.

J. L. Zhang, C. Wang, and C. W. Zhou, “Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics,” ACS Nano6(8), 7412–7419 (2012).
[CrossRef] [PubMed]

G. Z. Shen, B. Liang, X. F. Wang, P. C. Chen, and C. W. Zhou, “Indium oxide nanospirals made of kinked nanowires,” ACS Nano5(3), 2155–2161 (2011).
[CrossRef] [PubMed]

F. N. Ishikawa, H. K. Chang, K. M. Ryu, P. C. Chen, A. Badmaev, L. Gomez De Arco, G. Z. Shen, and C. W. Zhou, “Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates,” ACS Nano3(1), 73–79 (2009).
[CrossRef] [PubMed]

J. Zhang, P. C. Chen, G. Z. Shen, J. B. He, A. Kumbhar, C. W. Zhou, and J. Y. Fang, “P-type field-effect transistors of single-crystal zinc telluride nanobelts,” Angew. Chem. Int. Ed. Engl.47(49), 9469–9471 (2008).
[CrossRef] [PubMed]

G. Z. Shen, P. C. Chen, Y. Bando, D. Golberg, and C. W. Zhou, “Bicrystalline Zn3P2 and Cd3P2 nanobelts and their electronic transport properties,” Chem. Mater.20(23), 7319–7323 (2008).
[CrossRef]

G. Z. Shen, P. C. Chen, Y. Bando, D. Golberg, and C. W. Zhou, “Pearl-like ZnS-decorated InP nanowire heterostructures and their electric behaviors,” Chem. Mater.20(21), 6779–6783 (2008).
[CrossRef]

S. Han, W. Jin, D. H. Zhang, T. Tang, C. Li, X. L. Liu, Z. Q. Liu, B. Lei, and C. W. Zhou, “Photoconduction studies on GaN nanowire transistors under UV and polarized UV illumination,” Chem. Phys. Lett.389(1-3), 176–180 (2004).
[CrossRef]

Zhou, W. L.

J. J. Chen, K. Wang, L. Hartman, and W. L. Zhou, “H2S detection by vertically aligned CuO nanowire array sensors,” J. Phys. Chem. C112(41), 16017–16021 (2008).
[CrossRef]

Zhu, Z. F.

D. Wu, Y. Jiang, Y. G. Zhang, J. W. Li, Y. Q. Yu, Z. F. Zhu, L. Wang, C. Y. Wu, L. B. Luo, and J. S. Jie, “Device structure-dependent field-effect and photoresponse performances of p-type ZnTe:Sb nanoribbons,” J. Mater. Chem.22(13), 6206–6212 (2012).
[CrossRef]

ACS Nano

J. S. Tang, C. Y. Wang, F. X. Xiu, M. R. Lang, L. W. Chu, C. J. Tsai, Y. L. Chueh, L. J. Chen, and K. L. Wang, “Oxide-confined formation of germanium nanowire heterostructures for high-performance transistors,” ACS Nano5(7), 6008–6015 (2011).
[CrossRef] [PubMed]

Y. C. Che, C. Wang, J. Liu, B. L. Liu, X. Lin, J. Parker, C. Beasley, H. S. Wong, and C. Zhou, “Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock,” ACS Nano6(8), 7454–7462 (2012).
[CrossRef] [PubMed]

G. Z. Shen, B. Liang, X. F. Wang, P. C. Chen, and C. W. Zhou, “Indium oxide nanospirals made of kinked nanowires,” ACS Nano5(3), 2155–2161 (2011).
[CrossRef] [PubMed]

G. Z. Shen, B. Liang, X. F. Wang, H. T. Huang, D. Chen, and Z. L. Wang, “Ultrathin In2O3 nanowires with diameters below 4 nm: synthesis, reversible wettability switching behavior, and transparent thin-film transistor applications,” ACS Nano5(8), 6148–6155 (2011).
[CrossRef] [PubMed]

F. N. Ishikawa, H. K. Chang, K. M. Ryu, P. C. Chen, A. Badmaev, L. Gomez De Arco, G. Z. Shen, and C. W. Zhou, “Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates,” ACS Nano3(1), 73–79 (2009).
[CrossRef] [PubMed]

J. L. Zhang, C. Wang, and C. W. Zhou, “Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics,” ACS Nano6(8), 7412–7419 (2012).
[CrossRef] [PubMed]

Adv. Funct. Mater.

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S.-T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater.17(11), 1795–1800 (2007).
[CrossRef]

Adv. Mater.

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In₂Ge₂O₇ nanobelts,” Adv. Mater.22(45), 5145–5149 (2010).
[CrossRef] [PubMed]

L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Y. Koide, H. Q. Wang, Y. Bando, and D. Golberg, “Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors,” Adv. Mater.22(29), 3161–3165 (2010).
[CrossRef] [PubMed]

G. Z. Shen, J. Xu, X. F. Wang, H. T. Huang, and D. Chen, “Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications,” Adv. Mater.23(6), 771–775 (2011).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl.

J. Zhang, P. C. Chen, G. Z. Shen, J. B. He, A. Kumbhar, C. W. Zhou, and J. Y. Fang, “P-type field-effect transistors of single-crystal zinc telluride nanobelts,” Angew. Chem. Int. Ed. Engl.47(49), 9469–9471 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett.

Q. F. Meng, C. B. Jiang, and S. X. Mao, “Ohmic contacts and photoconductivity of individual ZnTe nanowires,” Appl. Phys. Lett.4, 043111 (2009).

Z. Y. Fan, P. C. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C.- Lin, and H. P. Lee, “Photoluminescence and polarized photodetection of single ZnO nanowires,” Appl. Phys. Lett.85(25), 6128–6130 (2004).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

S. Y. Li, Y. Jiang, D. Wu, B. B. Wang, Y. G. Zhang, J. W. Li, X. M. Liu, H. H. Zhong, L. Chen, and J. S. Jie, “Structure and electrical properties of p-type twin ZnTe nanowires,” Appl. Phys., A Mater. Sci. Process.102(2), 469–475 (2011).
[CrossRef]

Chem. Mater.

G. Z. Shen, P. C. Chen, Y. Bando, D. Golberg, and C. W. Zhou, “Pearl-like ZnS-decorated InP nanowire heterostructures and their electric behaviors,” Chem. Mater.20(21), 6779–6783 (2008).
[CrossRef]

G. Z. Shen, P. C. Chen, Y. Bando, D. Golberg, and C. W. Zhou, “Bicrystalline Zn3P2 and Cd3P2 nanobelts and their electronic transport properties,” Chem. Mater.20(23), 7319–7323 (2008).
[CrossRef]

Chem. Phys. Lett.

S. Han, W. Jin, D. H. Zhang, T. Tang, C. Li, X. L. Liu, Z. Q. Liu, B. Lei, and C. W. Zhou, “Photoconduction studies on GaN nanowire transistors under UV and polarized UV illumination,” Chem. Phys. Lett.389(1-3), 176–180 (2004).
[CrossRef]

J. Am. Chem. Soc.

E. C. Garnett and P. D. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc.130, 9224–9225 (2008).
[PubMed]

J. Mater. Chem.

D. Wu, Y. Jiang, Y. G. Zhang, J. W. Li, Y. Q. Yu, Z. F. Zhu, L. Wang, C. Y. Wu, L. B. Luo, and J. S. Jie, “Device structure-dependent field-effect and photoresponse performances of p-type ZnTe:Sb nanoribbons,” J. Mater. Chem.22(13), 6206–6212 (2012).
[CrossRef]

X. W. Zhang, J. S. Jie, Z. Wang, C. Y. Wu, L. Wang, Q. Peng, Y. Q. Yu, P. Jiang, and C. Xie, “Surface induced negative photoconductivity in p-type ZnSe: Bi nanowires and their nano-optoelectronic applications,” J. Mater. Chem.21(18), 6736–6741 (2011).
[CrossRef]

H. T. Huang, B. Liang, Z. Liu, X. F. Wang, D. Chen, and G. Z. Shen, “Metal oxide nanowire transistors,” J. Mater. Chem.22(27), 13428–13445 (2012).
[CrossRef]

P. C. Wu, Y. Dai, Y. Ye, Y. Yin, and L. Dai, “Fast-speed and high-gain photodetectors of individual single crystalline Zn3P2 nanowires,” J. Mater. Chem.21(8), 2563–2567 (2011).
[CrossRef]

T. Y. Zhai, Y. Ma, L. Li, X. S. Fang, M. Y. Liao, Y. Koide, J. N. Yao, Y. Bando, and D. Golberg, “Morphology-tunable In2Se3 nanostructures with enhanced electrical and photoelectrical performances via sulfur doping,” J. Mater. Chem.20(32), 6630–6637 (2010).
[CrossRef]

X. F. Wang, Z. Xie, H. T. Huang, Z. Liu, D. Chen, and G. Z. Shen, “Gas sensors, thermistor and photodetector based on ZnS nanowires,” J. Mater. Chem.22(14), 6845–6850 (2012).
[CrossRef]

J. Phys. Chem. C

J. J. Chen, K. Wang, L. Hartman, and W. L. Zhou, “H2S detection by vertically aligned CuO nanowire array sensors,” J. Phys. Chem. C112(41), 16017–16021 (2008).
[CrossRef]

B. J. Hansen, N. Kouklin, G. H. Lu, I. K. Lin, J. H. Chen, and X. Zhang, “Transport, analyte detection, and opto-electronic response of p-type CuO nanowires,” J. Phys. Chem. C114(6), 2440–2447 (2010).
[CrossRef]

Mater. Chem. Phys.

D. P. Amalnerkar, “Photoconducting and allied properties of CdS thick film,” Mater. Chem. Phys.60(1), 1–21 (1999).
[CrossRef]

Nano Lett.

A. Singh, X. Y. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett.7(10), 2999–3006 (2007).
[CrossRef] [PubMed]

Y. Cui, Z. H. Zhong, D. L. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett.3(2), 149–152 (2003).
[CrossRef]

Z. H. Zhong, F. Qian, D. L. Wang, and C. M. Lieber, “Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices,” Nano Lett.3(3), 343–346 (2003).
[CrossRef]

C. Liu, J. W. Sun, J. Y. Tang, and P. D. Yang, “Zn-doped p- Type gallium phosphide nanowire photocathodes from a surfactant-free solution synthesis,” Nano Lett.12(10), 5407–5411 (2012).
[CrossRef] [PubMed]

M. P. Lu, J. H. Song, M. Y. Lu, M. T. Chen, Y. F. Gao, L. J. Chen, and Z. L. Wang, “Piezoelectric nanogenerator using p-type ZnO nanowire arrays,” Nano Lett.9(3), 1223–1227 (2009).
[CrossRef] [PubMed]

A. Zhang, H. K. Kim, J. Cheng, and Y. H. Lo, “Ultrahigh responsivity visible and infrared detection using silicon nanowire phototransistors,” Nano Lett.10(6), 2117–2120 (2010).
[CrossRef] [PubMed]

A. Singh, X. Y. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett.7(10), 2999–3006 (2007).
[CrossRef] [PubMed]

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett.6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

Nature

X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature409(6816), 66–69 (2001).
[CrossRef] [PubMed]

Opt. Express

Science

J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science293(5534), 1455–1457 (2001).
[CrossRef] [PubMed]

Y. Cui and C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science291(5505), 851–853 (2001).
[CrossRef] [PubMed]

Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

Other

Z. Li, J. Salfi, C. D. Souza, P. Sun, S. V. Nair, and H. E. Ruda, “Room temperature single nanowire ZnTe photoconductors grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 97, 063510 (2010).

C. Y. Wu, J. S. Jie, L Wang, Y. Q. Yu, Q. Peng, X. W. Zhang, J. J. Cai, H. E. Guo, D. Wu, and Y. Jiang, “Chlorine-doped n-type CdS nanowires with enhanced photoconductivity,” Nanotechnology 21, 505203 (2010).

Z. Li, J. Salfi, C. D. Souza, P. Sun, S. V. Nair, and H. E. Ruda, “Room temperature single nanowire ZnTe photoconductors grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 97, 063510 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) XRD pattern, (b) PL spectra, (c, d) SEM images of the as-synthesized ZnTe NWs.

Fig. 2
Fig. 2

(a) TEM image, (b) EDS spectrum, (c) HRTEM image and (d) SAED pattern of the as-synthesized ZnTe NWs.

Fig. 3
Fig. 3

Typical electrical transport properties of the single ZnTe NW FETs. (a) IDS-VDS curves at different VGS. Inset is a SEM image of the device. (b) IDS-VGS curves at different VDS. Inset is the linear (magenta) and logarithmic (purple) plots of the IDS-VGS curves at VDS = 40 V.

Fig. 4
Fig. 4

(a) I-V curves of the detector exposed to light of various intensities. (b) Light intensity dependence of the photocurrent measured at the voltage of 6 V (solid squares). The blue line is the fitting results with the equation I = 5.75 × P0.91. (c, d) Time dependent photocurrent response and (e, f) Spectral response of the ZnTe NW based photodetedctor. The operation voltage and the light intensity of Figs. 4 (c) and 4(d) are 2.5 V, 1.2 mW/cm2. For Fig. (f), they are 10 Vand 0.6 mW/cm2, respectively.

Fig. 5
Fig. 5

(a) Photocurrent as a function of the light polarization angle. (b) Photocurrent versus time as the polarization was manually rotated. Inset shows the measurement configuration for the polarization-sensitive measurements.

Fig. 6
Fig. 6

Performance of the flexible ZnTe NWs photodetector. (a) Photoresponses of the detector under an improved incident light level. (b) Photoresponses of the detector at different bias under the same illumination (532nm, 1.2mW/cm2). (c) The magnitude of photocurrents (red) and the corresponding on/off ratio (blue) under different bending radii. Inset is the optical micrograph of the experimental setup. (d) I-V curves measured before and after different bending cysles. The operation voltage of Figs. 6 (a) and 6(c) are 12.5 V and 9 V, respectively. The light intensity of (c, d) is 1.4 mW/cm2.

Fig. 7
Fig. 7

Temperature-dependent photoresponses of the ZnTe photodetector (a) in the dark and (b) under 1.4 mW/cm2 illumination. (c) Photocurrent at a bias voltage of 10 V in the dark (black) as well as under the 1.4 mW/cm2 illumination conditions (blue), and the dependence of the corresponding photosensitivity on the temperature (red). (d) The dependence of responsivity (Rλ, red) and the external quantum efficiency (EQE, blue) on the temperature.

Tables (2)

Tables Icon

Table 1 Comparison of FET Performances between This Work and the Previous Reports on Intrinsic and Doping ZnTe Nanostructures [16]

Tables Icon

Table 2 Comparison of the Photoconductive Parameters between This Work and the Previous Reports on Intrinsic and Doping ZnTe Nanostructures

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

g m = d I DS d V GS ,
C i = 2π ε 0 ε s L ln(2h/r) ,
μ eff = g m L 2 V DS C i ,
n= C i V th Lqπ r 2 ,
R λ = ΔI PS ,
G= ΔI P optical hυ q ,
ΔI= ne T r = efV(μτ) L 2 ,

Metrics