Abstract

For high power-aperture lidar sounding of wide atmospheric dynamic ranges, as in middle-upper atmospheric probing, photomultiplier tubes’ (PMT) pulse pile-up effects and signal-induced noise (SIN) complicates the extraction of information from lidar return signal, especially from metal layers’ fluorescence signal. Pursuit for sophisticated description of metal layers’ characteristics at far range (80~130km) with one PMT of high quantum efficiency (QE) and good SNR, contradicts the requirements for signals of wide linear dynamic range (i.e. from approximate 102 to 108 counts/s). In this article, Substantial improvements on experimental simulation of Lidar signals affected by PMT are reported to evaluate the PMTs’ distortions in our High Power-Aperture Sodium LIDAR system. A new method for pile-up calibration is proposed by taking into account PMT and High Speed Data Acquisition Card as an Integrated Black-Box, as well as a new experimental method for identifying and removing SIN from the raw Lidar signals. Contradiction between the limited linear dynamic range of raw signal (55~80km) and requirements for wider acceptable linearity has been effectively solved, without complicating the current lidar system. Validity of these methods was demonstrated by applying calibrated data to retrieve atmospheric parameters (i.e. atmospheric density, temperature and sodium absolutely number density), in comparison with measurements of TIMED satellite and atmosphere model. Good agreements are obtained between results derived from calibrated signal and reference measurements where differences of atmosphere density, temperature are less than 5% in the stratosphere and less than 10K from 30km to mesosphere, respectively. Additionally, approximate 30% changes are shown in sodium concentration at its peak value. By means of the proposed methods to revert the true signal independent of detectors, authors approach a new balance between maintaining the linearity of adequate signal (20-110km) and guaranteeing good SNR (i.e. 104:1 around 90km) without debasing QE, in one single detecting channel. For the first time, PMT in photon-counting mode is independently applied to subtract reliable information of atmospheric parameters with wide acceptable linearity over an altitude range from stratosphere up to lower thermosphere (20-110km).

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. P. Bristow, D. H. Bundy, and A. G. Wright, “Signal linearity, gain stability, and gating in photomultipliers: application to differential absorption lidars,” Appl. Opt.34(21), 4437–4452 (1995).
    [CrossRef] [PubMed]
  2. R. A. Kaplan and R. J. Daly, “Performance limits and design procedure for all-weather terrestrial range- finders,” IEEE J. Quantum Electron.3(11), 428–435 (1967).
    [CrossRef]
  3. D. P. Donovan, J. A. Whiteway, and A. I. Carswell, “Correction for nonlinear photon-counting effects in lidar systems,” Appl. Opt.32(33), 6742–6753 (1993).
    [CrossRef] [PubMed]
  4. X. Z. Chu, Z. B. Yu, C. S. Gardner, C. Chen, and W. C. Fong, “Lidar observations of neutral Fe layers and fast gravity waves in the thermosphere (110–155 km) at McMurdo (77.8 S, 166.7 E), Antarctica,” Geophys. Res. Lett.38(23), L23807 (2011).
    [CrossRef]
  5. M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Gerding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys.4(3), 793–800 (2004).
    [CrossRef]
  6. U. N. Singh, P. Keckhut, T. J. McGee, M. R. Gross, A. Hauchecorne, E. F. Fishbein, J. W. Water, J. C. Gille, A. E. Roche, and J. M. Russell, “Stratospheric temperature measurements by two collocated NDSC lidars during UARS validation campaign,” J. Geophys. Res.101(D6), 10287–10297 (1996).
  7. H. Shimizu, Y. Sasano, H. Nakane, N. Sugimoto, I. Matsui, and N. Takeuchi, “Large scale laser radar for measuring aerosol distribution over a wide area,” Appl. Opt.24(5), 617–626 (1985).
    [CrossRef] [PubMed]
  8. Y. Likura, N. Sugimoto, Y. Sasano, and H. Shimzu, “Improvement on lidar data processing for stratospheric aerosol measurements,” Appl. Opt.26(24), 5299–5306 (1987).
    [CrossRef] [PubMed]
  9. F. Cairo, F. Congeduti, M. Poli, S. Centurioni, and G. Di Donfrancesco, “A survey of the signal induced noise in photomultiplier detection of wide dynamics luminous signals,” Rev. Sci. Instrum.67(9), 3274–3280 (1996).
    [CrossRef]
  10. W. H. Hunt and S. K. Poultney, “Testing the linearity of response of gated photomultipliers in wide dynamic range laser radar systems,” IEEE Trans. Nucl. Sci. NS22(1), 116–120 (1975).
    [CrossRef]
  11. J. A. Sunesson, A. Apituley, and D. P. J. Swart, “Differential absorption lidar system for routine monitoring of tropospheric ozone,” Appl. Opt.33(30), 7045–7058 (1994).
    [CrossRef] [PubMed]
  12. H. S. Lee, G. K. Schwemmer, C. L. Korb, M. Dombrowski, and C. Prasad, “Gated photomultiplier response characterization for DIAL measurements,” Appl. Opt.29(22), 3303–3315 (1990).
    [CrossRef] [PubMed]
  13. I. S. McDermid, S. M. Godin, R. A. Barnes, C. L. Parsons, A. Torres, M. P. McCormick, W. P. Chu, P. Wang, J. Butler, P. Newman, J. Burris, R. Ferrare, D. Whiteman, and T. J. McGee, “Comparison of ozone profiles from ground-based lidar, ECC balloon sonde, ROCOZ-A rocket sonde, and SAGE-2 satellite measurements,” J. Geophys. Res.95, 10037–10042 (1990).
    [CrossRef]
  14. M. H. Proffitt and A. O. Langford, “Ground-based differential absorption lidar system for day or night measurements of ozone throughout the free troposphere,” Appl. Opt.36(12), 2568–2585 (1997).
    [CrossRef] [PubMed]
  15. C. Wang, “New Chains of Space Weather Monitoring Stations in China,” Space Weather8(8), S08001 (2010).
    [CrossRef]
  16. M. De Vincenzi, G. Penso, A. Sciubba, and A. Sposito, “Experimental study of nonlinear effects on photomultiplier gain,” Nucl. Instrum. Methods Phys. Res.225(1), 104–112 (1984).
    [CrossRef]
  17. J. P. Boutot, J. Nussli, and D. Vallat, “Recent trends in photomultipliers for nuclear physics,” Adv. Electron. Electron Phys.60, 223–305 (1983).
    [CrossRef]
  18. M. L. Chanin and A. Hauchecorne, “Lidar studies of temperature and density using Rayleigh scattering,” in Handbook for MAP: Ground-Based Techniques, Vol. 13 of the Middle Atmosphere Program Series (Scientific Committee on Solar Terrestrial Physics, International Council of Scientific Unions, Urbana, Ill., 1984), paper 7.
  19. R. J. Sica, S. Sargoytchev, P. S. Argall, E. F. Borra, L. Girard, C. T. Sparrow, and S. Flatt, “Lidar measurements taken with a large-aperture liquid mirror. 1. Rayleigh-scatter system,” Appl. Opt.34(30), 6925–6936 (1995).
    [CrossRef] [PubMed]
  20. C. S. Gardner, “Sodium resonance fluorescence lidar applications in atmospheric science and astronomy,” Proc. IEEE77(3), 408–418 (1989).
    [CrossRef]
  21. C. S. Gardner, “Performance capabilities of middle-atmosphere temperature lidars: Comparison of Na, Fe, K, Ca, Ca+, and Rayleigh systems,” Appl. Opt.43(25), 4941–4956 (2004).
    [CrossRef] [PubMed]

2011

X. Z. Chu, Z. B. Yu, C. S. Gardner, C. Chen, and W. C. Fong, “Lidar observations of neutral Fe layers and fast gravity waves in the thermosphere (110–155 km) at McMurdo (77.8 S, 166.7 E), Antarctica,” Geophys. Res. Lett.38(23), L23807 (2011).
[CrossRef]

2010

C. Wang, “New Chains of Space Weather Monitoring Stations in China,” Space Weather8(8), S08001 (2010).
[CrossRef]

2004

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Gerding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys.4(3), 793–800 (2004).
[CrossRef]

C. S. Gardner, “Performance capabilities of middle-atmosphere temperature lidars: Comparison of Na, Fe, K, Ca, Ca+, and Rayleigh systems,” Appl. Opt.43(25), 4941–4956 (2004).
[CrossRef] [PubMed]

1997

1996

U. N. Singh, P. Keckhut, T. J. McGee, M. R. Gross, A. Hauchecorne, E. F. Fishbein, J. W. Water, J. C. Gille, A. E. Roche, and J. M. Russell, “Stratospheric temperature measurements by two collocated NDSC lidars during UARS validation campaign,” J. Geophys. Res.101(D6), 10287–10297 (1996).

F. Cairo, F. Congeduti, M. Poli, S. Centurioni, and G. Di Donfrancesco, “A survey of the signal induced noise in photomultiplier detection of wide dynamics luminous signals,” Rev. Sci. Instrum.67(9), 3274–3280 (1996).
[CrossRef]

1995

1994

1993

1990

H. S. Lee, G. K. Schwemmer, C. L. Korb, M. Dombrowski, and C. Prasad, “Gated photomultiplier response characterization for DIAL measurements,” Appl. Opt.29(22), 3303–3315 (1990).
[CrossRef] [PubMed]

I. S. McDermid, S. M. Godin, R. A. Barnes, C. L. Parsons, A. Torres, M. P. McCormick, W. P. Chu, P. Wang, J. Butler, P. Newman, J. Burris, R. Ferrare, D. Whiteman, and T. J. McGee, “Comparison of ozone profiles from ground-based lidar, ECC balloon sonde, ROCOZ-A rocket sonde, and SAGE-2 satellite measurements,” J. Geophys. Res.95, 10037–10042 (1990).
[CrossRef]

1989

C. S. Gardner, “Sodium resonance fluorescence lidar applications in atmospheric science and astronomy,” Proc. IEEE77(3), 408–418 (1989).
[CrossRef]

1987

1985

1984

M. De Vincenzi, G. Penso, A. Sciubba, and A. Sposito, “Experimental study of nonlinear effects on photomultiplier gain,” Nucl. Instrum. Methods Phys. Res.225(1), 104–112 (1984).
[CrossRef]

1983

J. P. Boutot, J. Nussli, and D. Vallat, “Recent trends in photomultipliers for nuclear physics,” Adv. Electron. Electron Phys.60, 223–305 (1983).
[CrossRef]

1975

W. H. Hunt and S. K. Poultney, “Testing the linearity of response of gated photomultipliers in wide dynamic range laser radar systems,” IEEE Trans. Nucl. Sci. NS22(1), 116–120 (1975).
[CrossRef]

1967

R. A. Kaplan and R. J. Daly, “Performance limits and design procedure for all-weather terrestrial range- finders,” IEEE J. Quantum Electron.3(11), 428–435 (1967).
[CrossRef]

Alpers, M.

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Gerding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys.4(3), 793–800 (2004).
[CrossRef]

Apituley, A.

Argall, P. S.

Barnes, R. A.

I. S. McDermid, S. M. Godin, R. A. Barnes, C. L. Parsons, A. Torres, M. P. McCormick, W. P. Chu, P. Wang, J. Butler, P. Newman, J. Burris, R. Ferrare, D. Whiteman, and T. J. McGee, “Comparison of ozone profiles from ground-based lidar, ECC balloon sonde, ROCOZ-A rocket sonde, and SAGE-2 satellite measurements,” J. Geophys. Res.95, 10037–10042 (1990).
[CrossRef]

Borra, E. F.

Boutot, J. P.

J. P. Boutot, J. Nussli, and D. Vallat, “Recent trends in photomultipliers for nuclear physics,” Adv. Electron. Electron Phys.60, 223–305 (1983).
[CrossRef]

Bristow, M. P.

Bundy, D. H.

Burris, J.

I. S. McDermid, S. M. Godin, R. A. Barnes, C. L. Parsons, A. Torres, M. P. McCormick, W. P. Chu, P. Wang, J. Butler, P. Newman, J. Burris, R. Ferrare, D. Whiteman, and T. J. McGee, “Comparison of ozone profiles from ground-based lidar, ECC balloon sonde, ROCOZ-A rocket sonde, and SAGE-2 satellite measurements,” J. Geophys. Res.95, 10037–10042 (1990).
[CrossRef]

Butler, J.

I. S. McDermid, S. M. Godin, R. A. Barnes, C. L. Parsons, A. Torres, M. P. McCormick, W. P. Chu, P. Wang, J. Butler, P. Newman, J. Burris, R. Ferrare, D. Whiteman, and T. J. McGee, “Comparison of ozone profiles from ground-based lidar, ECC balloon sonde, ROCOZ-A rocket sonde, and SAGE-2 satellite measurements,” J. Geophys. Res.95, 10037–10042 (1990).
[CrossRef]

Cairo, F.

F. Cairo, F. Congeduti, M. Poli, S. Centurioni, and G. Di Donfrancesco, “A survey of the signal induced noise in photomultiplier detection of wide dynamics luminous signals,” Rev. Sci. Instrum.67(9), 3274–3280 (1996).
[CrossRef]

Carswell, A. I.

Centurioni, S.

F. Cairo, F. Congeduti, M. Poli, S. Centurioni, and G. Di Donfrancesco, “A survey of the signal induced noise in photomultiplier detection of wide dynamics luminous signals,” Rev. Sci. Instrum.67(9), 3274–3280 (1996).
[CrossRef]

Chen, C.

X. Z. Chu, Z. B. Yu, C. S. Gardner, C. Chen, and W. C. Fong, “Lidar observations of neutral Fe layers and fast gravity waves in the thermosphere (110–155 km) at McMurdo (77.8 S, 166.7 E), Antarctica,” Geophys. Res. Lett.38(23), L23807 (2011).
[CrossRef]

Chu, W. P.

I. S. McDermid, S. M. Godin, R. A. Barnes, C. L. Parsons, A. Torres, M. P. McCormick, W. P. Chu, P. Wang, J. Butler, P. Newman, J. Burris, R. Ferrare, D. Whiteman, and T. J. McGee, “Comparison of ozone profiles from ground-based lidar, ECC balloon sonde, ROCOZ-A rocket sonde, and SAGE-2 satellite measurements,” J. Geophys. Res.95, 10037–10042 (1990).
[CrossRef]

Chu, X. Z.

X. Z. Chu, Z. B. Yu, C. S. Gardner, C. Chen, and W. C. Fong, “Lidar observations of neutral Fe layers and fast gravity waves in the thermosphere (110–155 km) at McMurdo (77.8 S, 166.7 E), Antarctica,” Geophys. Res. Lett.38(23), L23807 (2011).
[CrossRef]

Congeduti, F.

F. Cairo, F. Congeduti, M. Poli, S. Centurioni, and G. Di Donfrancesco, “A survey of the signal induced noise in photomultiplier detection of wide dynamics luminous signals,” Rev. Sci. Instrum.67(9), 3274–3280 (1996).
[CrossRef]

Daly, R. J.

R. A. Kaplan and R. J. Daly, “Performance limits and design procedure for all-weather terrestrial range- finders,” IEEE J. Quantum Electron.3(11), 428–435 (1967).
[CrossRef]

De Vincenzi, M.

M. De Vincenzi, G. Penso, A. Sciubba, and A. Sposito, “Experimental study of nonlinear effects on photomultiplier gain,” Nucl. Instrum. Methods Phys. Res.225(1), 104–112 (1984).
[CrossRef]

Di Donfrancesco, G.

F. Cairo, F. Congeduti, M. Poli, S. Centurioni, and G. Di Donfrancesco, “A survey of the signal induced noise in photomultiplier detection of wide dynamics luminous signals,” Rev. Sci. Instrum.67(9), 3274–3280 (1996).
[CrossRef]

Dombrowski, M.

Donovan, D. P.

Eixmann, R.

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Gerding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys.4(3), 793–800 (2004).
[CrossRef]

Ferrare, R.

I. S. McDermid, S. M. Godin, R. A. Barnes, C. L. Parsons, A. Torres, M. P. McCormick, W. P. Chu, P. Wang, J. Butler, P. Newman, J. Burris, R. Ferrare, D. Whiteman, and T. J. McGee, “Comparison of ozone profiles from ground-based lidar, ECC balloon sonde, ROCOZ-A rocket sonde, and SAGE-2 satellite measurements,” J. Geophys. Res.95, 10037–10042 (1990).
[CrossRef]

Fishbein, E. F.

U. N. Singh, P. Keckhut, T. J. McGee, M. R. Gross, A. Hauchecorne, E. F. Fishbein, J. W. Water, J. C. Gille, A. E. Roche, and J. M. Russell, “Stratospheric temperature measurements by two collocated NDSC lidars during UARS validation campaign,” J. Geophys. Res.101(D6), 10287–10297 (1996).

Flatt, S.

Fong, W. C.

X. Z. Chu, Z. B. Yu, C. S. Gardner, C. Chen, and W. C. Fong, “Lidar observations of neutral Fe layers and fast gravity waves in the thermosphere (110–155 km) at McMurdo (77.8 S, 166.7 E), Antarctica,” Geophys. Res. Lett.38(23), L23807 (2011).
[CrossRef]

Fricke-Begemann, C.

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Gerding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys.4(3), 793–800 (2004).
[CrossRef]

Gardner, C. S.

X. Z. Chu, Z. B. Yu, C. S. Gardner, C. Chen, and W. C. Fong, “Lidar observations of neutral Fe layers and fast gravity waves in the thermosphere (110–155 km) at McMurdo (77.8 S, 166.7 E), Antarctica,” Geophys. Res. Lett.38(23), L23807 (2011).
[CrossRef]

C. S. Gardner, “Performance capabilities of middle-atmosphere temperature lidars: Comparison of Na, Fe, K, Ca, Ca+, and Rayleigh systems,” Appl. Opt.43(25), 4941–4956 (2004).
[CrossRef] [PubMed]

C. S. Gardner, “Sodium resonance fluorescence lidar applications in atmospheric science and astronomy,” Proc. IEEE77(3), 408–418 (1989).
[CrossRef]

Gerding, M.

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Gerding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys.4(3), 793–800 (2004).
[CrossRef]

Gille, J. C.

U. N. Singh, P. Keckhut, T. J. McGee, M. R. Gross, A. Hauchecorne, E. F. Fishbein, J. W. Water, J. C. Gille, A. E. Roche, and J. M. Russell, “Stratospheric temperature measurements by two collocated NDSC lidars during UARS validation campaign,” J. Geophys. Res.101(D6), 10287–10297 (1996).

Girard, L.

Godin, S. M.

I. S. McDermid, S. M. Godin, R. A. Barnes, C. L. Parsons, A. Torres, M. P. McCormick, W. P. Chu, P. Wang, J. Butler, P. Newman, J. Burris, R. Ferrare, D. Whiteman, and T. J. McGee, “Comparison of ozone profiles from ground-based lidar, ECC balloon sonde, ROCOZ-A rocket sonde, and SAGE-2 satellite measurements,” J. Geophys. Res.95, 10037–10042 (1990).
[CrossRef]

Gross, M. R.

U. N. Singh, P. Keckhut, T. J. McGee, M. R. Gross, A. Hauchecorne, E. F. Fishbein, J. W. Water, J. C. Gille, A. E. Roche, and J. M. Russell, “Stratospheric temperature measurements by two collocated NDSC lidars during UARS validation campaign,” J. Geophys. Res.101(D6), 10287–10297 (1996).

Hauchecorne, A.

U. N. Singh, P. Keckhut, T. J. McGee, M. R. Gross, A. Hauchecorne, E. F. Fishbein, J. W. Water, J. C. Gille, A. E. Roche, and J. M. Russell, “Stratospheric temperature measurements by two collocated NDSC lidars during UARS validation campaign,” J. Geophys. Res.101(D6), 10287–10297 (1996).

Höffner, J.

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Gerding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys.4(3), 793–800 (2004).
[CrossRef]

Hunt, W. H.

W. H. Hunt and S. K. Poultney, “Testing the linearity of response of gated photomultipliers in wide dynamic range laser radar systems,” IEEE Trans. Nucl. Sci. NS22(1), 116–120 (1975).
[CrossRef]

Kaplan, R. A.

R. A. Kaplan and R. J. Daly, “Performance limits and design procedure for all-weather terrestrial range- finders,” IEEE J. Quantum Electron.3(11), 428–435 (1967).
[CrossRef]

Keckhut, P.

U. N. Singh, P. Keckhut, T. J. McGee, M. R. Gross, A. Hauchecorne, E. F. Fishbein, J. W. Water, J. C. Gille, A. E. Roche, and J. M. Russell, “Stratospheric temperature measurements by two collocated NDSC lidars during UARS validation campaign,” J. Geophys. Res.101(D6), 10287–10297 (1996).

Korb, C. L.

Langford, A. O.

Lee, H. S.

Likura, Y.

Matsui, I.

McCormick, M. P.

I. S. McDermid, S. M. Godin, R. A. Barnes, C. L. Parsons, A. Torres, M. P. McCormick, W. P. Chu, P. Wang, J. Butler, P. Newman, J. Burris, R. Ferrare, D. Whiteman, and T. J. McGee, “Comparison of ozone profiles from ground-based lidar, ECC balloon sonde, ROCOZ-A rocket sonde, and SAGE-2 satellite measurements,” J. Geophys. Res.95, 10037–10042 (1990).
[CrossRef]

McDermid, I. S.

I. S. McDermid, S. M. Godin, R. A. Barnes, C. L. Parsons, A. Torres, M. P. McCormick, W. P. Chu, P. Wang, J. Butler, P. Newman, J. Burris, R. Ferrare, D. Whiteman, and T. J. McGee, “Comparison of ozone profiles from ground-based lidar, ECC balloon sonde, ROCOZ-A rocket sonde, and SAGE-2 satellite measurements,” J. Geophys. Res.95, 10037–10042 (1990).
[CrossRef]

McGee, T. J.

U. N. Singh, P. Keckhut, T. J. McGee, M. R. Gross, A. Hauchecorne, E. F. Fishbein, J. W. Water, J. C. Gille, A. E. Roche, and J. M. Russell, “Stratospheric temperature measurements by two collocated NDSC lidars during UARS validation campaign,” J. Geophys. Res.101(D6), 10287–10297 (1996).

I. S. McDermid, S. M. Godin, R. A. Barnes, C. L. Parsons, A. Torres, M. P. McCormick, W. P. Chu, P. Wang, J. Butler, P. Newman, J. Burris, R. Ferrare, D. Whiteman, and T. J. McGee, “Comparison of ozone profiles from ground-based lidar, ECC balloon sonde, ROCOZ-A rocket sonde, and SAGE-2 satellite measurements,” J. Geophys. Res.95, 10037–10042 (1990).
[CrossRef]

Nakane, H.

Newman, P.

I. S. McDermid, S. M. Godin, R. A. Barnes, C. L. Parsons, A. Torres, M. P. McCormick, W. P. Chu, P. Wang, J. Butler, P. Newman, J. Burris, R. Ferrare, D. Whiteman, and T. J. McGee, “Comparison of ozone profiles from ground-based lidar, ECC balloon sonde, ROCOZ-A rocket sonde, and SAGE-2 satellite measurements,” J. Geophys. Res.95, 10037–10042 (1990).
[CrossRef]

Nussli, J.

J. P. Boutot, J. Nussli, and D. Vallat, “Recent trends in photomultipliers for nuclear physics,” Adv. Electron. Electron Phys.60, 223–305 (1983).
[CrossRef]

Parsons, C. L.

I. S. McDermid, S. M. Godin, R. A. Barnes, C. L. Parsons, A. Torres, M. P. McCormick, W. P. Chu, P. Wang, J. Butler, P. Newman, J. Burris, R. Ferrare, D. Whiteman, and T. J. McGee, “Comparison of ozone profiles from ground-based lidar, ECC balloon sonde, ROCOZ-A rocket sonde, and SAGE-2 satellite measurements,” J. Geophys. Res.95, 10037–10042 (1990).
[CrossRef]

Penso, G.

M. De Vincenzi, G. Penso, A. Sciubba, and A. Sposito, “Experimental study of nonlinear effects on photomultiplier gain,” Nucl. Instrum. Methods Phys. Res.225(1), 104–112 (1984).
[CrossRef]

Poli, M.

F. Cairo, F. Congeduti, M. Poli, S. Centurioni, and G. Di Donfrancesco, “A survey of the signal induced noise in photomultiplier detection of wide dynamics luminous signals,” Rev. Sci. Instrum.67(9), 3274–3280 (1996).
[CrossRef]

Poultney, S. K.

W. H. Hunt and S. K. Poultney, “Testing the linearity of response of gated photomultipliers in wide dynamic range laser radar systems,” IEEE Trans. Nucl. Sci. NS22(1), 116–120 (1975).
[CrossRef]

Prasad, C.

Proffitt, M. H.

Roche, A. E.

U. N. Singh, P. Keckhut, T. J. McGee, M. R. Gross, A. Hauchecorne, E. F. Fishbein, J. W. Water, J. C. Gille, A. E. Roche, and J. M. Russell, “Stratospheric temperature measurements by two collocated NDSC lidars during UARS validation campaign,” J. Geophys. Res.101(D6), 10287–10297 (1996).

Russell, J. M.

U. N. Singh, P. Keckhut, T. J. McGee, M. R. Gross, A. Hauchecorne, E. F. Fishbein, J. W. Water, J. C. Gille, A. E. Roche, and J. M. Russell, “Stratospheric temperature measurements by two collocated NDSC lidars during UARS validation campaign,” J. Geophys. Res.101(D6), 10287–10297 (1996).

Sargoytchev, S.

Sasano, Y.

Schwemmer, G. K.

Sciubba, A.

M. De Vincenzi, G. Penso, A. Sciubba, and A. Sposito, “Experimental study of nonlinear effects on photomultiplier gain,” Nucl. Instrum. Methods Phys. Res.225(1), 104–112 (1984).
[CrossRef]

Shimizu, H.

Shimzu, H.

Sica, R. J.

Singh, U. N.

U. N. Singh, P. Keckhut, T. J. McGee, M. R. Gross, A. Hauchecorne, E. F. Fishbein, J. W. Water, J. C. Gille, A. E. Roche, and J. M. Russell, “Stratospheric temperature measurements by two collocated NDSC lidars during UARS validation campaign,” J. Geophys. Res.101(D6), 10287–10297 (1996).

Sparrow, C. T.

Sposito, A.

M. De Vincenzi, G. Penso, A. Sciubba, and A. Sposito, “Experimental study of nonlinear effects on photomultiplier gain,” Nucl. Instrum. Methods Phys. Res.225(1), 104–112 (1984).
[CrossRef]

Sugimoto, N.

Sunesson, J. A.

Swart, D. P. J.

Takeuchi, N.

Torres, A.

I. S. McDermid, S. M. Godin, R. A. Barnes, C. L. Parsons, A. Torres, M. P. McCormick, W. P. Chu, P. Wang, J. Butler, P. Newman, J. Burris, R. Ferrare, D. Whiteman, and T. J. McGee, “Comparison of ozone profiles from ground-based lidar, ECC balloon sonde, ROCOZ-A rocket sonde, and SAGE-2 satellite measurements,” J. Geophys. Res.95, 10037–10042 (1990).
[CrossRef]

Vallat, D.

J. P. Boutot, J. Nussli, and D. Vallat, “Recent trends in photomultipliers for nuclear physics,” Adv. Electron. Electron Phys.60, 223–305 (1983).
[CrossRef]

Wang, C.

C. Wang, “New Chains of Space Weather Monitoring Stations in China,” Space Weather8(8), S08001 (2010).
[CrossRef]

Wang, P.

I. S. McDermid, S. M. Godin, R. A. Barnes, C. L. Parsons, A. Torres, M. P. McCormick, W. P. Chu, P. Wang, J. Butler, P. Newman, J. Burris, R. Ferrare, D. Whiteman, and T. J. McGee, “Comparison of ozone profiles from ground-based lidar, ECC balloon sonde, ROCOZ-A rocket sonde, and SAGE-2 satellite measurements,” J. Geophys. Res.95, 10037–10042 (1990).
[CrossRef]

Water, J. W.

U. N. Singh, P. Keckhut, T. J. McGee, M. R. Gross, A. Hauchecorne, E. F. Fishbein, J. W. Water, J. C. Gille, A. E. Roche, and J. M. Russell, “Stratospheric temperature measurements by two collocated NDSC lidars during UARS validation campaign,” J. Geophys. Res.101(D6), 10287–10297 (1996).

Whiteman, D.

I. S. McDermid, S. M. Godin, R. A. Barnes, C. L. Parsons, A. Torres, M. P. McCormick, W. P. Chu, P. Wang, J. Butler, P. Newman, J. Burris, R. Ferrare, D. Whiteman, and T. J. McGee, “Comparison of ozone profiles from ground-based lidar, ECC balloon sonde, ROCOZ-A rocket sonde, and SAGE-2 satellite measurements,” J. Geophys. Res.95, 10037–10042 (1990).
[CrossRef]

Whiteway, J. A.

Wright, A. G.

Yu, Z. B.

X. Z. Chu, Z. B. Yu, C. S. Gardner, C. Chen, and W. C. Fong, “Lidar observations of neutral Fe layers and fast gravity waves in the thermosphere (110–155 km) at McMurdo (77.8 S, 166.7 E), Antarctica,” Geophys. Res. Lett.38(23), L23807 (2011).
[CrossRef]

Adv. Electron. Electron Phys.

J. P. Boutot, J. Nussli, and D. Vallat, “Recent trends in photomultipliers for nuclear physics,” Adv. Electron. Electron Phys.60, 223–305 (1983).
[CrossRef]

Appl. Opt.

H. Shimizu, Y. Sasano, H. Nakane, N. Sugimoto, I. Matsui, and N. Takeuchi, “Large scale laser radar for measuring aerosol distribution over a wide area,” Appl. Opt.24(5), 617–626 (1985).
[CrossRef] [PubMed]

Y. Likura, N. Sugimoto, Y. Sasano, and H. Shimzu, “Improvement on lidar data processing for stratospheric aerosol measurements,” Appl. Opt.26(24), 5299–5306 (1987).
[CrossRef] [PubMed]

H. S. Lee, G. K. Schwemmer, C. L. Korb, M. Dombrowski, and C. Prasad, “Gated photomultiplier response characterization for DIAL measurements,” Appl. Opt.29(22), 3303–3315 (1990).
[CrossRef] [PubMed]

D. P. Donovan, J. A. Whiteway, and A. I. Carswell, “Correction for nonlinear photon-counting effects in lidar systems,” Appl. Opt.32(33), 6742–6753 (1993).
[CrossRef] [PubMed]

J. A. Sunesson, A. Apituley, and D. P. J. Swart, “Differential absorption lidar system for routine monitoring of tropospheric ozone,” Appl. Opt.33(30), 7045–7058 (1994).
[CrossRef] [PubMed]

M. H. Proffitt and A. O. Langford, “Ground-based differential absorption lidar system for day or night measurements of ozone throughout the free troposphere,” Appl. Opt.36(12), 2568–2585 (1997).
[CrossRef] [PubMed]

M. P. Bristow, D. H. Bundy, and A. G. Wright, “Signal linearity, gain stability, and gating in photomultipliers: application to differential absorption lidars,” Appl. Opt.34(21), 4437–4452 (1995).
[CrossRef] [PubMed]

R. J. Sica, S. Sargoytchev, P. S. Argall, E. F. Borra, L. Girard, C. T. Sparrow, and S. Flatt, “Lidar measurements taken with a large-aperture liquid mirror. 1. Rayleigh-scatter system,” Appl. Opt.34(30), 6925–6936 (1995).
[CrossRef] [PubMed]

C. S. Gardner, “Performance capabilities of middle-atmosphere temperature lidars: Comparison of Na, Fe, K, Ca, Ca+, and Rayleigh systems,” Appl. Opt.43(25), 4941–4956 (2004).
[CrossRef] [PubMed]

Atmos. Chem. Phys.

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Gerding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys.4(3), 793–800 (2004).
[CrossRef]

Geophys. Res. Lett.

X. Z. Chu, Z. B. Yu, C. S. Gardner, C. Chen, and W. C. Fong, “Lidar observations of neutral Fe layers and fast gravity waves in the thermosphere (110–155 km) at McMurdo (77.8 S, 166.7 E), Antarctica,” Geophys. Res. Lett.38(23), L23807 (2011).
[CrossRef]

IEEE J. Quantum Electron.

R. A. Kaplan and R. J. Daly, “Performance limits and design procedure for all-weather terrestrial range- finders,” IEEE J. Quantum Electron.3(11), 428–435 (1967).
[CrossRef]

IEEE Trans. Nucl. Sci. NS

W. H. Hunt and S. K. Poultney, “Testing the linearity of response of gated photomultipliers in wide dynamic range laser radar systems,” IEEE Trans. Nucl. Sci. NS22(1), 116–120 (1975).
[CrossRef]

J. Geophys. Res.

I. S. McDermid, S. M. Godin, R. A. Barnes, C. L. Parsons, A. Torres, M. P. McCormick, W. P. Chu, P. Wang, J. Butler, P. Newman, J. Burris, R. Ferrare, D. Whiteman, and T. J. McGee, “Comparison of ozone profiles from ground-based lidar, ECC balloon sonde, ROCOZ-A rocket sonde, and SAGE-2 satellite measurements,” J. Geophys. Res.95, 10037–10042 (1990).
[CrossRef]

U. N. Singh, P. Keckhut, T. J. McGee, M. R. Gross, A. Hauchecorne, E. F. Fishbein, J. W. Water, J. C. Gille, A. E. Roche, and J. M. Russell, “Stratospheric temperature measurements by two collocated NDSC lidars during UARS validation campaign,” J. Geophys. Res.101(D6), 10287–10297 (1996).

Nucl. Instrum. Methods Phys. Res.

M. De Vincenzi, G. Penso, A. Sciubba, and A. Sposito, “Experimental study of nonlinear effects on photomultiplier gain,” Nucl. Instrum. Methods Phys. Res.225(1), 104–112 (1984).
[CrossRef]

Proc. IEEE

C. S. Gardner, “Sodium resonance fluorescence lidar applications in atmospheric science and astronomy,” Proc. IEEE77(3), 408–418 (1989).
[CrossRef]

Rev. Sci. Instrum.

F. Cairo, F. Congeduti, M. Poli, S. Centurioni, and G. Di Donfrancesco, “A survey of the signal induced noise in photomultiplier detection of wide dynamics luminous signals,” Rev. Sci. Instrum.67(9), 3274–3280 (1996).
[CrossRef]

Space Weather

C. Wang, “New Chains of Space Weather Monitoring Stations in China,” Space Weather8(8), S08001 (2010).
[CrossRef]

Other

M. L. Chanin and A. Hauchecorne, “Lidar studies of temperature and density using Rayleigh scattering,” in Handbook for MAP: Ground-Based Techniques, Vol. 13 of the Middle Atmosphere Program Series (Scientific Committee on Solar Terrestrial Physics, International Council of Scientific Unions, Urbana, Ill., 1984), paper 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of the signal processing unit for investigation of lidar return signal nonlinear photo-counting effects with a LED installed for the PMT tests

Fig. 2
Fig. 2

Overall input-output response curve of tested H7421-MCS acquisition system as functions of counts under 1.28us acquisition bin width, 30 Hz prr, averaged over 1000 shots. NL is the upper limits of linearity differing from each tested system, which is 1.5MHz (~1920 counts) in our case. Blue line represents Eq. (1). Its corresponding values on Y-axis are also the f(x) in Eq. (2). Red line is Eq. (2) fitted by using a least squares fit method. 28 dots represent 28 combinations of ND filters, varying with an equal step of OD 0.1, which is the minimum resolution of optical density for the ND filters suit we have. Each dot represents an inversion relationship between the ideal/true input signal given by Eq. (1) and the measured output signal averaged though 1.28us pulse width.

Fig. 3
Fig. 3

(a) SIN increase with intensity of inducing signal, corresponding with the decreasing optical density of each ND filters combination. The induced square light pulse is changed to100us width, 30 Hz prr, average over 5000 shots. (b) SIN after the inducing square pulses of various widths (10, 20, 30, 50, 80us) as a function of pulse width at various time intervals (10, 50, 80,100us). SIN increase with pulse width at all time, the dependence is more pronounced at low value of 10us time interval.

Fig. 4
Fig. 4

The timing structure of the Lidar laser pulses.

Fig. 5
Fig. 5

Fine structure of SIN accumulative effects on lidar return signal. Notice that the continuous return signals with 10ns pulse width are summed and recorded by MCS card on 1.28us lasting bins, averaged over 1000 shots as a function of time. The black bold line implies the 1.28us acquisition bin width. The red solid lines are double exponential empirical functions, approximating the SIN resulting from various induced signals; black dots represent the SIN superimposition effect on the raw signal recorded by acquisition card on the same lasting bins.

Fig. 6
Fig. 6

(a) The exponentially decaying continuous lidar signals with 10ns pulse width, 30HZ prr are modeled and subdivided into square pulses of 1.28us width. (b) The sophisticated structure of the red period shown in (a). Black bold line represents the continuous backscattering signals in a bin width, which will be summed up and recorded as a total count by MCS card. The solid line is the induced square pulse from LED, simulating and approximating the exponentially decaying signal in each bin. The dashed line indicates the errors between the actual signals and simulated square pulse.

Fig. 7
Fig. 7

(a) The ratio of SIN to lidar raw signal. The black solid line represents lidar raw signal without any calibration or deduction of background noise, corresponding to left Y-axis. Blue line is the ratio of SIN to Raw signal, corresponding to right Y-axis in percentage. Red straight lines are marks that indicate SIN accumulative effect on sodium layer (~12% at 90km) is similar to that of 30km, but negligible at altitude above sodium layer. (b) The relative roles of SIN and pulse pile-up to the distortion, evaluated by five separated areas. Red mark delimits the preponderance of SIN.

Fig. 8
Fig. 8

Comparison of calibrated signal to lidar raw signal under the identical acquisition parameters (1.28us bin, 30Hz prr, 1000 shots). The red line represents signals after pile-up and SIN correction; the black line is the raw backscattering signal. Blue line represents the difference between red line and black line, corresponding to right Y-axis. Background noise and PMT dark noise have been preliminarily deducted.

Fig. 9
Fig. 9

(a) Comparison of calibrated signal to linear signal under the identical acquisition parameters (1.28us bin, 30Hz prr, 1000 shots). The red line represents signals after pile-up and SIN correction; the black line is the full-scale linear backscattering signal at weak power. Background noise and PMT dark noise have been deducted. (b) Comparison of atmosphere density retrieved from data after calibrated (red line) and of full-scale linearity (black line), under the same time and spatial resolution (10min, 192m) but acquired in tandem, corresponding to left Y-axis. Normalized altitude is 30km with nrlmsise00 results. Blue line corresponding to right Y-axis represents differences to black line, quantified in percentage.

Fig. 10
Fig. 10

(a) Comparison of density profiles between Lidar, TIMED, and NRLMSISE-00, normalized at 30km with nrlmsise00 results. Black solid line is the atmospheric density derived from non-calibrated backscattering signal; green line is the one after calibration. The black bold line is the statistical error of the calibrated density. Associated time resolution is 20 minutes, spacial resolution is 192m. (b) Differences between densities derived from both raw signals (black dots) and calibrated signals (green dots) and that from TIMED measurements, normalized to the latter and quantified in percentage. Red marks delimits where differences are zero.

Fig. 11
Fig. 11

(a) Comparison of temperature profiles and its associated error bar with Lidar, TIMED, and NRLMSISE-00. Black solid line is the atmospheric temperature derived from non-calibrated signal; green line is the one after calibration. Associated time resolution is 20min, spacial resolution is 200m. (b) Differences between temperature profiles derived from both raw signals (black dots) and calibrated signals (green dots) and that from TIMED measurements.

Fig. 12
Fig. 12

Comparison of Sodium absolute number density profiles between signals after calibration and non-calibration, averaged for 10 hours of data from a random day. Black solid line is the Sodium absolute number density derived from non-calibrated backscattering signal, green line is the one after calibration. Blue line represents the difference between green line and black line, corresponding to right Y-axis.

Tables (3)

Tables Icon

Table 1 The coefficients of Eq. (2) obtained for the nonlinear response curve (red line) in Fig. 2

Tables Icon

Table 2 The coefficients of Eq. (4) obtained for typical SIN tails in Fig.3(a)

Tables Icon

Table 3 The relative role of SIN and pulse pile-up to the distortion of lidar signal in Fig. 7(b)

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

N input = N 0 10 Δ( OD ) Q E 1 , N 0 N L
N input =a×exp(bN')+ c×exp(dN'),N'> N L
N 1 S 1 bi n 1 = N rate = N 2 S 2 bi n 2
SIN= Ι 1 ×exp[ - Τ 1 (t- t 0 ) ]+ Ι 2 ×exp[ - Τ 2 (t- t 0 ) ]
SIN= x x n1 x n1 x n2 ( SI N n1 SI N n2 )+SI N n1
N SIN 1 = T=0 bin SI N 1 N SIN 2 = T=bin 2bin SI N 1 + T=0 bin SI N 2 N SIN 3 = T=2bin 3bin SI N 1 + T=bin 2bin SI N 2 + T=0 bin SI N 3 N SIN n = T=(n1)bin nbin SI N 1 + T=(n2)bin (n1)bin SI N 2 + T=(n3) (n2)bin SI N 3 ++ T=bin 2bin SI N n1 + T=0 bin SI N n
N true = N measured φ N SIN N B
N ' true = N measured φ N SIN

Metrics