Abstract

Abstract: Photonic splitters and couplers are one of the fundamental elements in integrated optical circuits. As such, over the past decade significant research efforts have been dedicated to the development of low loss, wide bandwidth devices. While silica-based devices have clear advantages in terms of bandwidth, silicon and silicon nitride devices have lead the field in terms of ease of integration. In the present work, we provide design parameters for a novel splitter based on a suspended silica device. Unlike previous coupler devices which have smooth transition regions, the proposed device has a small defect which enables coupling across a large membrane. The designs are based on 3D FDTD models, and incorporate wavelength, refractive index and polarization dependence. The model is experimentally verified at select wavelengths from the visible through the near-IR. For comparison, we have also modeled the splitting ratio for several materials which are commonly used as waveguiding devices.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of Silicon-, Germanium-, and Silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron.17(3), 516–525 (2011).
    [CrossRef]
  2. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by Silicon Nitride,” Nat. Mater.11(2), 148–154 (2011).
    [CrossRef] [PubMed]
  3. P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6(1), 45–49 (2011).
    [CrossRef]
  4. D. Q. Yang, H. P. Tian, and Y. F. Ji, “High-bandwidth and low-loss photonic crystal power-splitter with parallel output based on the integration of Y-junction and waveguide bends,” Opt. Commun.285(18), 3752–3757 (2012).
    [CrossRef]
  5. P. W. Nugent, J. A. Shaw, and S. Piazzolla, “Infrared cloud imaging in support of Earth-space optical communication,” Opt. Express17(10), 7862–7872 (2009).
    [CrossRef] [PubMed]
  6. Y. H. Fei, S. W. Chen, L. B. Zhang, and T. T. Cao, “Design and analysis of polarization splitter based on a horizontal slotted waveguide,” Opt. Eng.51(5), 054601 (2012).
    [CrossRef]
  7. L. L. Zhang, Q. Li, and Q. Wang, “1-to-N beam splitter based on photonic crystal branched waveguide structure,” Opt. Laser Technol.43(7), 1325–1330 (2011).
    [CrossRef]
  8. X. M. Zhang and A. M. Armani, “Suspended bridge-like silica 2×2 beam splitter on Silicon,” Opt. Lett.36(15), 3012–3014 (2011).
    [CrossRef] [PubMed]
  9. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, 2007).
  10. K. Thyagarajan, A. Kumar, and I. C. Goyal, “Exact analysis of the evanescent coupling between two indiffused optical waveguides,” Appl. Opt.20(10), 1821–1824 (1981).
    [CrossRef] [PubMed]
  11. A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am. B62(11), 1267–1277 (1972).
    [CrossRef]
  12. H. Sasaki and N. Mikoshiba, “Normalized power transmission in single mode optical brancing waveguides,” Elec Lett17(3), 136–138 (1981).
    [CrossRef]
  13. E. Palik, Handbook of Optical Constants of Solids (Elsevier 1998).
  14. A. Martínez, F. Cuesta-Soto, J. M. J. García, N. V. Sochinskii, M. Abellan, J. R. Fernández, A. M. S. Mengali, C. Corsi, I. Reid, M. Robertson, S. Neretina, R. A. Hughes, J. Wojcik, J. S. Preston, and P. Mascher, “Cadmium Telluride: a Silicon-compatible optical material as an alternative technology for building all-optical photonic devices,” in SPIE: Silicon Photonics and Photonic Integrated Circuits (SPIE, 2008).
  15. E. M. Yeatman, M. M. Ahmad, O. McCarthy, A. Martucci, and M. Guglielmi, “Sol-gel fabrication of rare-earth doped photonic components,” J. Sol-Gel Sci. Technol.19(1/3), 231–236 (2000).
    [CrossRef]
  16. B. A. Rose, A. J. Maker, and A. M. Armani, “Characterization of thermo-optic coefficient and material loss of high refractive index silica sol-gel films in the visible and near-IR,” Opt. Mater. Express2(5), 671–681 (2012).
    [CrossRef]
  17. A. J. Maker and A. M. Armani, “Low-loss silica-on-silicon waveguides,” Opt. Lett.36(19), 3729–3731 (2011).
    [CrossRef] [PubMed]
  18. X. Zhang, M. Harrison, A. Harker, and A. M. Armani, “Serpentine low loss trapezoidal silica waveguides on silicon,” Opt. Express20(20), 22298–22307 (2012).
    [CrossRef] [PubMed]
  19. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer, London, 1984).
  20. R. Sammut and A. W. Snyder, “Leaky modes on a dielectric waveguide: orthogonality and excitation,” Appl. Opt.15(4), 1040–1044 (1976).
    [CrossRef] [PubMed]
  21. I. Papakonstantinou, K. Wang, D. R. Selviah, and F. A. Fernández, “Transition, radiation and propagation loss in polymer multimode waveguide bends,” Opt. Express15(2), 669–679 (2007).
    [CrossRef] [PubMed]
  22. C. R. Murthy and A. M. Armani, “Mass transport effects in suspended waveguide biosensors integrated in microfluidic channels,” Sensors (Basel)12(12), 14327–14343 (2012).
    [CrossRef] [PubMed]
  23. B. Chen, L. Huang, Y. Li, C. Liu, and G. Liu, “Flexible optical waveguide beam splitters based on directional coupling,” J. Opt. Soc. Am. B28(11), 2680–2684 (2011).
    [CrossRef]
  24. W. C. Chiu, C. Y. Lu, and M. C. M. Lee, “Monolithic integration of 2-D multimode interference couplers and Silicon photonic wires,” IEEE J. Sel. Top. Quantum Electron.17(3), 540–545 (2011).
    [CrossRef]
  25. A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat Commun2, 566 (2011).
    [CrossRef] [PubMed]
  26. J. H. Zhu, X. G. Huang, and X. Mei, “Improved models for plasmonic waveguide splitters and demultiplexers at the telecommunication wavelengths,” IEEE Trans. NanoTechnol.10(5), 1166–1171 (2011).
    [CrossRef]
  27. J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
    [CrossRef] [PubMed]

2012 (6)

D. Q. Yang, H. P. Tian, and Y. F. Ji, “High-bandwidth and low-loss photonic crystal power-splitter with parallel output based on the integration of Y-junction and waveguide bends,” Opt. Commun.285(18), 3752–3757 (2012).
[CrossRef]

Y. H. Fei, S. W. Chen, L. B. Zhang, and T. T. Cao, “Design and analysis of polarization splitter based on a horizontal slotted waveguide,” Opt. Eng.51(5), 054601 (2012).
[CrossRef]

B. A. Rose, A. J. Maker, and A. M. Armani, “Characterization of thermo-optic coefficient and material loss of high refractive index silica sol-gel films in the visible and near-IR,” Opt. Mater. Express2(5), 671–681 (2012).
[CrossRef]

C. R. Murthy and A. M. Armani, “Mass transport effects in suspended waveguide biosensors integrated in microfluidic channels,” Sensors (Basel)12(12), 14327–14343 (2012).
[CrossRef] [PubMed]

X. Zhang, M. Harrison, A. Harker, and A. M. Armani, “Serpentine low loss trapezoidal silica waveguides on silicon,” Opt. Express20(20), 22298–22307 (2012).
[CrossRef] [PubMed]

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
[CrossRef] [PubMed]

2011 (10)

B. Chen, L. Huang, Y. Li, C. Liu, and G. Liu, “Flexible optical waveguide beam splitters based on directional coupling,” J. Opt. Soc. Am. B28(11), 2680–2684 (2011).
[CrossRef]

W. C. Chiu, C. Y. Lu, and M. C. M. Lee, “Monolithic integration of 2-D multimode interference couplers and Silicon photonic wires,” IEEE J. Sel. Top. Quantum Electron.17(3), 540–545 (2011).
[CrossRef]

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat Commun2, 566 (2011).
[CrossRef] [PubMed]

J. H. Zhu, X. G. Huang, and X. Mei, “Improved models for plasmonic waveguide splitters and demultiplexers at the telecommunication wavelengths,” IEEE Trans. NanoTechnol.10(5), 1166–1171 (2011).
[CrossRef]

A. J. Maker and A. M. Armani, “Low-loss silica-on-silicon waveguides,” Opt. Lett.36(19), 3729–3731 (2011).
[CrossRef] [PubMed]

L. L. Zhang, Q. Li, and Q. Wang, “1-to-N beam splitter based on photonic crystal branched waveguide structure,” Opt. Laser Technol.43(7), 1325–1330 (2011).
[CrossRef]

X. M. Zhang and A. M. Armani, “Suspended bridge-like silica 2×2 beam splitter on Silicon,” Opt. Lett.36(15), 3012–3014 (2011).
[CrossRef] [PubMed]

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of Silicon-, Germanium-, and Silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron.17(3), 516–525 (2011).
[CrossRef]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by Silicon Nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6(1), 45–49 (2011).
[CrossRef]

2009 (1)

2007 (1)

2000 (1)

E. M. Yeatman, M. M. Ahmad, O. McCarthy, A. Martucci, and M. Guglielmi, “Sol-gel fabrication of rare-earth doped photonic components,” J. Sol-Gel Sci. Technol.19(1/3), 231–236 (2000).
[CrossRef]

1981 (2)

H. Sasaki and N. Mikoshiba, “Normalized power transmission in single mode optical brancing waveguides,” Elec Lett17(3), 136–138 (1981).
[CrossRef]

K. Thyagarajan, A. Kumar, and I. C. Goyal, “Exact analysis of the evanescent coupling between two indiffused optical waveguides,” Appl. Opt.20(10), 1821–1824 (1981).
[CrossRef] [PubMed]

1976 (1)

1972 (1)

A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am. B62(11), 1267–1277 (1972).
[CrossRef]

Ahmad, M. M.

E. M. Yeatman, M. M. Ahmad, O. McCarthy, A. Martucci, and M. Guglielmi, “Sol-gel fabrication of rare-earth doped photonic components,” J. Sol-Gel Sci. Technol.19(1/3), 231–236 (2000).
[CrossRef]

Armani, A. M.

Bianco, F.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by Silicon Nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Bongioanni, I.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat Commun2, 566 (2011).
[CrossRef] [PubMed]

Borga, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by Silicon Nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Bourderionnet, J.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
[CrossRef] [PubMed]

Cao, T. T.

Y. H. Fei, S. W. Chen, L. B. Zhang, and T. T. Cao, “Design and analysis of polarization splitter based on a horizontal slotted waveguide,” Opt. Eng.51(5), 054601 (2012).
[CrossRef]

Capmany, J.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
[CrossRef] [PubMed]

Cazzanelli, M.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by Silicon Nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Chen, B.

Chen, S. W.

Y. H. Fei, S. W. Chen, L. B. Zhang, and T. T. Cao, “Design and analysis of polarization splitter based on a horizontal slotted waveguide,” Opt. Eng.51(5), 054601 (2012).
[CrossRef]

Chiu, W. C.

W. C. Chiu, C. Y. Lu, and M. C. M. Lee, “Monolithic integration of 2-D multimode interference couplers and Silicon photonic wires,” IEEE J. Sel. Top. Quantum Electron.17(3), 540–545 (2011).
[CrossRef]

Colman, P.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
[CrossRef] [PubMed]

Combrié, S.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
[CrossRef] [PubMed]

Crespi, A.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat Commun2, 566 (2011).
[CrossRef] [PubMed]

De Rossi, A.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
[CrossRef] [PubMed]

Degoli, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by Silicon Nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Dolfi, D.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
[CrossRef] [PubMed]

Fei, Y. H.

Y. H. Fei, S. W. Chen, L. B. Zhang, and T. T. Cao, “Design and analysis of polarization splitter based on a horizontal slotted waveguide,” Opt. Eng.51(5), 054601 (2012).
[CrossRef]

Fernández, F. A.

Gasulla, I.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
[CrossRef] [PubMed]

Ghulinyan, M.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by Silicon Nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Goyal, I. C.

Guglielmi, M.

E. M. Yeatman, M. M. Ahmad, O. McCarthy, A. Martucci, and M. Guglielmi, “Sol-gel fabrication of rare-earth doped photonic components,” J. Sol-Gel Sci. Technol.19(1/3), 231–236 (2000).
[CrossRef]

Harker, A.

Harrison, M.

Huang, L.

Huang, X. G.

J. H. Zhu, X. G. Huang, and X. Mei, “Improved models for plasmonic waveguide splitters and demultiplexers at the telecommunication wavelengths,” IEEE Trans. NanoTechnol.10(5), 1166–1171 (2011).
[CrossRef]

Itabashi, S.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of Silicon-, Germanium-, and Silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron.17(3), 516–525 (2011).
[CrossRef]

Ji, Y. F.

D. Q. Yang, H. P. Tian, and Y. F. Ji, “High-bandwidth and low-loss photonic crystal power-splitter with parallel output based on the integration of Y-junction and waveguide bends,” Opt. Commun.285(18), 3752–3757 (2012).
[CrossRef]

Kou, R.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of Silicon-, Germanium-, and Silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron.17(3), 516–525 (2011).
[CrossRef]

Kumar, A.

Laing, A.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6(1), 45–49 (2011).
[CrossRef]

Lee, M. C. M.

W. C. Chiu, C. Y. Lu, and M. C. M. Lee, “Monolithic integration of 2-D multimode interference couplers and Silicon photonic wires,” IEEE J. Sel. Top. Quantum Electron.17(3), 540–545 (2011).
[CrossRef]

Lehoucq, G.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
[CrossRef] [PubMed]

Li, Q.

L. L. Zhang, Q. Li, and Q. Wang, “1-to-N beam splitter based on photonic crystal branched waveguide structure,” Opt. Laser Technol.43(7), 1325–1330 (2011).
[CrossRef]

Li, Y.

Liu, C.

Liu, G.

Lloret, J.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
[CrossRef] [PubMed]

Lobino, M.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6(1), 45–49 (2011).
[CrossRef]

Lu, C. Y.

W. C. Chiu, C. Y. Lu, and M. C. M. Lee, “Monolithic integration of 2-D multimode interference couplers and Silicon photonic wires,” IEEE J. Sel. Top. Quantum Electron.17(3), 540–545 (2011).
[CrossRef]

Luppi, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by Silicon Nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Maker, A. J.

Martucci, A.

E. M. Yeatman, M. M. Ahmad, O. McCarthy, A. Martucci, and M. Guglielmi, “Sol-gel fabrication of rare-earth doped photonic components,” J. Sol-Gel Sci. Technol.19(1/3), 231–236 (2000).
[CrossRef]

Mataloni, P.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat Commun2, 566 (2011).
[CrossRef] [PubMed]

Matthews, J. C. F.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6(1), 45–49 (2011).
[CrossRef]

McCarthy, O.

E. M. Yeatman, M. M. Ahmad, O. McCarthy, A. Martucci, and M. Guglielmi, “Sol-gel fabrication of rare-earth doped photonic components,” J. Sol-Gel Sci. Technol.19(1/3), 231–236 (2000).
[CrossRef]

Mei, X.

J. H. Zhu, X. G. Huang, and X. Mei, “Improved models for plasmonic waveguide splitters and demultiplexers at the telecommunication wavelengths,” IEEE Trans. NanoTechnol.10(5), 1166–1171 (2011).
[CrossRef]

Mikoshiba, N.

H. Sasaki and N. Mikoshiba, “Normalized power transmission in single mode optical brancing waveguides,” Elec Lett17(3), 136–138 (1981).
[CrossRef]

Modotto, D.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by Silicon Nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Murthy, C. R.

C. R. Murthy and A. M. Armani, “Mass transport effects in suspended waveguide biosensors integrated in microfluidic channels,” Sensors (Basel)12(12), 14327–14343 (2012).
[CrossRef] [PubMed]

Nishi, H.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of Silicon-, Germanium-, and Silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron.17(3), 516–525 (2011).
[CrossRef]

Nugent, P. W.

O'Brien, J. L.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6(1), 45–49 (2011).
[CrossRef]

Osellame, R.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat Commun2, 566 (2011).
[CrossRef] [PubMed]

Ossicini, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by Silicon Nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Papakonstantinou, I.

Park, S.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of Silicon-, Germanium-, and Silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron.17(3), 516–525 (2011).
[CrossRef]

Pavesi, L.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by Silicon Nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Peruzzo, A.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6(1), 45–49 (2011).
[CrossRef]

Piazzolla, S.

Pierobon, R.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by Silicon Nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Politi, A.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6(1), 45–49 (2011).
[CrossRef]

Pucker, G.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by Silicon Nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Ramponi, R.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat Commun2, 566 (2011).
[CrossRef] [PubMed]

Rose, B. A.

Sales, S.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
[CrossRef] [PubMed]

Sammut, R.

Sancho, J.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
[CrossRef] [PubMed]

Sansoni, L.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat Commun2, 566 (2011).
[CrossRef] [PubMed]

Sasaki, H.

H. Sasaki and N. Mikoshiba, “Normalized power transmission in single mode optical brancing waveguides,” Elec Lett17(3), 136–138 (1981).
[CrossRef]

Sciarrino, F.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat Commun2, 566 (2011).
[CrossRef] [PubMed]

Selviah, D. R.

Shadbolt, P. J.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6(1), 45–49 (2011).
[CrossRef]

Shaw, J. A.

Shinojima, H.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of Silicon-, Germanium-, and Silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron.17(3), 516–525 (2011).
[CrossRef]

Snyder, A. W.

Thompson, M. G.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6(1), 45–49 (2011).
[CrossRef]

Thyagarajan, K.

Tian, H. P.

D. Q. Yang, H. P. Tian, and Y. F. Ji, “High-bandwidth and low-loss photonic crystal power-splitter with parallel output based on the integration of Y-junction and waveguide bends,” Opt. Commun.285(18), 3752–3757 (2012).
[CrossRef]

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of Silicon-, Germanium-, and Silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron.17(3), 516–525 (2011).
[CrossRef]

Vallone, G.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat Commun2, 566 (2011).
[CrossRef] [PubMed]

Véniard, V.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by Silicon Nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Verde, M. R.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6(1), 45–49 (2011).
[CrossRef]

Wabnitz, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by Silicon Nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Wang, K.

Wang, Q.

L. L. Zhang, Q. Li, and Q. Wang, “1-to-N beam splitter based on photonic crystal branched waveguide structure,” Opt. Laser Technol.43(7), 1325–1330 (2011).
[CrossRef]

Watanabe, T.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of Silicon-, Germanium-, and Silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron.17(3), 516–525 (2011).
[CrossRef]

Xavier, S.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
[CrossRef] [PubMed]

Yamada, K.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of Silicon-, Germanium-, and Silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron.17(3), 516–525 (2011).
[CrossRef]

Yang, D. Q.

D. Q. Yang, H. P. Tian, and Y. F. Ji, “High-bandwidth and low-loss photonic crystal power-splitter with parallel output based on the integration of Y-junction and waveguide bends,” Opt. Commun.285(18), 3752–3757 (2012).
[CrossRef]

Yeatman, E. M.

E. M. Yeatman, M. M. Ahmad, O. McCarthy, A. Martucci, and M. Guglielmi, “Sol-gel fabrication of rare-earth doped photonic components,” J. Sol-Gel Sci. Technol.19(1/3), 231–236 (2000).
[CrossRef]

Zhang, L. B.

Y. H. Fei, S. W. Chen, L. B. Zhang, and T. T. Cao, “Design and analysis of polarization splitter based on a horizontal slotted waveguide,” Opt. Eng.51(5), 054601 (2012).
[CrossRef]

Zhang, L. L.

L. L. Zhang, Q. Li, and Q. Wang, “1-to-N beam splitter based on photonic crystal branched waveguide structure,” Opt. Laser Technol.43(7), 1325–1330 (2011).
[CrossRef]

Zhang, X.

Zhang, X. M.

Zhu, J. H.

J. H. Zhu, X. G. Huang, and X. Mei, “Improved models for plasmonic waveguide splitters and demultiplexers at the telecommunication wavelengths,” IEEE Trans. NanoTechnol.10(5), 1166–1171 (2011).
[CrossRef]

Appl. Opt. (2)

Elec Lett (1)

H. Sasaki and N. Mikoshiba, “Normalized power transmission in single mode optical brancing waveguides,” Elec Lett17(3), 136–138 (1981).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of Silicon-, Germanium-, and Silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron.17(3), 516–525 (2011).
[CrossRef]

W. C. Chiu, C. Y. Lu, and M. C. M. Lee, “Monolithic integration of 2-D multimode interference couplers and Silicon photonic wires,” IEEE J. Sel. Top. Quantum Electron.17(3), 540–545 (2011).
[CrossRef]

IEEE Trans. NanoTechnol. (1)

J. H. Zhu, X. G. Huang, and X. Mei, “Improved models for plasmonic waveguide splitters and demultiplexers at the telecommunication wavelengths,” IEEE Trans. NanoTechnol.10(5), 1166–1171 (2011).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Sol-Gel Sci. Technol. (1)

E. M. Yeatman, M. M. Ahmad, O. McCarthy, A. Martucci, and M. Guglielmi, “Sol-gel fabrication of rare-earth doped photonic components,” J. Sol-Gel Sci. Technol.19(1/3), 231–236 (2000).
[CrossRef]

Nat Commun (2)

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
[CrossRef] [PubMed]

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat Commun2, 566 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by Silicon Nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Nat. Photonics (1)

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6(1), 45–49 (2011).
[CrossRef]

Opt. Commun. (1)

D. Q. Yang, H. P. Tian, and Y. F. Ji, “High-bandwidth and low-loss photonic crystal power-splitter with parallel output based on the integration of Y-junction and waveguide bends,” Opt. Commun.285(18), 3752–3757 (2012).
[CrossRef]

Opt. Eng. (1)

Y. H. Fei, S. W. Chen, L. B. Zhang, and T. T. Cao, “Design and analysis of polarization splitter based on a horizontal slotted waveguide,” Opt. Eng.51(5), 054601 (2012).
[CrossRef]

Opt. Express (3)

Opt. Laser Technol. (1)

L. L. Zhang, Q. Li, and Q. Wang, “1-to-N beam splitter based on photonic crystal branched waveguide structure,” Opt. Laser Technol.43(7), 1325–1330 (2011).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. Express (1)

Sensors (Basel) (1)

C. R. Murthy and A. M. Armani, “Mass transport effects in suspended waveguide biosensors integrated in microfluidic channels,” Sensors (Basel)12(12), 14327–14343 (2012).
[CrossRef] [PubMed]

Other (4)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer, London, 1984).

E. Palik, Handbook of Optical Constants of Solids (Elsevier 1998).

A. Martínez, F. Cuesta-Soto, J. M. J. García, N. V. Sochinskii, M. Abellan, J. R. Fernández, A. M. S. Mengali, C. Corsi, I. Reid, M. Robertson, S. Neretina, R. A. Hughes, J. Wojcik, J. S. Preston, and P. Mascher, “Cadmium Telluride: a Silicon-compatible optical material as an alternative technology for building all-optical photonic devices,” in SPIE: Silicon Photonics and Photonic Integrated Circuits (SPIE, 2008).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Suspended silica splitter. a) Rendering of suspended silica splitter, path of optical field indicated in red. b) Scanning electron microscopy image of the device. Inset: Optical microscopy image of insertion region, with protrusion indicated with arrows.

Fig. 2
Fig. 2

Schematic of the device. a) T1 = 900nm and T2 = 2µm represent thin and thick regions respectively. The black line is the waveguide and the red line indicates the direction of optical field insertion. b) Protrusion region defined by two pieces, R1 and R2, and the insertion angle, ϕ.

Fig. 3
Fig. 3

Fabrication outline of splitter device. a) A pair of photolithographic and BOE etching steps define the bowtie shape and thin and thick membranes. b) A XeF2 etch undercuts the oxide, isolating the low index silica from the high index silicon. c) A CO2 laser reflow step forms the cylindrical waveguides and the coupling region.

Fig. 4
Fig. 4

Field profile at the input region (a, b) and in the membrane region (c,d) of a waveguide without (a, c) and with (b, d) a protrusion. In this model a 10° insertion angle was used. As can be seen by comparing parts a) and b), the presence of the protrusion clearly alters the path of the optical field. This deviation results in the splitting of the optical field between the through and the cross ports (part d), which does not occur without the protrusion (part c). e) Coupling percentage for cross and through output waveguides as a function of the input waveguide angle.

Fig. 5
Fig. 5

a)/b)/c)/d) Theoretical and e)/f)/g)/h) experimental Bar and Cross coupling ratio as a function of wavelength for TE and TM polarizations. It can be seen that coupling ratio remains almost constant for a wide range of wavelengths.

Fig. 6
Fig. 6

Total excess loss from through and cross outputs of the device for both TE and TM input polarizations at all wavelengths. The total TE loss is slightly higher than the total TM loss.

Fig. 7
Fig. 7

Field distributions for four different materials. a) Silica (n = 1.445) b) Er-doped Silica (1.493), c) Sol-gel Silica with Titania dopant (1.5895), d) Silicon Nitride (n = 2.00)

Tables (2)

Tables Icon

Table 1 Overview of Simulations Performed

Tables Icon

Table 2 Simulation results for three different materials

Metrics