Abstract

We investigated the ballistic imaging technique using femtosecond optical Kerr gate of a tellurite glass. High contrast images of an object hidden behind turbid media were obtained. Compared to the conventional femtosecond optical Kerr gate using fused quartz, the optical Kerr gate using tellurite glass has more capacity to acquire high quality images of the object hidden behind a high optical density turbid medium. The experimental results indicated that the tellurite glass is a good candidate as the optical Kerr material for the ballistic imaging technique due to its large optical nonlinearity.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Paciaroni and M. A. Linne, “Single-shot, two-dimensional ballistic imaging through scattering media,” Appl. Opt.43(26), 5100–5109 (2004).
    [CrossRef] [PubMed]
  2. M. E. Zevallos L, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett.86(1), 011115 (2005).
    [CrossRef]
  3. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science253(5021), 769–771 (1991).
    [CrossRef] [PubMed]
  4. J. Tong, Y. Yang, J. Si, W. Tan, F. Chen, W. Yi, and X. Hou, “Measurements of the scattering coefficients of intralipid solutions by a femtosecond optical Kerr gate,” Opt. Eng.50(4), 043607 (2011).
    [CrossRef]
  5. D. J. Hall, J. C. Hebden, and D. T. Delpy, “Imaging very-low-contrast objects in breastlike scattering media with a time-resolved method,” Appl. Opt.36(28), 7270–7276 (1997).
    [CrossRef] [PubMed]
  6. J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt.11(4), 044008 (2006).
    [CrossRef] [PubMed]
  7. M. Paciaroni, M. A. Linne, T. Hall, J. P. Delplanque, and T. Parker, “Single-shot two-dimensional ballistic imaging of the liquid core in an atomizing spray,” Atom. Sprays16(1), 51–70 (2006).
    [CrossRef]
  8. M. A. Linne, M. Paciaroni, J. R. Gord, and T. R. Meyer, “Ballistic imaging of the liquid core for a steady jet in crossflow,” Appl. Opt.44(31), 6627–6634 (2005).
    [CrossRef] [PubMed]
  9. J. B. Schmidt, Z. D. Schaefer, T. R. Meyer, S. Roy, S. A. Danczyk, and J. R. Gord, “Ultrafast time-gated ballistic-photon imaging and shadowgraphy in optically dense rocket sprays,” Appl. Opt.48(4), B137–B144 (2009).
    [CrossRef] [PubMed]
  10. M. A. Linne, D. Sedarsky, T. R. Meyer, J. R. Gord, and C. Carter, “Ballistic imaging in the near-field of an effervescent spray,” Exp. Fluids49(4), 911–923 (2010).
    [CrossRef]
  11. C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D Appl. Phys.36(14), R207–R227 (2003).
    [CrossRef]
  12. S. Idlahcen, L. Méès, C. Rozé, T. Girasole, and J. B. Blaisot, “Time gate, optical layout, and wavelength effects on ballistic imaging,” J. Opt. Soc. Am. A26(9), 1995–2004 (2009).
    [CrossRef] [PubMed]
  13. A. Kuditcher, B. G. Hoover, M. P. Hehlen, E. N. Leith, S. C. Rand, and M. P. Shih, “Ultrafast, cross-correlated harmonic imaging through scattering media,” Appl. Opt.40(1), 45–51 (2001).
    [CrossRef] [PubMed]
  14. A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett.35(16), 2732–2734 (2010).
    [CrossRef] [PubMed]
  15. A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82(3), 033703 (2011).
    [CrossRef] [PubMed]
  16. J. Tong, W. Tan, J. Si, F. Cheng, W. Yi, and X. Hou, “High time-resolved imaging of targets in turbid media using ultrafast optical Kerr gate,” Chin. Phys. Lett. 29(2), 0242072–1-3 (2012).
  17. D. R. Symes, U. Wegner, H.-C. Ahlswede, M. J. V. Streeter, P. L. Gallegos, E. J. Divall, R. A. Smith, P. P. Rajeev, and D. Neely, “Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect,” Appl. Phys. Lett.96(1), 011109 (2010).
    [CrossRef]
  18. F. X. d’Abzac, M. Kervella, L. Hespel, and T. Dartigalongue, “Experimental and numerical analysis of ballistic and scattered light using femtosecond optical Kerr gating: a way for the characterization of strongly scattering media,” Opt. Express20(9), 9604–9615 (2012).
    [CrossRef] [PubMed]
  19. J. Tong, W. Tan, J. Si, W. Cui, W. Yi, F. Chen, and X. Hou, “Femtosecond optical Kerr effect measurement using supercontinuum for eliminating the nonlinear coherent coupling effect,” J. Opt.14(4), 045203 (2012).
    [CrossRef]
  20. A. J. Taylor, G. Rodriguez, and T. S. Clement, “Determination of n2 by direct measurement of the optical phase,” Opt. Lett.21(22), 1812–1814 (1996).
    [CrossRef] [PubMed]
  21. R. F. Souza, M. A. R. C. Alencar, J. M. Hichmann, R. Kobayashi, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of tellurite glasses,” Appl. Phys. Lett.89(17), 171917 (2006).
    [CrossRef]
  22. A. Lin, A. Zhang, E. J. Bushong, and J. Toulouse, “Solid-core tellurite glass fiber for infrared and nonlinear applications,” Opt. Express17(19), 16716–16721 (2009).
    [CrossRef] [PubMed]
  23. S. J. Madden and K. T. Vu, “Very low loss reactively ion etched Tellurium Dioxide planar rib waveguides for linear and non-linear optics,” Opt. Express17(20), 17645–17651 (2009).
    [CrossRef] [PubMed]
  24. W. Tan, Z. Zhou, A. Lin, J. Si, J. Tong, and X. Hou, “Femtosecond nonlinear optical property of a TeO2-ZnO-Na2O glass and its application in time-resolved three-dimensional imaging,” Opt. Commun.291, 337–340 (2013).
    [CrossRef]
  25. L. Wang, P. P. Ho, X. Liang, H. Dai, and R. R. Alfano, “Kerr - Fourier imaging of hidden objects in thick turbid media,” Opt. Lett.18(3), 241–243 (1993).
    [CrossRef] [PubMed]

2013 (1)

W. Tan, Z. Zhou, A. Lin, J. Si, J. Tong, and X. Hou, “Femtosecond nonlinear optical property of a TeO2-ZnO-Na2O glass and its application in time-resolved three-dimensional imaging,” Opt. Commun.291, 337–340 (2013).
[CrossRef]

2012 (3)

J. Tong, W. Tan, J. Si, W. Cui, W. Yi, F. Chen, and X. Hou, “Femtosecond optical Kerr effect measurement using supercontinuum for eliminating the nonlinear coherent coupling effect,” J. Opt.14(4), 045203 (2012).
[CrossRef]

J. Tong, W. Tan, J. Si, F. Cheng, W. Yi, and X. Hou, “High time-resolved imaging of targets in turbid media using ultrafast optical Kerr gate,” Chin. Phys. Lett. 29(2), 0242072–1-3 (2012).

F. X. d’Abzac, M. Kervella, L. Hespel, and T. Dartigalongue, “Experimental and numerical analysis of ballistic and scattered light using femtosecond optical Kerr gating: a way for the characterization of strongly scattering media,” Opt. Express20(9), 9604–9615 (2012).
[CrossRef] [PubMed]

2011 (2)

J. Tong, Y. Yang, J. Si, W. Tan, F. Chen, W. Yi, and X. Hou, “Measurements of the scattering coefficients of intralipid solutions by a femtosecond optical Kerr gate,” Opt. Eng.50(4), 043607 (2011).
[CrossRef]

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82(3), 033703 (2011).
[CrossRef] [PubMed]

2010 (3)

D. R. Symes, U. Wegner, H.-C. Ahlswede, M. J. V. Streeter, P. L. Gallegos, E. J. Divall, R. A. Smith, P. P. Rajeev, and D. Neely, “Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect,” Appl. Phys. Lett.96(1), 011109 (2010).
[CrossRef]

M. A. Linne, D. Sedarsky, T. R. Meyer, J. R. Gord, and C. Carter, “Ballistic imaging in the near-field of an effervescent spray,” Exp. Fluids49(4), 911–923 (2010).
[CrossRef]

A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett.35(16), 2732–2734 (2010).
[CrossRef] [PubMed]

2009 (4)

2006 (3)

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt.11(4), 044008 (2006).
[CrossRef] [PubMed]

M. Paciaroni, M. A. Linne, T. Hall, J. P. Delplanque, and T. Parker, “Single-shot two-dimensional ballistic imaging of the liquid core in an atomizing spray,” Atom. Sprays16(1), 51–70 (2006).
[CrossRef]

R. F. Souza, M. A. R. C. Alencar, J. M. Hichmann, R. Kobayashi, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of tellurite glasses,” Appl. Phys. Lett.89(17), 171917 (2006).
[CrossRef]

2005 (2)

M. E. Zevallos L, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett.86(1), 011115 (2005).
[CrossRef]

M. A. Linne, M. Paciaroni, J. R. Gord, and T. R. Meyer, “Ballistic imaging of the liquid core for a steady jet in crossflow,” Appl. Opt.44(31), 6627–6634 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D Appl. Phys.36(14), R207–R227 (2003).
[CrossRef]

2001 (1)

1997 (1)

1996 (1)

1993 (1)

1991 (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science253(5021), 769–771 (1991).
[CrossRef] [PubMed]

Ahlswede, H.-C.

D. R. Symes, U. Wegner, H.-C. Ahlswede, M. J. V. Streeter, P. L. Gallegos, E. J. Divall, R. A. Smith, P. P. Rajeev, and D. Neely, “Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect,” Appl. Phys. Lett.96(1), 011109 (2010).
[CrossRef]

Alencar, M. A. R. C.

R. F. Souza, M. A. R. C. Alencar, J. M. Hichmann, R. Kobayashi, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of tellurite glasses,” Appl. Phys. Lett.89(17), 171917 (2006).
[CrossRef]

Alfano, R. R.

M. E. Zevallos L, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett.86(1), 011115 (2005).
[CrossRef]

L. Wang, P. P. Ho, X. Liang, H. Dai, and R. R. Alfano, “Kerr - Fourier imaging of hidden objects in thick turbid media,” Opt. Lett.18(3), 241–243 (1993).
[CrossRef] [PubMed]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science253(5021), 769–771 (1991).
[CrossRef] [PubMed]

Alrubaiee, M.

M. E. Zevallos L, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett.86(1), 011115 (2005).
[CrossRef]

Audouard, E.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82(3), 033703 (2011).
[CrossRef] [PubMed]

Bassi, A.

Blaisot, J. B.

Boas, D. A.

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt.11(4), 044008 (2006).
[CrossRef] [PubMed]

Bonse, J.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82(3), 033703 (2011).
[CrossRef] [PubMed]

Brida, D.

Bushong, E. J.

Carter, C.

M. A. Linne, D. Sedarsky, T. R. Meyer, J. R. Gord, and C. Carter, “Ballistic imaging in the near-field of an effervescent spray,” Exp. Fluids49(4), 911–923 (2010).
[CrossRef]

Cerullo, G.

Chen, F.

J. Tong, W. Tan, J. Si, W. Cui, W. Yi, F. Chen, and X. Hou, “Femtosecond optical Kerr effect measurement using supercontinuum for eliminating the nonlinear coherent coupling effect,” J. Opt.14(4), 045203 (2012).
[CrossRef]

J. Tong, Y. Yang, J. Si, W. Tan, F. Chen, W. Yi, and X. Hou, “Measurements of the scattering coefficients of intralipid solutions by a femtosecond optical Kerr gate,” Opt. Eng.50(4), 043607 (2011).
[CrossRef]

Cheng, F.

J. Tong, W. Tan, J. Si, F. Cheng, W. Yi, and X. Hou, “High time-resolved imaging of targets in turbid media using ultrafast optical Kerr gate,” Chin. Phys. Lett. 29(2), 0242072–1-3 (2012).

Clement, T. S.

Cubeddu, R.

Cui, W.

J. Tong, W. Tan, J. Si, W. Cui, W. Yi, F. Chen, and X. Hou, “Femtosecond optical Kerr effect measurement using supercontinuum for eliminating the nonlinear coherent coupling effect,” J. Opt.14(4), 045203 (2012).
[CrossRef]

d’Abzac, F. X.

D’Andrea, C.

Dai, H.

Danczyk, S. A.

Dartigalongue, T.

De Silvestri, S.

Delplanque, J. P.

M. Paciaroni, M. A. Linne, T. Hall, J. P. Delplanque, and T. Parker, “Single-shot two-dimensional ballistic imaging of the liquid core in an atomizing spray,” Atom. Sprays16(1), 51–70 (2006).
[CrossRef]

Delpy, D. T.

Divall, E. J.

D. R. Symes, U. Wegner, H.-C. Ahlswede, M. J. V. Streeter, P. L. Gallegos, E. J. Divall, R. A. Smith, P. P. Rajeev, and D. Neely, “Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect,” Appl. Phys. Lett.96(1), 011109 (2010).
[CrossRef]

Dunsby, C.

C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D Appl. Phys.36(14), R207–R227 (2003).
[CrossRef]

French, P. M. W.

C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D Appl. Phys.36(14), R207–R227 (2003).
[CrossRef]

Gallegos, P. L.

D. R. Symes, U. Wegner, H.-C. Ahlswede, M. J. V. Streeter, P. L. Gallegos, E. J. Divall, R. A. Smith, P. P. Rajeev, and D. Neely, “Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect,” Appl. Phys. Lett.96(1), 011109 (2010).
[CrossRef]

Gayen, S. K.

M. E. Zevallos L, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett.86(1), 011115 (2005).
[CrossRef]

Girasole, T.

Gord, J. R.

Hall, D. J.

Hall, T.

M. Paciaroni, M. A. Linne, T. Hall, J. P. Delplanque, and T. Parker, “Single-shot two-dimensional ballistic imaging of the liquid core in an atomizing spray,” Atom. Sprays16(1), 51–70 (2006).
[CrossRef]

Hebden, J. C.

Hehlen, M. P.

Hertel, I. V.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82(3), 033703 (2011).
[CrossRef] [PubMed]

Hespel, L.

Hichmann, J. M.

R. F. Souza, M. A. R. C. Alencar, J. M. Hichmann, R. Kobayashi, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of tellurite glasses,” Appl. Phys. Lett.89(17), 171917 (2006).
[CrossRef]

Ho, P. P.

L. Wang, P. P. Ho, X. Liang, H. Dai, and R. R. Alfano, “Kerr - Fourier imaging of hidden objects in thick turbid media,” Opt. Lett.18(3), 241–243 (1993).
[CrossRef] [PubMed]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science253(5021), 769–771 (1991).
[CrossRef] [PubMed]

Hoover, B. G.

Hou, X.

W. Tan, Z. Zhou, A. Lin, J. Si, J. Tong, and X. Hou, “Femtosecond nonlinear optical property of a TeO2-ZnO-Na2O glass and its application in time-resolved three-dimensional imaging,” Opt. Commun.291, 337–340 (2013).
[CrossRef]

J. Tong, W. Tan, J. Si, W. Cui, W. Yi, F. Chen, and X. Hou, “Femtosecond optical Kerr effect measurement using supercontinuum for eliminating the nonlinear coherent coupling effect,” J. Opt.14(4), 045203 (2012).
[CrossRef]

J. Tong, W. Tan, J. Si, F. Cheng, W. Yi, and X. Hou, “High time-resolved imaging of targets in turbid media using ultrafast optical Kerr gate,” Chin. Phys. Lett. 29(2), 0242072–1-3 (2012).

J. Tong, Y. Yang, J. Si, W. Tan, F. Chen, W. Yi, and X. Hou, “Measurements of the scattering coefficients of intralipid solutions by a femtosecond optical Kerr gate,” Opt. Eng.50(4), 043607 (2011).
[CrossRef]

Idlahcen, S.

Joseph, D. K.

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt.11(4), 044008 (2006).
[CrossRef] [PubMed]

Kassab, L. R. P.

R. F. Souza, M. A. R. C. Alencar, J. M. Hichmann, R. Kobayashi, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of tellurite glasses,” Appl. Phys. Lett.89(17), 171917 (2006).
[CrossRef]

Kervella, M.

Kobayashi, R.

R. F. Souza, M. A. R. C. Alencar, J. M. Hichmann, R. Kobayashi, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of tellurite glasses,” Appl. Phys. Lett.89(17), 171917 (2006).
[CrossRef]

Kuditcher, A.

Leith, E. N.

Liang, X.

Lin, A.

W. Tan, Z. Zhou, A. Lin, J. Si, J. Tong, and X. Hou, “Femtosecond nonlinear optical property of a TeO2-ZnO-Na2O glass and its application in time-resolved three-dimensional imaging,” Opt. Commun.291, 337–340 (2013).
[CrossRef]

A. Lin, A. Zhang, E. J. Bushong, and J. Toulouse, “Solid-core tellurite glass fiber for infrared and nonlinear applications,” Opt. Express17(19), 16716–16721 (2009).
[CrossRef] [PubMed]

Linne, M. A.

M. A. Linne, D. Sedarsky, T. R. Meyer, J. R. Gord, and C. Carter, “Ballistic imaging in the near-field of an effervescent spray,” Exp. Fluids49(4), 911–923 (2010).
[CrossRef]

M. Paciaroni, M. A. Linne, T. Hall, J. P. Delplanque, and T. Parker, “Single-shot two-dimensional ballistic imaging of the liquid core in an atomizing spray,” Atom. Sprays16(1), 51–70 (2006).
[CrossRef]

M. A. Linne, M. Paciaroni, J. R. Gord, and T. R. Meyer, “Ballistic imaging of the liquid core for a steady jet in crossflow,” Appl. Opt.44(31), 6627–6634 (2005).
[CrossRef] [PubMed]

M. Paciaroni and M. A. Linne, “Single-shot, two-dimensional ballistic imaging through scattering media,” Appl. Opt.43(26), 5100–5109 (2004).
[CrossRef] [PubMed]

Liu, C.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science253(5021), 769–771 (1991).
[CrossRef] [PubMed]

Madden, S. J.

Mauclair, C.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82(3), 033703 (2011).
[CrossRef] [PubMed]

Méès, L.

Mermillod-Blondin, A.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82(3), 033703 (2011).
[CrossRef] [PubMed]

Meyer, T. R.

Neely, D.

D. R. Symes, U. Wegner, H.-C. Ahlswede, M. J. V. Streeter, P. L. Gallegos, E. J. Divall, R. A. Smith, P. P. Rajeev, and D. Neely, “Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect,” Appl. Phys. Lett.96(1), 011109 (2010).
[CrossRef]

Paciaroni, M.

Parker, T.

M. Paciaroni, M. A. Linne, T. Hall, J. P. Delplanque, and T. Parker, “Single-shot two-dimensional ballistic imaging of the liquid core in an atomizing spray,” Atom. Sprays16(1), 51–70 (2006).
[CrossRef]

Rajeev, P. P.

D. R. Symes, U. Wegner, H.-C. Ahlswede, M. J. V. Streeter, P. L. Gallegos, E. J. Divall, R. A. Smith, P. P. Rajeev, and D. Neely, “Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect,” Appl. Phys. Lett.96(1), 011109 (2010).
[CrossRef]

Rand, S. C.

Rodriguez, G.

Rosenfeld, A.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82(3), 033703 (2011).
[CrossRef] [PubMed]

Roy, S.

Rozé, C.

Schaefer, Z. D.

Schmidt, J. B.

Sedarsky, D.

M. A. Linne, D. Sedarsky, T. R. Meyer, J. R. Gord, and C. Carter, “Ballistic imaging in the near-field of an effervescent spray,” Exp. Fluids49(4), 911–923 (2010).
[CrossRef]

Selb, J.

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt.11(4), 044008 (2006).
[CrossRef] [PubMed]

Shih, M. P.

Si, J.

W. Tan, Z. Zhou, A. Lin, J. Si, J. Tong, and X. Hou, “Femtosecond nonlinear optical property of a TeO2-ZnO-Na2O glass and its application in time-resolved three-dimensional imaging,” Opt. Commun.291, 337–340 (2013).
[CrossRef]

J. Tong, W. Tan, J. Si, W. Cui, W. Yi, F. Chen, and X. Hou, “Femtosecond optical Kerr effect measurement using supercontinuum for eliminating the nonlinear coherent coupling effect,” J. Opt.14(4), 045203 (2012).
[CrossRef]

J. Tong, W. Tan, J. Si, F. Cheng, W. Yi, and X. Hou, “High time-resolved imaging of targets in turbid media using ultrafast optical Kerr gate,” Chin. Phys. Lett. 29(2), 0242072–1-3 (2012).

J. Tong, Y. Yang, J. Si, W. Tan, F. Chen, W. Yi, and X. Hou, “Measurements of the scattering coefficients of intralipid solutions by a femtosecond optical Kerr gate,” Opt. Eng.50(4), 043607 (2011).
[CrossRef]

Smith, R. A.

D. R. Symes, U. Wegner, H.-C. Ahlswede, M. J. V. Streeter, P. L. Gallegos, E. J. Divall, R. A. Smith, P. P. Rajeev, and D. Neely, “Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect,” Appl. Phys. Lett.96(1), 011109 (2010).
[CrossRef]

Souza, R. F.

R. F. Souza, M. A. R. C. Alencar, J. M. Hichmann, R. Kobayashi, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of tellurite glasses,” Appl. Phys. Lett.89(17), 171917 (2006).
[CrossRef]

Stoian, R.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82(3), 033703 (2011).
[CrossRef] [PubMed]

Streeter, M. J. V.

D. R. Symes, U. Wegner, H.-C. Ahlswede, M. J. V. Streeter, P. L. Gallegos, E. J. Divall, R. A. Smith, P. P. Rajeev, and D. Neely, “Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect,” Appl. Phys. Lett.96(1), 011109 (2010).
[CrossRef]

Symes, D. R.

D. R. Symes, U. Wegner, H.-C. Ahlswede, M. J. V. Streeter, P. L. Gallegos, E. J. Divall, R. A. Smith, P. P. Rajeev, and D. Neely, “Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect,” Appl. Phys. Lett.96(1), 011109 (2010).
[CrossRef]

Tan, W.

W. Tan, Z. Zhou, A. Lin, J. Si, J. Tong, and X. Hou, “Femtosecond nonlinear optical property of a TeO2-ZnO-Na2O glass and its application in time-resolved three-dimensional imaging,” Opt. Commun.291, 337–340 (2013).
[CrossRef]

J. Tong, W. Tan, J. Si, W. Cui, W. Yi, F. Chen, and X. Hou, “Femtosecond optical Kerr effect measurement using supercontinuum for eliminating the nonlinear coherent coupling effect,” J. Opt.14(4), 045203 (2012).
[CrossRef]

J. Tong, W. Tan, J. Si, F. Cheng, W. Yi, and X. Hou, “High time-resolved imaging of targets in turbid media using ultrafast optical Kerr gate,” Chin. Phys. Lett. 29(2), 0242072–1-3 (2012).

J. Tong, Y. Yang, J. Si, W. Tan, F. Chen, W. Yi, and X. Hou, “Measurements of the scattering coefficients of intralipid solutions by a femtosecond optical Kerr gate,” Opt. Eng.50(4), 043607 (2011).
[CrossRef]

Taylor, A. J.

Tong, J.

W. Tan, Z. Zhou, A. Lin, J. Si, J. Tong, and X. Hou, “Femtosecond nonlinear optical property of a TeO2-ZnO-Na2O glass and its application in time-resolved three-dimensional imaging,” Opt. Commun.291, 337–340 (2013).
[CrossRef]

J. Tong, W. Tan, J. Si, W. Cui, W. Yi, F. Chen, and X. Hou, “Femtosecond optical Kerr effect measurement using supercontinuum for eliminating the nonlinear coherent coupling effect,” J. Opt.14(4), 045203 (2012).
[CrossRef]

J. Tong, W. Tan, J. Si, F. Cheng, W. Yi, and X. Hou, “High time-resolved imaging of targets in turbid media using ultrafast optical Kerr gate,” Chin. Phys. Lett. 29(2), 0242072–1-3 (2012).

J. Tong, Y. Yang, J. Si, W. Tan, F. Chen, W. Yi, and X. Hou, “Measurements of the scattering coefficients of intralipid solutions by a femtosecond optical Kerr gate,” Opt. Eng.50(4), 043607 (2011).
[CrossRef]

Toulouse, J.

Valentini, G.

Vu, K. T.

Wang, L.

L. Wang, P. P. Ho, X. Liang, H. Dai, and R. R. Alfano, “Kerr - Fourier imaging of hidden objects in thick turbid media,” Opt. Lett.18(3), 241–243 (1993).
[CrossRef] [PubMed]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science253(5021), 769–771 (1991).
[CrossRef] [PubMed]

Wegner, U.

D. R. Symes, U. Wegner, H.-C. Ahlswede, M. J. V. Streeter, P. L. Gallegos, E. J. Divall, R. A. Smith, P. P. Rajeev, and D. Neely, “Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect,” Appl. Phys. Lett.96(1), 011109 (2010).
[CrossRef]

Yang, Y.

J. Tong, Y. Yang, J. Si, W. Tan, F. Chen, W. Yi, and X. Hou, “Measurements of the scattering coefficients of intralipid solutions by a femtosecond optical Kerr gate,” Opt. Eng.50(4), 043607 (2011).
[CrossRef]

Yi, W.

J. Tong, W. Tan, J. Si, F. Cheng, W. Yi, and X. Hou, “High time-resolved imaging of targets in turbid media using ultrafast optical Kerr gate,” Chin. Phys. Lett. 29(2), 0242072–1-3 (2012).

J. Tong, W. Tan, J. Si, W. Cui, W. Yi, F. Chen, and X. Hou, “Femtosecond optical Kerr effect measurement using supercontinuum for eliminating the nonlinear coherent coupling effect,” J. Opt.14(4), 045203 (2012).
[CrossRef]

J. Tong, Y. Yang, J. Si, W. Tan, F. Chen, W. Yi, and X. Hou, “Measurements of the scattering coefficients of intralipid solutions by a femtosecond optical Kerr gate,” Opt. Eng.50(4), 043607 (2011).
[CrossRef]

Zevallos L, M. E.

M. E. Zevallos L, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett.86(1), 011115 (2005).
[CrossRef]

Zhang, A.

Zhang, G.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science253(5021), 769–771 (1991).
[CrossRef] [PubMed]

Zhou, Z.

W. Tan, Z. Zhou, A. Lin, J. Si, J. Tong, and X. Hou, “Femtosecond nonlinear optical property of a TeO2-ZnO-Na2O glass and its application in time-resolved three-dimensional imaging,” Opt. Commun.291, 337–340 (2013).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (3)

D. R. Symes, U. Wegner, H.-C. Ahlswede, M. J. V. Streeter, P. L. Gallegos, E. J. Divall, R. A. Smith, P. P. Rajeev, and D. Neely, “Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect,” Appl. Phys. Lett.96(1), 011109 (2010).
[CrossRef]

R. F. Souza, M. A. R. C. Alencar, J. M. Hichmann, R. Kobayashi, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of tellurite glasses,” Appl. Phys. Lett.89(17), 171917 (2006).
[CrossRef]

M. E. Zevallos L, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett.86(1), 011115 (2005).
[CrossRef]

Atom. Sprays (1)

M. Paciaroni, M. A. Linne, T. Hall, J. P. Delplanque, and T. Parker, “Single-shot two-dimensional ballistic imaging of the liquid core in an atomizing spray,” Atom. Sprays16(1), 51–70 (2006).
[CrossRef]

Exp. Fluids (1)

M. A. Linne, D. Sedarsky, T. R. Meyer, J. R. Gord, and C. Carter, “Ballistic imaging in the near-field of an effervescent spray,” Exp. Fluids49(4), 911–923 (2010).
[CrossRef]

J. Biomed. Opt. (1)

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt.11(4), 044008 (2006).
[CrossRef] [PubMed]

J. Opt. (1)

J. Tong, W. Tan, J. Si, W. Cui, W. Yi, F. Chen, and X. Hou, “Femtosecond optical Kerr effect measurement using supercontinuum for eliminating the nonlinear coherent coupling effect,” J. Opt.14(4), 045203 (2012).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D Appl. Phys.36(14), R207–R227 (2003).
[CrossRef]

Opt. Commun. (1)

W. Tan, Z. Zhou, A. Lin, J. Si, J. Tong, and X. Hou, “Femtosecond nonlinear optical property of a TeO2-ZnO-Na2O glass and its application in time-resolved three-dimensional imaging,” Opt. Commun.291, 337–340 (2013).
[CrossRef]

Opt. Eng. (1)

J. Tong, Y. Yang, J. Si, W. Tan, F. Chen, W. Yi, and X. Hou, “Measurements of the scattering coefficients of intralipid solutions by a femtosecond optical Kerr gate,” Opt. Eng.50(4), 043607 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82(3), 033703 (2011).
[CrossRef] [PubMed]

Science (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science253(5021), 769–771 (1991).
[CrossRef] [PubMed]

Other (1)

J. Tong, W. Tan, J. Si, F. Cheng, W. Yi, and X. Hou, “High time-resolved imaging of targets in turbid media using ultrafast optical Kerr gate,” Chin. Phys. Lett. 29(2), 0242072–1-3 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the ballistic imaging system in our experiment. SPF, short pass filter; NA1, NA2, and NA3, neutral attenuators; λ/2, half-wave plate; O, object; T, turbid media; P, polarizer; K, optical Kerr material; A, analyzer; OKG, optical Kerr gate; D, dump; LPF, long pass filter; L1, L2, L3, and L4, lenses with focal lengths of 180, 150, 100, and 100 mm, respectively. All the diameters of the lenses is 50 mm. a = 190 mm, b = 250 mm, c = 330 mm, d = 160 mm.

Fig. 2
Fig. 2

The time-resolved OKG signals of the tellurite glass and the fused quartz. The inset shows the spectra of the gating and imaging beams.

Fig. 3
Fig. 3

Images of a 1.41-1p/mm section of the resolution test pattern from the ballistic imaging system in our experiment. (a) sample cell filled with distilled water without using the OKG. (b) sample cell filled with dense suspensions of polystyrene microspheres without using the OKG. (c) sample cell filled with dense suspensions of polystyrene microspheres using the OKG.

Fig. 4
Fig. 4

Imaging contrasts with and without using the OKG at different optical densities of the turbid media.

Fig. 5
Fig. 5

Ballistic-imaging intensities versus optical densities for the tellurite glass and the fused quartz.

Fig. 6
Fig. 6

Ballistic-imaging contrasts versus optical densities for the tellurite glass and the fused quartz. The inset shows the spatial intensity distributions of the ballistic images for both optical Kerr materials at the optical density 8.7.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Contrast= I max I min I max + I min

Metrics