Abstract

A photonic radar warning receiver was conceived and practically demonstrated. The system was very flexible in terms of frequency measurement range and resolution. This was achieved using a cascaded grating which provided different time delays for different wavelengths. The system was thus able to become reconfigured to operate at both broadband, low resolution and narrow band, high resolution modes.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics (London)1(6), 319–330 (2007).
    [CrossRef]
  2. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol.24(12), 4628–4641 (2006).
    [CrossRef]
  3. J. Yao, “Microwave photonics,” J. Lightwave Technol.27(3), 314–335 (2009).
    [CrossRef]
  4. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theory Tech.54(2), 832–846 (2006).
    [CrossRef]
  5. L. Li, H-S Jeong, J. Azana, and T-J Ahn, “25-terahertz-bandwidth all-optical temporal differentiator,” Opt. Express20(27), 28273–28280 (2012).
    [CrossRef] [PubMed]
  6. H. Emami, N. Sarkhosh, E. Lopez, and A. Mitchell, “Photonic feed for sinuous antenna,” J. Lightwave Technol.30(16), 2725–2743 (2012).
    [CrossRef]
  7. P. Rugeland, Z. Yu, C. Sterner, O. Tarasenko, G. Tengstrand, and W. Margulis, “Photonic scanning receiver using an electrically tuned fiber Bragg grating,” Opt. Lett.34(24), 3794–3796 (2009).
    [CrossRef] [PubMed]
  8. S. T. Winnal and A. A. Lindsay, “A Fabry-Perot scanning receiver for microwave signal processing,” IEEE Trans. Microwave Theory Tech.47(7), 1385–1390 (1999).
    [CrossRef]
  9. L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett.18(10), 1188–1190 (2006)
    [CrossRef]
  10. M. V. Drummond, P. Monteiro, and R. N. Nogueira, “Photonic RF instantaneous frequency measurement system by means of a polarization domain interferometer,” Opt. Express17(7), 5433–5438 (2009).
    [CrossRef] [PubMed]
  11. W. Li, N. H. Zhu, and L. X. Wang, “Reconfigurable instantaneous frequency measurement system based on dual-parallel Mach-Zehnder modulator,” IEEE Photon. Journal4(2), 427–436 (2012)
    [CrossRef]
  12. J. Dai, K. Xu, X. Sun, J. Niu, Q. Lv, J. Wu, X. Hong, W. Li, and J. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photon. Technol. Lett.22(15), 1162–1164 (2010).
    [CrossRef]
  13. J. Li, S. Fu, K. Xu, J. Q. Zhou, P. Shum, J. Wu, and J. Lin, “Photonic-assisted microwave frequency measurement with higher resolution and tunable range,” Opt. Lett.34(6), 743–745 (2009).
    [CrossRef] [PubMed]
  14. W. Li, N. H. Zhu, and L. X. Wang, “Brillouin-assisted microwave frequency measurement with adjustable measurement range and resolution,” Opt. Lett.37(2), 166–168 (2012).
    [CrossRef] [PubMed]
  15. J. Zhou, S. Fu, P. P. Shum, S. Adita, L. Xia, J. Li, X. Sun, and K. Xu, “Photonic measurement of microwave frequency based on phase modulation,” Opt. Express17(9), 7217–7221 (2009).
    [CrossRef] [PubMed]
  16. N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photon. Technol. Lett.20(18), 1521–1523 (2008).
    [CrossRef]
  17. N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, “Microwave photonic instantaneous frequency measurment with improved sensitivity,” in Proceedings of 2009 IEEE MTT-S International Microwave Symposium Digest (MTT) (Institute of Electrical and Electronics Engineers, Boston, 2009), 165–168.
    [CrossRef]

2012 (4)

2010 (1)

J. Dai, K. Xu, X. Sun, J. Niu, Q. Lv, J. Wu, X. Hong, W. Li, and J. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photon. Technol. Lett.22(15), 1162–1164 (2010).
[CrossRef]

2009 (5)

2008 (1)

N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photon. Technol. Lett.20(18), 1521–1523 (2008).
[CrossRef]

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics (London)1(6), 319–330 (2007).
[CrossRef]

2006 (3)

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol.24(12), 4628–4641 (2006).
[CrossRef]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theory Tech.54(2), 832–846 (2006).
[CrossRef]

L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett.18(10), 1188–1190 (2006)
[CrossRef]

1999 (1)

S. T. Winnal and A. A. Lindsay, “A Fabry-Perot scanning receiver for microwave signal processing,” IEEE Trans. Microwave Theory Tech.47(7), 1385–1390 (1999).
[CrossRef]

Adita, S.

Ahn, T-J

Azana, J.

Bui, L. A.

N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photon. Technol. Lett.20(18), 1521–1523 (2008).
[CrossRef]

N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, “Microwave photonic instantaneous frequency measurment with improved sensitivity,” in Proceedings of 2009 IEEE MTT-S International Microwave Symposium Digest (MTT) (Institute of Electrical and Electronics Engineers, Boston, 2009), 165–168.
[CrossRef]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics (London)1(6), 319–330 (2007).
[CrossRef]

Dai, J.

J. Dai, K. Xu, X. Sun, J. Niu, Q. Lv, J. Wu, X. Hong, W. Li, and J. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photon. Technol. Lett.22(15), 1162–1164 (2010).
[CrossRef]

Drummond, M. V.

Emami, H.

H. Emami, N. Sarkhosh, E. Lopez, and A. Mitchell, “Photonic feed for sinuous antenna,” J. Lightwave Technol.30(16), 2725–2743 (2012).
[CrossRef]

N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photon. Technol. Lett.20(18), 1521–1523 (2008).
[CrossRef]

N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, “Microwave photonic instantaneous frequency measurment with improved sensitivity,” in Proceedings of 2009 IEEE MTT-S International Microwave Symposium Digest (MTT) (Institute of Electrical and Electronics Engineers, Boston, 2009), 165–168.
[CrossRef]

Fu, S.

Hong, X.

J. Dai, K. Xu, X. Sun, J. Niu, Q. Lv, J. Wu, X. Hong, W. Li, and J. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photon. Technol. Lett.22(15), 1162–1164 (2010).
[CrossRef]

Hunter, D. B.

L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett.18(10), 1188–1190 (2006)
[CrossRef]

Jeong, H-S

Li, J.

Li, L.

Li, W.

W. Li, N. H. Zhu, and L. X. Wang, “Reconfigurable instantaneous frequency measurement system based on dual-parallel Mach-Zehnder modulator,” IEEE Photon. Journal4(2), 427–436 (2012)
[CrossRef]

W. Li, N. H. Zhu, and L. X. Wang, “Brillouin-assisted microwave frequency measurement with adjustable measurement range and resolution,” Opt. Lett.37(2), 166–168 (2012).
[CrossRef] [PubMed]

J. Dai, K. Xu, X. Sun, J. Niu, Q. Lv, J. Wu, X. Hong, W. Li, and J. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photon. Technol. Lett.22(15), 1162–1164 (2010).
[CrossRef]

Lin, J.

J. Dai, K. Xu, X. Sun, J. Niu, Q. Lv, J. Wu, X. Hong, W. Li, and J. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photon. Technol. Lett.22(15), 1162–1164 (2010).
[CrossRef]

J. Li, S. Fu, K. Xu, J. Q. Zhou, P. Shum, J. Wu, and J. Lin, “Photonic-assisted microwave frequency measurement with higher resolution and tunable range,” Opt. Lett.34(6), 743–745 (2009).
[CrossRef] [PubMed]

Lindsay, A. A.

S. T. Winnal and A. A. Lindsay, “A Fabry-Perot scanning receiver for microwave signal processing,” IEEE Trans. Microwave Theory Tech.47(7), 1385–1390 (1999).
[CrossRef]

Lopez, E.

Lv, Q.

J. Dai, K. Xu, X. Sun, J. Niu, Q. Lv, J. Wu, X. Hong, W. Li, and J. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photon. Technol. Lett.22(15), 1162–1164 (2010).
[CrossRef]

Margulis, W.

Minasian, R. A.

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theory Tech.54(2), 832–846 (2006).
[CrossRef]

Mitchell, A.

H. Emami, N. Sarkhosh, E. Lopez, and A. Mitchell, “Photonic feed for sinuous antenna,” J. Lightwave Technol.30(16), 2725–2743 (2012).
[CrossRef]

N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photon. Technol. Lett.20(18), 1521–1523 (2008).
[CrossRef]

N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, “Microwave photonic instantaneous frequency measurment with improved sensitivity,” in Proceedings of 2009 IEEE MTT-S International Microwave Symposium Digest (MTT) (Institute of Electrical and Electronics Engineers, Boston, 2009), 165–168.
[CrossRef]

Monteiro, P.

Nguyen, L. V. T.

L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett.18(10), 1188–1190 (2006)
[CrossRef]

Niu, J.

J. Dai, K. Xu, X. Sun, J. Niu, Q. Lv, J. Wu, X. Hong, W. Li, and J. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photon. Technol. Lett.22(15), 1162–1164 (2010).
[CrossRef]

Nogueira, R. N.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics (London)1(6), 319–330 (2007).
[CrossRef]

Rugeland, P.

Sarkhosh, N.

H. Emami, N. Sarkhosh, E. Lopez, and A. Mitchell, “Photonic feed for sinuous antenna,” J. Lightwave Technol.30(16), 2725–2743 (2012).
[CrossRef]

N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photon. Technol. Lett.20(18), 1521–1523 (2008).
[CrossRef]

N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, “Microwave photonic instantaneous frequency measurment with improved sensitivity,” in Proceedings of 2009 IEEE MTT-S International Microwave Symposium Digest (MTT) (Institute of Electrical and Electronics Engineers, Boston, 2009), 165–168.
[CrossRef]

Seeds, A. J.

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol.24(12), 4628–4641 (2006).
[CrossRef]

Shum, P.

Shum, P. P.

Sterner, C.

Sun, X.

J. Dai, K. Xu, X. Sun, J. Niu, Q. Lv, J. Wu, X. Hong, W. Li, and J. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photon. Technol. Lett.22(15), 1162–1164 (2010).
[CrossRef]

J. Zhou, S. Fu, P. P. Shum, S. Adita, L. Xia, J. Li, X. Sun, and K. Xu, “Photonic measurement of microwave frequency based on phase modulation,” Opt. Express17(9), 7217–7221 (2009).
[CrossRef] [PubMed]

Tarasenko, O.

Tengstrand, G.

Wang, L. X.

W. Li, N. H. Zhu, and L. X. Wang, “Reconfigurable instantaneous frequency measurement system based on dual-parallel Mach-Zehnder modulator,” IEEE Photon. Journal4(2), 427–436 (2012)
[CrossRef]

W. Li, N. H. Zhu, and L. X. Wang, “Brillouin-assisted microwave frequency measurement with adjustable measurement range and resolution,” Opt. Lett.37(2), 166–168 (2012).
[CrossRef] [PubMed]

Williams, K. J.

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol.24(12), 4628–4641 (2006).
[CrossRef]

Winnal, S. T.

S. T. Winnal and A. A. Lindsay, “A Fabry-Perot scanning receiver for microwave signal processing,” IEEE Trans. Microwave Theory Tech.47(7), 1385–1390 (1999).
[CrossRef]

Wu, J.

J. Dai, K. Xu, X. Sun, J. Niu, Q. Lv, J. Wu, X. Hong, W. Li, and J. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photon. Technol. Lett.22(15), 1162–1164 (2010).
[CrossRef]

J. Li, S. Fu, K. Xu, J. Q. Zhou, P. Shum, J. Wu, and J. Lin, “Photonic-assisted microwave frequency measurement with higher resolution and tunable range,” Opt. Lett.34(6), 743–745 (2009).
[CrossRef] [PubMed]

Xia, L.

Xu, K.

Yao, J.

Yu, Z.

Zhou, J.

Zhou, J. Q.

Zhu, N. H.

W. Li, N. H. Zhu, and L. X. Wang, “Brillouin-assisted microwave frequency measurement with adjustable measurement range and resolution,” Opt. Lett.37(2), 166–168 (2012).
[CrossRef] [PubMed]

W. Li, N. H. Zhu, and L. X. Wang, “Reconfigurable instantaneous frequency measurement system based on dual-parallel Mach-Zehnder modulator,” IEEE Photon. Journal4(2), 427–436 (2012)
[CrossRef]

IEEE Photon. Journal (1)

W. Li, N. H. Zhu, and L. X. Wang, “Reconfigurable instantaneous frequency measurement system based on dual-parallel Mach-Zehnder modulator,” IEEE Photon. Journal4(2), 427–436 (2012)
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. Dai, K. Xu, X. Sun, J. Niu, Q. Lv, J. Wu, X. Hong, W. Li, and J. Lin, “A simple photonic-assisted microwave frequency measurement system based on MZI with tunable measurement range and high resolution,” IEEE Photon. Technol. Lett.22(15), 1162–1164 (2010).
[CrossRef]

L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett.18(10), 1188–1190 (2006)
[CrossRef]

N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photon. Technol. Lett.20(18), 1521–1523 (2008).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theory Tech.54(2), 832–846 (2006).
[CrossRef]

S. T. Winnal and A. A. Lindsay, “A Fabry-Perot scanning receiver for microwave signal processing,” IEEE Trans. Microwave Theory Tech.47(7), 1385–1390 (1999).
[CrossRef]

J. Lightwave Technol. (1)

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol.24(12), 4628–4641 (2006).
[CrossRef]

J. Lightwave Technol. (2)

Nat. Photonics (London) (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics (London)1(6), 319–330 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Other (1)

N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, “Microwave photonic instantaneous frequency measurment with improved sensitivity,” in Proceedings of 2009 IEEE MTT-S International Microwave Symposium Digest (MTT) (Institute of Electrical and Electronics Engineers, Boston, 2009), 165–168.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Block diagram of the proposed reconfigurable photonic frequency measurement system, (b) Experimental setup of the reconfigurable photonic frequency measurement system

Fig. 2
Fig. 2

(a) Output voltage for different differential delays, (b) Measured frequency vs. input frequency

Tables (2)

Tables Icon

Table 1 Differential delay caused by each wavelength

Tables Icon

Table 2 Frequency measurement error

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V = 1 4 G Z P D P [ 1 + π 2 Z in P R F 4 V π 2 ( 1 + M 2 + cos Ω ( τ + τ i ' ) ] i = 1 , 2

Metrics