D. Torrent and J. Sánchez-Dehesa, “Acoustic analogue of graphene: observation of Dirac cones in acoustic surface waves,” Phys. Rev. Lett.108(17), 174301 (2012).

[CrossRef]
[PubMed]

F. M. Liu, X. Q. Huang, and C. T. Chan, “Dirac cones at k→=0in acoustic crystals and zero refractive index acoustic materials,” Appl. Phys. Lett.100(7), 071911 (2012).

[CrossRef]

J. Mei, Y. Wu, C. T. Chan, and Z.-Q. Zhang, “First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals,” Phys. Rev. B86(3), 035141 (2012).

[CrossRef]

K. Sakoda, “Dirac cone in two- and three-dimensional metamaterials,” Opt. Express20(4), 3898–3917 (2012).

[CrossRef]
[PubMed]

K. Sakoda, “Double Dirac cones in triangular-lattice metamaterials,” Opt. Express20(9), 9925–9939 (2012).

[CrossRef]
[PubMed]

Q. Liang, Y. Yan, and J. Dong, “Zitterbewegung in the honeycomb photonic lattice,” Opt. Lett.36(13), 2513–2515 (2011).

[CrossRef]
[PubMed]

F. M. Liu, Y. Lai, X. Q. Huang, and C. T. Chan, “Dirac cones atk→=0in photonic crystals,” Phys. Rev. B84(22), 224113 (2011).

[CrossRef]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater.10(8), 582–586 (2011).

[CrossRef]
[PubMed]

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009).

[CrossRef]

T. Ochiai and M. Onoda, “Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B80(15), 155103 (2009).

[CrossRef]

L.-G. Wang, Z.-G. Wang, and S.-Y. Zhu, “Zitterbewegung of optical pulses near the Dirac point inside a negative-zero-positive index metamaterial,” Europhys. Lett.86(4), 47008 (2009).

[CrossRef]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett.100(1), 013904 (2008).

[CrossRef]
[PubMed]

S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A78(3), 033834 (2008).

[CrossRef]

R. A. Sepkhanov and C. W. J. Beenakker, “Numerical test of the theory of pseudo-diffusive transmission at the Dirac point of a photonic band structure,” Opt. Commun.281(20), 5267–5270 (2008).

[CrossRef]

X. Zhang and Z. Liu, “Extremal transmission and beating effect of acoustic waves in two-dimensional sonic crystals,” Phys. Rev. Lett.101(26), 264303 (2008).

[CrossRef]
[PubMed]

X. Zhang, “Observing Zitterbewegung for photons near the Dirac point of a two-dimensional photonic crystal,” Phys. Rev. Lett.100(11), 113903 (2008).

[CrossRef]
[PubMed]

O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, “Conical diffraction and gap solitons in honeycomb photonic lattices,” Phys. Rev. Lett.98(10), 103901 (2007).

[CrossRef]
[PubMed]

R. A. Sepkhanov, Y. B. Bazaliy, and C. W. J. Beenakker, “Extremal transmission at the Dirac point of a photonic band structure,” Phys. Rev. A75(6), 063813 (2007).

[CrossRef]

B. A. Foreman, “Theory of the effective Hamiltonian for degenerate bands in an electric field,” J. Phys. Condens. Matter12(34), R435–R461 (2000).

[CrossRef]

P. M. Hui, W. M. Lee, and N. F. Johnson, “Theory of scalar wave propagation in periodic composites: ak→⋅p→, ” Solid State Commun.91(1), 65–69 (1994).

[CrossRef]

O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, “Conical diffraction and gap solitons in honeycomb photonic lattices,” Phys. Rev. Lett.98(10), 103901 (2007).

[CrossRef]
[PubMed]

R. A. Sepkhanov, Y. B. Bazaliy, and C. W. J. Beenakker, “Extremal transmission at the Dirac point of a photonic band structure,” Phys. Rev. A75(6), 063813 (2007).

[CrossRef]

R. A. Sepkhanov and C. W. J. Beenakker, “Numerical test of the theory of pseudo-diffusive transmission at the Dirac point of a photonic band structure,” Opt. Commun.281(20), 5267–5270 (2008).

[CrossRef]

R. A. Sepkhanov, Y. B. Bazaliy, and C. W. J. Beenakker, “Extremal transmission at the Dirac point of a photonic band structure,” Phys. Rev. A75(6), 063813 (2007).

[CrossRef]

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009).

[CrossRef]

J. Mei, Y. Wu, C. T. Chan, and Z.-Q. Zhang, “First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals,” Phys. Rev. B86(3), 035141 (2012).

[CrossRef]

F. M. Liu, X. Q. Huang, and C. T. Chan, “Dirac cones at k→=0in acoustic crystals and zero refractive index acoustic materials,” Appl. Phys. Lett.100(7), 071911 (2012).

[CrossRef]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater.10(8), 582–586 (2011).

[CrossRef]
[PubMed]

F. M. Liu, Y. Lai, X. Q. Huang, and C. T. Chan, “Dirac cones atk→=0in photonic crystals,” Phys. Rev. B84(22), 224113 (2011).

[CrossRef]

O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, “Conical diffraction and gap solitons in honeycomb photonic lattices,” Phys. Rev. Lett.98(10), 103901 (2007).

[CrossRef]
[PubMed]

M. Diem, T. Koschny, and C. M. Soukoulis, “Transmission in the vicinity of the Dirac point in hexagonal photonic crystals,” Physica B405(14), 2990–2995 (2010).

[CrossRef]

B. A. Foreman, “Theory of the effective Hamiltonian for degenerate bands in an electric field,” J. Phys. Condens. Matter12(34), R435–R461 (2000).

[CrossRef]

O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, “Conical diffraction and gap solitons in honeycomb photonic lattices,” Phys. Rev. Lett.98(10), 103901 (2007).

[CrossRef]
[PubMed]

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009).

[CrossRef]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett.100(1), 013904 (2008).

[CrossRef]
[PubMed]

S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A78(3), 033834 (2008).

[CrossRef]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater.10(8), 582–586 (2011).

[CrossRef]
[PubMed]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater.10(8), 582–586 (2011).

[CrossRef]
[PubMed]

F. M. Liu, X. Q. Huang, and C. T. Chan, “Dirac cones at k→=0in acoustic crystals and zero refractive index acoustic materials,” Appl. Phys. Lett.100(7), 071911 (2012).

[CrossRef]

F. M. Liu, Y. Lai, X. Q. Huang, and C. T. Chan, “Dirac cones atk→=0in photonic crystals,” Phys. Rev. B84(22), 224113 (2011).

[CrossRef]

P. M. Hui, W. M. Lee, and N. F. Johnson, “Theory of scalar wave propagation in periodic composites: ak→⋅p→, ” Solid State Commun.91(1), 65–69 (1994).

[CrossRef]

P. M. Hui, W. M. Lee, and N. F. Johnson, “Theory of scalar wave propagation in periodic composites: ak→⋅p→, ” Solid State Commun.91(1), 65–69 (1994).

[CrossRef]

M. Diem, T. Koschny, and C. M. Soukoulis, “Transmission in the vicinity of the Dirac point in hexagonal photonic crystals,” Physica B405(14), 2990–2995 (2010).

[CrossRef]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater.10(8), 582–586 (2011).

[CrossRef]
[PubMed]

F. M. Liu, Y. Lai, X. Q. Huang, and C. T. Chan, “Dirac cones atk→=0in photonic crystals,” Phys. Rev. B84(22), 224113 (2011).

[CrossRef]

P. M. Hui, W. M. Lee, and N. F. Johnson, “Theory of scalar wave propagation in periodic composites: ak→⋅p→, ” Solid State Commun.91(1), 65–69 (1994).

[CrossRef]

F. M. Liu, X. Q. Huang, and C. T. Chan, “Dirac cones at k→=0in acoustic crystals and zero refractive index acoustic materials,” Appl. Phys. Lett.100(7), 071911 (2012).

[CrossRef]

F. M. Liu, Y. Lai, X. Q. Huang, and C. T. Chan, “Dirac cones atk→=0in photonic crystals,” Phys. Rev. B84(22), 224113 (2011).

[CrossRef]

X. Zhang and Z. Liu, “Extremal transmission and beating effect of acoustic waves in two-dimensional sonic crystals,” Phys. Rev. Lett.101(26), 264303 (2008).

[CrossRef]
[PubMed]

O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, “Conical diffraction and gap solitons in honeycomb photonic lattices,” Phys. Rev. Lett.98(10), 103901 (2007).

[CrossRef]
[PubMed]

J. Mei, Y. Wu, C. T. Chan, and Z.-Q. Zhang, “First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals,” Phys. Rev. B86(3), 035141 (2012).

[CrossRef]

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009).

[CrossRef]

T. Ochiai and M. Onoda, “Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B80(15), 155103 (2009).

[CrossRef]

T. Ochiai and M. Onoda, “Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B80(15), 155103 (2009).

[CrossRef]

O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, “Conical diffraction and gap solitons in honeycomb photonic lattices,” Phys. Rev. Lett.98(10), 103901 (2007).

[CrossRef]
[PubMed]

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009).

[CrossRef]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett.100(1), 013904 (2008).

[CrossRef]
[PubMed]

S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A78(3), 033834 (2008).

[CrossRef]

D. Torrent and J. Sánchez-Dehesa, “Acoustic analogue of graphene: observation of Dirac cones in acoustic surface waves,” Phys. Rev. Lett.108(17), 174301 (2012).

[CrossRef]
[PubMed]

O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, “Conical diffraction and gap solitons in honeycomb photonic lattices,” Phys. Rev. Lett.98(10), 103901 (2007).

[CrossRef]
[PubMed]

R. A. Sepkhanov and C. W. J. Beenakker, “Numerical test of the theory of pseudo-diffusive transmission at the Dirac point of a photonic band structure,” Opt. Commun.281(20), 5267–5270 (2008).

[CrossRef]

R. A. Sepkhanov, Y. B. Bazaliy, and C. W. J. Beenakker, “Extremal transmission at the Dirac point of a photonic band structure,” Phys. Rev. A75(6), 063813 (2007).

[CrossRef]

M. Diem, T. Koschny, and C. M. Soukoulis, “Transmission in the vicinity of the Dirac point in hexagonal photonic crystals,” Physica B405(14), 2990–2995 (2010).

[CrossRef]

D. Torrent and J. Sánchez-Dehesa, “Acoustic analogue of graphene: observation of Dirac cones in acoustic surface waves,” Phys. Rev. Lett.108(17), 174301 (2012).

[CrossRef]
[PubMed]

L.-G. Wang, Z.-G. Wang, and S.-Y. Zhu, “Zitterbewegung of optical pulses near the Dirac point inside a negative-zero-positive index metamaterial,” Europhys. Lett.86(4), 47008 (2009).

[CrossRef]

L.-G. Wang, Z.-G. Wang, and S.-Y. Zhu, “Zitterbewegung of optical pulses near the Dirac point inside a negative-zero-positive index metamaterial,” Europhys. Lett.86(4), 47008 (2009).

[CrossRef]

J. Mei, Y. Wu, C. T. Chan, and Z.-Q. Zhang, “First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals,” Phys. Rev. B86(3), 035141 (2012).

[CrossRef]

X. Zhang, “Observing Zitterbewegung for photons near the Dirac point of a two-dimensional photonic crystal,” Phys. Rev. Lett.100(11), 113903 (2008).

[CrossRef]
[PubMed]

X. Zhang and Z. Liu, “Extremal transmission and beating effect of acoustic waves in two-dimensional sonic crystals,” Phys. Rev. Lett.101(26), 264303 (2008).

[CrossRef]
[PubMed]

J. Mei, Y. Wu, C. T. Chan, and Z.-Q. Zhang, “First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals,” Phys. Rev. B86(3), 035141 (2012).

[CrossRef]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater.10(8), 582–586 (2011).

[CrossRef]
[PubMed]

L.-G. Wang, Z.-G. Wang, and S.-Y. Zhu, “Zitterbewegung of optical pulses near the Dirac point inside a negative-zero-positive index metamaterial,” Europhys. Lett.86(4), 47008 (2009).

[CrossRef]

F. M. Liu, X. Q. Huang, and C. T. Chan, “Dirac cones at k→=0in acoustic crystals and zero refractive index acoustic materials,” Appl. Phys. Lett.100(7), 071911 (2012).

[CrossRef]

L.-G. Wang, Z.-G. Wang, and S.-Y. Zhu, “Zitterbewegung of optical pulses near the Dirac point inside a negative-zero-positive index metamaterial,” Europhys. Lett.86(4), 47008 (2009).

[CrossRef]

B. A. Foreman, “Theory of the effective Hamiltonian for degenerate bands in an electric field,” J. Phys. Condens. Matter12(34), R435–R461 (2000).

[CrossRef]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater.10(8), 582–586 (2011).

[CrossRef]
[PubMed]

R. A. Sepkhanov and C. W. J. Beenakker, “Numerical test of the theory of pseudo-diffusive transmission at the Dirac point of a photonic band structure,” Opt. Commun.281(20), 5267–5270 (2008).

[CrossRef]

S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A78(3), 033834 (2008).

[CrossRef]

R. A. Sepkhanov, Y. B. Bazaliy, and C. W. J. Beenakker, “Extremal transmission at the Dirac point of a photonic band structure,” Phys. Rev. A75(6), 063813 (2007).

[CrossRef]

T. Ochiai and M. Onoda, “Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B80(15), 155103 (2009).

[CrossRef]

F. M. Liu, Y. Lai, X. Q. Huang, and C. T. Chan, “Dirac cones atk→=0in photonic crystals,” Phys. Rev. B84(22), 224113 (2011).

[CrossRef]

J. Mei, Y. Wu, C. T. Chan, and Z.-Q. Zhang, “First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals,” Phys. Rev. B86(3), 035141 (2012).

[CrossRef]

D. Torrent and J. Sánchez-Dehesa, “Acoustic analogue of graphene: observation of Dirac cones in acoustic surface waves,” Phys. Rev. Lett.108(17), 174301 (2012).

[CrossRef]
[PubMed]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett.100(1), 013904 (2008).

[CrossRef]
[PubMed]

X. Zhang and Z. Liu, “Extremal transmission and beating effect of acoustic waves in two-dimensional sonic crystals,” Phys. Rev. Lett.101(26), 264303 (2008).

[CrossRef]
[PubMed]

X. Zhang, “Observing Zitterbewegung for photons near the Dirac point of a two-dimensional photonic crystal,” Phys. Rev. Lett.100(11), 113903 (2008).

[CrossRef]
[PubMed]

O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, “Conical diffraction and gap solitons in honeycomb photonic lattices,” Phys. Rev. Lett.98(10), 103901 (2007).

[CrossRef]
[PubMed]

M. Diem, T. Koschny, and C. M. Soukoulis, “Transmission in the vicinity of the Dirac point in hexagonal photonic crystals,” Physica B405(14), 2990–2995 (2010).

[CrossRef]

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009).

[CrossRef]

P. M. Hui, W. M. Lee, and N. F. Johnson, “Theory of scalar wave propagation in periodic composites: ak→⋅p→, ” Solid State Commun.91(1), 65–69 (1994).

[CrossRef]

M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory: Application to the Physics of Condensed Matter (Springer-Verlag, 2008).

J. Mathews and R. L. Walker, Mathematical Methods of Physics, 2nd ed. (Addison-Wesley, 1970).