Abstract

Free-Space Optical (FSO) communications link performance is highly affected when propagating through the time-spatially variable turbulent environment. In order to improve signal reception, several mitigation techniques have been proposed and analytically investigated. This paper presents experimental results for the route diversity technique evaluations for a specific case when several diversity links intersects a common turbulent area and concurrently each passing regions with different turbulence flows.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB (CRC, 2012).
  2. M. Grabner and V. Kvicera, “The wavelength dependent model of extinction in fog and haze for free space optical communication,” Opt. Express19(4), 3379–3386 (2011).
    [CrossRef] [PubMed]
  3. J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, and H. Minh, “Ethernet FSO communications link performance study under a controlled fog environment,” IEEE Commun. Lett.16(3), 408–410 (2012).
    [CrossRef]
  4. Z. Ghassemlooy, H. Le Minh, S. Rajbhandari, J. Perez, and M. Ijaz, “Performance analysis of ethernet/fast-ethernet free space optical communications in a controlled weak turbulence condition,” J. Lightwave Technol.30(13), 2188–2194 (2012).
    [CrossRef]
  5. X. Zhu and J. M. Kahn, “Performance bounds for coded free-space optical communications through atmospheric turbulence channels,” IEEE Trans. Commun.51(8), 1233–1239 (2003).
    [CrossRef]
  6. W. Gappmair, “Further results on the capacity of free-space optical channels in turbulent atmosphere,” IET Commun.5(9), 1262–1267 (2011).
    [CrossRef]
  7. M. A. Khalighi, N. Schwartz, N. Aitamer, and S. Bourennane, “Fading reduction by aperture averaging and spatial diversity in optical wireless systems,” J. Opt. Commun. Netw.1(6), 580–593 (2009).
    [CrossRef]
  8. T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wirel. Comm.8(2), 951–957 (2009).
    [CrossRef]
  9. S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wirel. Comm.6(8), 2813–2819 (2007).
    [CrossRef]
  10. H. Moradi, H. H. Refai, and P. G. LoPresti, “Switch-and-stay and switch-and-examine dual diversity for high-speed free-space optics links,” IET Optoelectron6(1), 34–42 (2012).
    [CrossRef]
  11. R. K. Tyson, “Bit-error rate for free-space adaptive optics laser communications,” J. Opt. Soc. Am. A19(4), 753–758 (2002).
    [CrossRef] [PubMed]
  12. V. Weerackody and A. R. Hammons, “Wavelength Correlation in Free Space Optical Communication Systems,” in Proceedings of IEEE Military Communications Conference 2006, (IEEE, 2006), pp. 1–6.
    [CrossRef]
  13. J. A. Anguita, M. A. Neifeld, and B. V. Vasic, “Spatial correlation and irradiance statistics in a multiple-beam terrestrial free-space optical communication link,” Appl. Opt.46(26), 6561–6571 (2007).
    [CrossRef] [PubMed]
  14. N. D. Chatzidiamantis, A. S. Lioumpas, G. K. Karagiannidis, and S. Arnon, “Adaptive subcarrier PSK intensity modulation in free space optical systems,” IEEE Trans. Commun.59(5), 1368–1377 (2011).
    [CrossRef]
  15. S. Rosenberg and M. C. Teich, “Photocounting Array Receivers for Optical Communication through the Lognormal Atmospheric Channel. 2: Optimum and Suboptimum Receiver Performance for Binary Signaling,” Appl. Opt.12(11), 2625–2635 (1973).
    [CrossRef] [PubMed]
  16. A. Belmonte, A. Comerón, J. A. Rubio, J. Bará, and E. Fernández, “Atmospheric-turbulence-induced power-fade statistics for a multiaperture optical receiver,” Appl. Opt.36(33), 8632–8638 (1997).
    [CrossRef] [PubMed]
  17. M. Jeganathan, M. Toyoshima, K. Wilson, J. James, G. Xu, and J. Lesh, “Data analysis results from the GOLD experiments,” Proc. SPIE2990, 70–81 (1997).
    [CrossRef]
  18. F. G. Walther, S. Michael, R. R. Parenti, and J. A. Taylor, “Air-to-Ground Lasercom System Demonstration Design Overview and Results Summary,” Proc. SPIE7814, 78140Y, 78140Y-9 (2010).
    [CrossRef]
  19. E. J. Lee and V. W. S. Chan, “Part 1: Optical communication over the clear turbulent atmospheric channel using diversity,” IEEE J. Sel. Areas Comm.22(9), 1896–1906 (2004).
    [CrossRef]
  20. N. Letzepis, K. D. Nguyen, A. G. Fabregas, and W. G. Cowley, “Outage analysis of the hybrid free-space optical and radio-frequency channel,” IEEE J. Sel. Areas Comm.27(9), 1709–1719 (2009).
    [CrossRef]
  21. E. Lee, J. Park, D. Han, and G. Yoon, “Performance analysis of the asymmetric dual-hop relay transmission with mixed RF/FSO links,” IEEE Photon. Technol. Lett.23(21), 1642–1644 (2011).
    [CrossRef]
  22. W. O. Popoola, Z. Ghassemlooy, H. Haas, E. Leitgeb, and V. Ahmadi, “Error performance of terrestrial free space optical links with subcarrier time diversity,” IET Commun.6(5), 499–506 (2012).
    [CrossRef]
  23. W. O. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, and S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron2(1), 16–23 (2008).
    [CrossRef]
  24. COST action IC 1101 OPTICWISE Optical Wireless Communications - An Emerging Technology”, retrieved 20.11.2012, http://opticwise.uop.gr/ .
  25. A. Kashyap, K. Lee, M. Kalantari, S. Khuller, and M. Shayman, “Integrated topology control and routing in wireless optical mesh networks,” Comput. Netw.51(15), 4237–4251 (2007).
    [CrossRef]
  26. J. Libich, S. Zvanovec, and M. Mudroch, “Mitigation of time-spatial influence in free-space optical networks utilizing route diversity,” Proc. SPIE8246, 82460O (2012).
    [CrossRef]
  27. S. Kaneko, T. Hamai, and K. Oba, “Evaluation of a free-space optical mesh network communication system in the Tokyo metropolitan area,” J. Opt. Netw.1, 414–423 (2002).
  28. W. K. Pratt, Laser Communication Systems (John Wiley & Sons, 1969).
  29. S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels: Fibers, Clouds, Water and the Atmosphere (Plenum, 1988).
  30. G. R. Osche, Optical Detection Theory for Laser Applications (Wiley-Interscience, 2002).
  31. A. Kolmogorov, ed., Turbulence, Classic Papers on Statistical Theory (Wiley-Interscience, 1961).
  32. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 2nd edition, 2005).
  33. Y. C. Ko, M. S. Alouini, and M. K. Simon, “Analysis and optimization of switched diversity systems,” IEEE Trans. Vehicular Technol.49(5), 1813–1831 (2000).
    [CrossRef]

2012 (5)

J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, and H. Minh, “Ethernet FSO communications link performance study under a controlled fog environment,” IEEE Commun. Lett.16(3), 408–410 (2012).
[CrossRef]

H. Moradi, H. H. Refai, and P. G. LoPresti, “Switch-and-stay and switch-and-examine dual diversity for high-speed free-space optics links,” IET Optoelectron6(1), 34–42 (2012).
[CrossRef]

W. O. Popoola, Z. Ghassemlooy, H. Haas, E. Leitgeb, and V. Ahmadi, “Error performance of terrestrial free space optical links with subcarrier time diversity,” IET Commun.6(5), 499–506 (2012).
[CrossRef]

J. Libich, S. Zvanovec, and M. Mudroch, “Mitigation of time-spatial influence in free-space optical networks utilizing route diversity,” Proc. SPIE8246, 82460O (2012).
[CrossRef]

Z. Ghassemlooy, H. Le Minh, S. Rajbhandari, J. Perez, and M. Ijaz, “Performance analysis of ethernet/fast-ethernet free space optical communications in a controlled weak turbulence condition,” J. Lightwave Technol.30(13), 2188–2194 (2012).
[CrossRef]

2011 (4)

M. Grabner and V. Kvicera, “The wavelength dependent model of extinction in fog and haze for free space optical communication,” Opt. Express19(4), 3379–3386 (2011).
[CrossRef] [PubMed]

N. D. Chatzidiamantis, A. S. Lioumpas, G. K. Karagiannidis, and S. Arnon, “Adaptive subcarrier PSK intensity modulation in free space optical systems,” IEEE Trans. Commun.59(5), 1368–1377 (2011).
[CrossRef]

E. Lee, J. Park, D. Han, and G. Yoon, “Performance analysis of the asymmetric dual-hop relay transmission with mixed RF/FSO links,” IEEE Photon. Technol. Lett.23(21), 1642–1644 (2011).
[CrossRef]

W. Gappmair, “Further results on the capacity of free-space optical channels in turbulent atmosphere,” IET Commun.5(9), 1262–1267 (2011).
[CrossRef]

2010 (1)

F. G. Walther, S. Michael, R. R. Parenti, and J. A. Taylor, “Air-to-Ground Lasercom System Demonstration Design Overview and Results Summary,” Proc. SPIE7814, 78140Y, 78140Y-9 (2010).
[CrossRef]

2009 (3)

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wirel. Comm.8(2), 951–957 (2009).
[CrossRef]

N. Letzepis, K. D. Nguyen, A. G. Fabregas, and W. G. Cowley, “Outage analysis of the hybrid free-space optical and radio-frequency channel,” IEEE J. Sel. Areas Comm.27(9), 1709–1719 (2009).
[CrossRef]

M. A. Khalighi, N. Schwartz, N. Aitamer, and S. Bourennane, “Fading reduction by aperture averaging and spatial diversity in optical wireless systems,” J. Opt. Commun. Netw.1(6), 580–593 (2009).
[CrossRef]

2008 (1)

W. O. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, and S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron2(1), 16–23 (2008).
[CrossRef]

2007 (3)

A. Kashyap, K. Lee, M. Kalantari, S. Khuller, and M. Shayman, “Integrated topology control and routing in wireless optical mesh networks,” Comput. Netw.51(15), 4237–4251 (2007).
[CrossRef]

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wirel. Comm.6(8), 2813–2819 (2007).
[CrossRef]

J. A. Anguita, M. A. Neifeld, and B. V. Vasic, “Spatial correlation and irradiance statistics in a multiple-beam terrestrial free-space optical communication link,” Appl. Opt.46(26), 6561–6571 (2007).
[CrossRef] [PubMed]

2004 (1)

E. J. Lee and V. W. S. Chan, “Part 1: Optical communication over the clear turbulent atmospheric channel using diversity,” IEEE J. Sel. Areas Comm.22(9), 1896–1906 (2004).
[CrossRef]

2003 (1)

X. Zhu and J. M. Kahn, “Performance bounds for coded free-space optical communications through atmospheric turbulence channels,” IEEE Trans. Commun.51(8), 1233–1239 (2003).
[CrossRef]

2002 (2)

2000 (1)

Y. C. Ko, M. S. Alouini, and M. K. Simon, “Analysis and optimization of switched diversity systems,” IEEE Trans. Vehicular Technol.49(5), 1813–1831 (2000).
[CrossRef]

1997 (2)

M. Jeganathan, M. Toyoshima, K. Wilson, J. James, G. Xu, and J. Lesh, “Data analysis results from the GOLD experiments,” Proc. SPIE2990, 70–81 (1997).
[CrossRef]

A. Belmonte, A. Comerón, J. A. Rubio, J. Bará, and E. Fernández, “Atmospheric-turbulence-induced power-fade statistics for a multiaperture optical receiver,” Appl. Opt.36(33), 8632–8638 (1997).
[CrossRef] [PubMed]

1973 (1)

Ahmadi, V.

W. O. Popoola, Z. Ghassemlooy, H. Haas, E. Leitgeb, and V. Ahmadi, “Error performance of terrestrial free space optical links with subcarrier time diversity,” IET Commun.6(5), 499–506 (2012).
[CrossRef]

Aitamer, N.

Allen, J. I. H.

W. O. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, and S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron2(1), 16–23 (2008).
[CrossRef]

Alouini, M. S.

Y. C. Ko, M. S. Alouini, and M. K. Simon, “Analysis and optimization of switched diversity systems,” IEEE Trans. Vehicular Technol.49(5), 1813–1831 (2000).
[CrossRef]

Anguita, J. A.

Arnon, S.

N. D. Chatzidiamantis, A. S. Lioumpas, G. K. Karagiannidis, and S. Arnon, “Adaptive subcarrier PSK intensity modulation in free space optical systems,” IEEE Trans. Commun.59(5), 1368–1377 (2011).
[CrossRef]

Bará, J.

Belmonte, A.

Bourennane, S.

Chan, V. W. S.

E. J. Lee and V. W. S. Chan, “Part 1: Optical communication over the clear turbulent atmospheric channel using diversity,” IEEE J. Sel. Areas Comm.22(9), 1896–1906 (2004).
[CrossRef]

Chatzidiamantis, N. D.

N. D. Chatzidiamantis, A. S. Lioumpas, G. K. Karagiannidis, and S. Arnon, “Adaptive subcarrier PSK intensity modulation in free space optical systems,” IEEE Trans. Commun.59(5), 1368–1377 (2011).
[CrossRef]

Comerón, A.

Cowley, W. G.

N. Letzepis, K. D. Nguyen, A. G. Fabregas, and W. G. Cowley, “Outage analysis of the hybrid free-space optical and radio-frequency channel,” IEEE J. Sel. Areas Comm.27(9), 1709–1719 (2009).
[CrossRef]

Fabregas, A. G.

N. Letzepis, K. D. Nguyen, A. G. Fabregas, and W. G. Cowley, “Outage analysis of the hybrid free-space optical and radio-frequency channel,” IEEE J. Sel. Areas Comm.27(9), 1709–1719 (2009).
[CrossRef]

Fernández, E.

Gao, S.

W. O. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, and S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron2(1), 16–23 (2008).
[CrossRef]

Gappmair, W.

W. Gappmair, “Further results on the capacity of free-space optical channels in turbulent atmosphere,” IET Commun.5(9), 1262–1267 (2011).
[CrossRef]

Ghassemlooy, Z.

J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, and H. Minh, “Ethernet FSO communications link performance study under a controlled fog environment,” IEEE Commun. Lett.16(3), 408–410 (2012).
[CrossRef]

Z. Ghassemlooy, H. Le Minh, S. Rajbhandari, J. Perez, and M. Ijaz, “Performance analysis of ethernet/fast-ethernet free space optical communications in a controlled weak turbulence condition,” J. Lightwave Technol.30(13), 2188–2194 (2012).
[CrossRef]

W. O. Popoola, Z. Ghassemlooy, H. Haas, E. Leitgeb, and V. Ahmadi, “Error performance of terrestrial free space optical links with subcarrier time diversity,” IET Commun.6(5), 499–506 (2012).
[CrossRef]

W. O. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, and S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron2(1), 16–23 (2008).
[CrossRef]

Grabner, M.

Haas, H.

W. O. Popoola, Z. Ghassemlooy, H. Haas, E. Leitgeb, and V. Ahmadi, “Error performance of terrestrial free space optical links with subcarrier time diversity,” IET Commun.6(5), 499–506 (2012).
[CrossRef]

Hamai, T.

Hammons, A. R.

V. Weerackody and A. R. Hammons, “Wavelength Correlation in Free Space Optical Communication Systems,” in Proceedings of IEEE Military Communications Conference 2006, (IEEE, 2006), pp. 1–6.
[CrossRef]

Han, D.

E. Lee, J. Park, D. Han, and G. Yoon, “Performance analysis of the asymmetric dual-hop relay transmission with mixed RF/FSO links,” IEEE Photon. Technol. Lett.23(21), 1642–1644 (2011).
[CrossRef]

Ijaz, M.

J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, and H. Minh, “Ethernet FSO communications link performance study under a controlled fog environment,” IEEE Commun. Lett.16(3), 408–410 (2012).
[CrossRef]

Z. Ghassemlooy, H. Le Minh, S. Rajbhandari, J. Perez, and M. Ijaz, “Performance analysis of ethernet/fast-ethernet free space optical communications in a controlled weak turbulence condition,” J. Lightwave Technol.30(13), 2188–2194 (2012).
[CrossRef]

James, J.

M. Jeganathan, M. Toyoshima, K. Wilson, J. James, G. Xu, and J. Lesh, “Data analysis results from the GOLD experiments,” Proc. SPIE2990, 70–81 (1997).
[CrossRef]

Jeganathan, M.

M. Jeganathan, M. Toyoshima, K. Wilson, J. James, G. Xu, and J. Lesh, “Data analysis results from the GOLD experiments,” Proc. SPIE2990, 70–81 (1997).
[CrossRef]

Kahn, J. M.

X. Zhu and J. M. Kahn, “Performance bounds for coded free-space optical communications through atmospheric turbulence channels,” IEEE Trans. Commun.51(8), 1233–1239 (2003).
[CrossRef]

Kalantari, M.

A. Kashyap, K. Lee, M. Kalantari, S. Khuller, and M. Shayman, “Integrated topology control and routing in wireless optical mesh networks,” Comput. Netw.51(15), 4237–4251 (2007).
[CrossRef]

Kaneko, S.

Karagiannidis, G. K.

N. D. Chatzidiamantis, A. S. Lioumpas, G. K. Karagiannidis, and S. Arnon, “Adaptive subcarrier PSK intensity modulation in free space optical systems,” IEEE Trans. Commun.59(5), 1368–1377 (2011).
[CrossRef]

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wirel. Comm.8(2), 951–957 (2009).
[CrossRef]

Kashyap, A.

A. Kashyap, K. Lee, M. Kalantari, S. Khuller, and M. Shayman, “Integrated topology control and routing in wireless optical mesh networks,” Comput. Netw.51(15), 4237–4251 (2007).
[CrossRef]

Kavehrad, M.

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wirel. Comm.6(8), 2813–2819 (2007).
[CrossRef]

Khalighi, M. A.

Khuller, S.

A. Kashyap, K. Lee, M. Kalantari, S. Khuller, and M. Shayman, “Integrated topology control and routing in wireless optical mesh networks,” Comput. Netw.51(15), 4237–4251 (2007).
[CrossRef]

Ko, Y. C.

Y. C. Ko, M. S. Alouini, and M. K. Simon, “Analysis and optimization of switched diversity systems,” IEEE Trans. Vehicular Technol.49(5), 1813–1831 (2000).
[CrossRef]

Kvicera, V.

Le Minh, H.

Lee, E.

E. Lee, J. Park, D. Han, and G. Yoon, “Performance analysis of the asymmetric dual-hop relay transmission with mixed RF/FSO links,” IEEE Photon. Technol. Lett.23(21), 1642–1644 (2011).
[CrossRef]

Lee, E. J.

E. J. Lee and V. W. S. Chan, “Part 1: Optical communication over the clear turbulent atmospheric channel using diversity,” IEEE J. Sel. Areas Comm.22(9), 1896–1906 (2004).
[CrossRef]

Lee, K.

A. Kashyap, K. Lee, M. Kalantari, S. Khuller, and M. Shayman, “Integrated topology control and routing in wireless optical mesh networks,” Comput. Netw.51(15), 4237–4251 (2007).
[CrossRef]

Leitgeb, E.

W. O. Popoola, Z. Ghassemlooy, H. Haas, E. Leitgeb, and V. Ahmadi, “Error performance of terrestrial free space optical links with subcarrier time diversity,” IET Commun.6(5), 499–506 (2012).
[CrossRef]

W. O. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, and S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron2(1), 16–23 (2008).
[CrossRef]

Lesh, J.

M. Jeganathan, M. Toyoshima, K. Wilson, J. James, G. Xu, and J. Lesh, “Data analysis results from the GOLD experiments,” Proc. SPIE2990, 70–81 (1997).
[CrossRef]

Letzepis, N.

N. Letzepis, K. D. Nguyen, A. G. Fabregas, and W. G. Cowley, “Outage analysis of the hybrid free-space optical and radio-frequency channel,” IEEE J. Sel. Areas Comm.27(9), 1709–1719 (2009).
[CrossRef]

Libich, J.

J. Libich, S. Zvanovec, and M. Mudroch, “Mitigation of time-spatial influence in free-space optical networks utilizing route diversity,” Proc. SPIE8246, 82460O (2012).
[CrossRef]

Lioumpas, A. S.

N. D. Chatzidiamantis, A. S. Lioumpas, G. K. Karagiannidis, and S. Arnon, “Adaptive subcarrier PSK intensity modulation in free space optical systems,” IEEE Trans. Commun.59(5), 1368–1377 (2011).
[CrossRef]

LoPresti, P. G.

H. Moradi, H. H. Refai, and P. G. LoPresti, “Switch-and-stay and switch-and-examine dual diversity for high-speed free-space optics links,” IET Optoelectron6(1), 34–42 (2012).
[CrossRef]

Michael, S.

F. G. Walther, S. Michael, R. R. Parenti, and J. A. Taylor, “Air-to-Ground Lasercom System Demonstration Design Overview and Results Summary,” Proc. SPIE7814, 78140Y, 78140Y-9 (2010).
[CrossRef]

Minh, H.

J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, and H. Minh, “Ethernet FSO communications link performance study under a controlled fog environment,” IEEE Commun. Lett.16(3), 408–410 (2012).
[CrossRef]

Moradi, H.

H. Moradi, H. H. Refai, and P. G. LoPresti, “Switch-and-stay and switch-and-examine dual diversity for high-speed free-space optics links,” IET Optoelectron6(1), 34–42 (2012).
[CrossRef]

Mudroch, M.

J. Libich, S. Zvanovec, and M. Mudroch, “Mitigation of time-spatial influence in free-space optical networks utilizing route diversity,” Proc. SPIE8246, 82460O (2012).
[CrossRef]

Navidpour, S. M.

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wirel. Comm.6(8), 2813–2819 (2007).
[CrossRef]

Neifeld, M. A.

Nguyen, K. D.

N. Letzepis, K. D. Nguyen, A. G. Fabregas, and W. G. Cowley, “Outage analysis of the hybrid free-space optical and radio-frequency channel,” IEEE J. Sel. Areas Comm.27(9), 1709–1719 (2009).
[CrossRef]

Oba, K.

Parenti, R. R.

F. G. Walther, S. Michael, R. R. Parenti, and J. A. Taylor, “Air-to-Ground Lasercom System Demonstration Design Overview and Results Summary,” Proc. SPIE7814, 78140Y, 78140Y-9 (2010).
[CrossRef]

Park, J.

E. Lee, J. Park, D. Han, and G. Yoon, “Performance analysis of the asymmetric dual-hop relay transmission with mixed RF/FSO links,” IEEE Photon. Technol. Lett.23(21), 1642–1644 (2011).
[CrossRef]

Perez, J.

J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, and H. Minh, “Ethernet FSO communications link performance study under a controlled fog environment,” IEEE Commun. Lett.16(3), 408–410 (2012).
[CrossRef]

Z. Ghassemlooy, H. Le Minh, S. Rajbhandari, J. Perez, and M. Ijaz, “Performance analysis of ethernet/fast-ethernet free space optical communications in a controlled weak turbulence condition,” J. Lightwave Technol.30(13), 2188–2194 (2012).
[CrossRef]

Popoola, W. O.

W. O. Popoola, Z. Ghassemlooy, H. Haas, E. Leitgeb, and V. Ahmadi, “Error performance of terrestrial free space optical links with subcarrier time diversity,” IET Commun.6(5), 499–506 (2012).
[CrossRef]

W. O. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, and S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron2(1), 16–23 (2008).
[CrossRef]

Rajbhandari, S.

J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, and H. Minh, “Ethernet FSO communications link performance study under a controlled fog environment,” IEEE Commun. Lett.16(3), 408–410 (2012).
[CrossRef]

Z. Ghassemlooy, H. Le Minh, S. Rajbhandari, J. Perez, and M. Ijaz, “Performance analysis of ethernet/fast-ethernet free space optical communications in a controlled weak turbulence condition,” J. Lightwave Technol.30(13), 2188–2194 (2012).
[CrossRef]

Refai, H. H.

H. Moradi, H. H. Refai, and P. G. LoPresti, “Switch-and-stay and switch-and-examine dual diversity for high-speed free-space optics links,” IET Optoelectron6(1), 34–42 (2012).
[CrossRef]

Rosenberg, S.

Rubio, J. A.

Sandalidis, H. G.

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wirel. Comm.8(2), 951–957 (2009).
[CrossRef]

Schwartz, N.

Shayman, M.

A. Kashyap, K. Lee, M. Kalantari, S. Khuller, and M. Shayman, “Integrated topology control and routing in wireless optical mesh networks,” Comput. Netw.51(15), 4237–4251 (2007).
[CrossRef]

Simon, M. K.

Y. C. Ko, M. S. Alouini, and M. K. Simon, “Analysis and optimization of switched diversity systems,” IEEE Trans. Vehicular Technol.49(5), 1813–1831 (2000).
[CrossRef]

Taylor, J. A.

F. G. Walther, S. Michael, R. R. Parenti, and J. A. Taylor, “Air-to-Ground Lasercom System Demonstration Design Overview and Results Summary,” Proc. SPIE7814, 78140Y, 78140Y-9 (2010).
[CrossRef]

Teich, M. C.

Toyoshima, M.

M. Jeganathan, M. Toyoshima, K. Wilson, J. James, G. Xu, and J. Lesh, “Data analysis results from the GOLD experiments,” Proc. SPIE2990, 70–81 (1997).
[CrossRef]

Tsiftsis, T. A.

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wirel. Comm.8(2), 951–957 (2009).
[CrossRef]

Tyson, R. K.

Uysal, M.

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wirel. Comm.8(2), 951–957 (2009).
[CrossRef]

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wirel. Comm.6(8), 2813–2819 (2007).
[CrossRef]

Vasic, B. V.

Walther, F. G.

F. G. Walther, S. Michael, R. R. Parenti, and J. A. Taylor, “Air-to-Ground Lasercom System Demonstration Design Overview and Results Summary,” Proc. SPIE7814, 78140Y, 78140Y-9 (2010).
[CrossRef]

Weerackody, V.

V. Weerackody and A. R. Hammons, “Wavelength Correlation in Free Space Optical Communication Systems,” in Proceedings of IEEE Military Communications Conference 2006, (IEEE, 2006), pp. 1–6.
[CrossRef]

Wilson, K.

M. Jeganathan, M. Toyoshima, K. Wilson, J. James, G. Xu, and J. Lesh, “Data analysis results from the GOLD experiments,” Proc. SPIE2990, 70–81 (1997).
[CrossRef]

Xu, G.

M. Jeganathan, M. Toyoshima, K. Wilson, J. James, G. Xu, and J. Lesh, “Data analysis results from the GOLD experiments,” Proc. SPIE2990, 70–81 (1997).
[CrossRef]

Yoon, G.

E. Lee, J. Park, D. Han, and G. Yoon, “Performance analysis of the asymmetric dual-hop relay transmission with mixed RF/FSO links,” IEEE Photon. Technol. Lett.23(21), 1642–1644 (2011).
[CrossRef]

Zhu, X.

X. Zhu and J. M. Kahn, “Performance bounds for coded free-space optical communications through atmospheric turbulence channels,” IEEE Trans. Commun.51(8), 1233–1239 (2003).
[CrossRef]

Zvanovec, S.

J. Libich, S. Zvanovec, and M. Mudroch, “Mitigation of time-spatial influence in free-space optical networks utilizing route diversity,” Proc. SPIE8246, 82460O (2012).
[CrossRef]

Appl. Opt. (3)

Comput. Netw. (1)

A. Kashyap, K. Lee, M. Kalantari, S. Khuller, and M. Shayman, “Integrated topology control and routing in wireless optical mesh networks,” Comput. Netw.51(15), 4237–4251 (2007).
[CrossRef]

IEEE Commun. Lett. (1)

J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, and H. Minh, “Ethernet FSO communications link performance study under a controlled fog environment,” IEEE Commun. Lett.16(3), 408–410 (2012).
[CrossRef]

IEEE J. Sel. Areas Comm. (2)

E. J. Lee and V. W. S. Chan, “Part 1: Optical communication over the clear turbulent atmospheric channel using diversity,” IEEE J. Sel. Areas Comm.22(9), 1896–1906 (2004).
[CrossRef]

N. Letzepis, K. D. Nguyen, A. G. Fabregas, and W. G. Cowley, “Outage analysis of the hybrid free-space optical and radio-frequency channel,” IEEE J. Sel. Areas Comm.27(9), 1709–1719 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

E. Lee, J. Park, D. Han, and G. Yoon, “Performance analysis of the asymmetric dual-hop relay transmission with mixed RF/FSO links,” IEEE Photon. Technol. Lett.23(21), 1642–1644 (2011).
[CrossRef]

IEEE Trans. Commun. (2)

X. Zhu and J. M. Kahn, “Performance bounds for coded free-space optical communications through atmospheric turbulence channels,” IEEE Trans. Commun.51(8), 1233–1239 (2003).
[CrossRef]

N. D. Chatzidiamantis, A. S. Lioumpas, G. K. Karagiannidis, and S. Arnon, “Adaptive subcarrier PSK intensity modulation in free space optical systems,” IEEE Trans. Commun.59(5), 1368–1377 (2011).
[CrossRef]

IEEE Trans. Vehicular Technol. (1)

Y. C. Ko, M. S. Alouini, and M. K. Simon, “Analysis and optimization of switched diversity systems,” IEEE Trans. Vehicular Technol.49(5), 1813–1831 (2000).
[CrossRef]

IEEE Trans. Wirel. Comm. (2)

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wirel. Comm.8(2), 951–957 (2009).
[CrossRef]

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wirel. Comm.6(8), 2813–2819 (2007).
[CrossRef]

IET Commun. (2)

W. O. Popoola, Z. Ghassemlooy, H. Haas, E. Leitgeb, and V. Ahmadi, “Error performance of terrestrial free space optical links with subcarrier time diversity,” IET Commun.6(5), 499–506 (2012).
[CrossRef]

W. Gappmair, “Further results on the capacity of free-space optical channels in turbulent atmosphere,” IET Commun.5(9), 1262–1267 (2011).
[CrossRef]

IET Optoelectron (2)

W. O. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, and S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron2(1), 16–23 (2008).
[CrossRef]

H. Moradi, H. H. Refai, and P. G. LoPresti, “Switch-and-stay and switch-and-examine dual diversity for high-speed free-space optics links,” IET Optoelectron6(1), 34–42 (2012).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (1)

J. Opt. Netw. (1)

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Proc. SPIE (3)

J. Libich, S. Zvanovec, and M. Mudroch, “Mitigation of time-spatial influence in free-space optical networks utilizing route diversity,” Proc. SPIE8246, 82460O (2012).
[CrossRef]

M. Jeganathan, M. Toyoshima, K. Wilson, J. James, G. Xu, and J. Lesh, “Data analysis results from the GOLD experiments,” Proc. SPIE2990, 70–81 (1997).
[CrossRef]

F. G. Walther, S. Michael, R. R. Parenti, and J. A. Taylor, “Air-to-Ground Lasercom System Demonstration Design Overview and Results Summary,” Proc. SPIE7814, 78140Y, 78140Y-9 (2010).
[CrossRef]

Other (8)

COST action IC 1101 OPTICWISE Optical Wireless Communications - An Emerging Technology”, retrieved 20.11.2012, http://opticwise.uop.gr/ .

V. Weerackody and A. R. Hammons, “Wavelength Correlation in Free Space Optical Communication Systems,” in Proceedings of IEEE Military Communications Conference 2006, (IEEE, 2006), pp. 1–6.
[CrossRef]

W. K. Pratt, Laser Communication Systems (John Wiley & Sons, 1969).

S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels: Fibers, Clouds, Water and the Atmosphere (Plenum, 1988).

G. R. Osche, Optical Detection Theory for Laser Applications (Wiley-Interscience, 2002).

A. Kolmogorov, ed., Turbulence, Classic Papers on Statistical Theory (Wiley-Interscience, 1961).

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 2nd edition, 2005).

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB (CRC, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Block diagram of the laboratory turbulence chamber; (b) snapshot of the deployment of thermal sensor line inside the chamber.

Fig. 2
Fig. 2

Deployment for measurement of two separated channels, (a) unique laser source SIMO and (b) dual laser source for isolated channels configuration.

Fig. 3
Fig. 3

Measured dependence of (a) Rytov variances in both channels derived from received optical signal and from thermal sensors measurements (symbols, red circles - channel 1, blue crosses - channel 2) and (b) Cn2 theoretical relations (black dotted lines), Cn2 derived from measured thermal distributions via Eqs. (3) and (4) (channel 1 red and channel 2 blue lines) and Cn2 derived from measured of optical power on CT2 measured by the sensor line (symbols; red circles - channel 1, blue crosses – channel 2)

Fig. 4
Fig. 4

Deployment for measurement of partially correlated turbulences within channels

Fig. 5
Fig. 5

Dependence of Cn2 derived from measured of optical power measurements (red circles – channel1, blue crosses - channel 2) and from sensor line on thermal structural parameter in case of partially correlated turbulences, temperature measurements from channel 1 (red solid lines) and channel 2 (blue dashed lines) line sensors, compared with Cn2 dependence derived from Eqs. (3) and (4) for the mean temperatures of 20°C and 40°C (black dotted lines)

Fig. 6
Fig. 6

Comparison of diversity gains for two different turbulence scenarios with respect to Q-factor ratio between channels

Fig. 7
Fig. 7

Examples from comparisons of measured and calculated Selection Combining diversity with Rytov variance in channels (a) σ12 = 0.0305, σ22 = 1.5606, (b) σ12 = 0.0608, σ22 = 5.4235

Fig. 8
Fig. 8

Comparison of diversity gains for two different turbulence scenarios with respect to Cn2 ratio between channels

Tables (1)

Tables Icon

Table 1 Parameters of the optical wireless Link

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

n as =1+77.6( 1+7.52× 10 3 λ 2 ) P as T e × 10 6 ,
d n as /d T e =7.8× 10 5 P as / T e 2 ,
C n 2 = ( 86× 10 6 P as T e ) 2 C T 2 ,at λ=850nm,
D T = ( T 1 T 2 ) 2 ={ C T 2 l 0 4/3 L p 2 for 0< L p < l 0 C T 2 L p 2/3 for l 0 < L p < L 0 ,
σ x 2 =0.56 k 7/6 0 L p C n 2 (x) ( L p x ) 5/6 dx,
σ i 2 =1.23 C n 2 k 7/6 L p 11/6 ,
γ SelC (I)= R 2 A 2 I max 2 2N σ 2 ,
p( I max )= 2 1N Nexp( y 2 ) I σ i 2π [ 1+erf(y) ] N1 ,
y= ln( I/ I 0 )+ σ l 2 /2 2 σ l .
p= Γ( N+1 2 ) σ Nπ Γ( N 20 ) [ N+ ( I I 0 0.1σ ) 2 N ]

Metrics