I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B87, 075416 (2013).

[CrossRef]

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B86, 121108 (2012).

[CrossRef]

M. Tamagnone, J. Gomez-Diaz, J. Mosig, and J. Perruisseau-Carrier, “Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets,” J. Appl. Phys.112, 114915 (2012).

[CrossRef]

B. Wang, X. Zhang, F. J. Garcia-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett.109, 073901 (2012).

[CrossRef]
[PubMed]

L. Gerhard, E. Moyen, T. Balashov, I. Ozerov, M. Portail, H. Sahaf, L. Masson, W. Wulfhekel, and M. Hanbucken, “A graphene electron lens,” Appl. Phys. Lett.100, 153106 (2012).

[CrossRef]

C. S. R. Kaipa, G. W. P. Y. R. Yakovlev, Alexander Hanson, M. F. Medina, and F., “Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies,” Phys. Rev. B85, 245407 (2012).

[CrossRef]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. Garcia de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108, 047401 (2012).

[CrossRef]
[PubMed]

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B86, 195408 (2012).

[CrossRef]

D. Sounas and C. Caloz, “Gyrotropy and nonreciprocity of graphene for microwave applications,” IEEE Trans. Microw. Theory Techn.60, 901 –914 (2012).

[CrossRef]

G. Lovat, “Equivalent circuit for electromagnetic interaction and transmission through graphene sheets,” IEEE Trans. Electromagn. Compat.54, 101 –109 (2012).

[CrossRef]

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B86, 205130 (2012).

[CrossRef]

Y. Guo, W. Newman, C. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Opto-Electron.2012, 452502 (2012).

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett.101, 131106 (2012).

[CrossRef]

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett.100, 181105 (2012).

[CrossRef]

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, and M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett.101, 091105 (2012).

[CrossRef]

T. Tumkur, L. Gu, J. Kitur, E. Narimanov, and M. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett.100, 161103–161103 (2012).

[CrossRef]

A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B86, 035148 (2012).

[CrossRef]

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14, 063001 (2012).

[CrossRef]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of al:zno as a plasmonic component for near-infrared metamaterials,” PNAS109, 8834–8838 (2012).

[CrossRef]
[PubMed]

J. Kim, V. Drachev, Z. Jacob, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Improving the radiative decay rate for dye molecules with hyperbolic metamaterials,” Opt. Express20, 8100–8116 (2012).

[CrossRef]
[PubMed]

C. Rizza, A. Ciattoni, E. Spinozzi, and L. Columbo, “Terahertz active spatial filtering through optically tunable hyperbolic metamaterials,” Opt. Lett.37, 3345–3347 (2012).

[CrossRef]

A. Vakil and N. Engheta, “One-atom-thick reflectors for surface plasmon polariton surface waves on graphene,” Opt. Comm.285, 3428 – 3430 (2012).

[CrossRef]

C. S. R. Kaipa, A. B. Yakovlev, F. Medina, and F. Mesa, “Transmission through stacked 2d periodic distributions of square conducting patches,” J. Appl. Phys.112, 033101 (2012).

[CrossRef]

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic meta-materials: Strengths and limitations,” Phys. Rev. A85, 053842 (2012).

[CrossRef]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336, 205–209 (2012).

[CrossRef]
[PubMed]

S. Campione, S. Steshenko, M. Albani, and F. Capolino, “Complex modes and effective refractive index in 3d periodic arrays of plasmonic nanospheres,” Opt. Express19, 26027–26043 (2011).

[CrossRef]

X. Ni, G. Naik, A. Kildishev, Y. Barnakov, A. Boltasseva, and V. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B103, 553–558 (2011).

[CrossRef]

P.-Y. Chen and A. Alu, “Atomically thin surface cloak using graphene monolayers,” ACS Nano5, 5855–5863 (2011).

[CrossRef]
[PubMed]

G. W. Hanson, A. B. Yakovlev, and A. Mafi, “Excitation of discrete and continuous spectrum for a surface conductivity model of graphene,” J. Appl. Phys.110, 114305 (2011).

[CrossRef]

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Dipole radiation near hyperbolic metamaterials: applicability of effective-medium approximation,” Opt. Lett.36, 2530–2532 (2011).

[CrossRef]
[PubMed]

J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett.98, 101901 (2011).

[CrossRef]

Y. R. Padooru, A. B. Yakovlev, C. S. Kaipa, F. Medina, and F. Mesa, “Circuit modeling of multiband high-impedance surface absorbers in the microwave regime,” Phys. Rev. B84, 035108 (2011).

[CrossRef]

D. L. Sounas and C. Caloz, “Electromagnetic nonreciprocity and gyrotropy of graphene,” Appl. Phys. Lett.98, 021911 (2011).

[CrossRef]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011).

[CrossRef]
[PubMed]

C. S. Kaipa, A. B. Yakovlev, F. Medina, F. Mesa, C. Butler, and A. P. Hibbins, “Circuit modeling of the transmissivity of stacked two-dimensional metallic meshes,” Opt. Express18, 13309–13320 (2010).

[CrossRef]
[PubMed]

I. Smolyaninov and E. Narimanov, “Metric signature transitions in optical metamaterials,” Phys. Rev. Lett.105, 67402 (2010).

[CrossRef]

G. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett.4, 295–297 (2010).

[CrossRef]

Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100, 215–218 (2010).

[CrossRef]

F. Capolino and M. Albani, “Truncation effects in a semi-infinite periodic array of thin strips: A discrete wiener-hopf formulation,” Radio Sci.44, RS2S91 (2009).

[CrossRef]

C. Chen, S. Rosenblatt, K. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. Stormer, T. Heinz, and J. Hone, “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nature Nanotech.4, 861–867 (2009).

[CrossRef]

X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett.8, 323–327 (2008).

[CrossRef]

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100, 117401 (2008).

[CrossRef]
[PubMed]

F. Rana, “Graphene terahertz plasmon oscillators,” IEEE Trans. Nanotechnol.7, 91–99 (2008).

[CrossRef]

G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys.103, 064302 (2008).

[CrossRef]

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Sum rules for the optical and hall conductivity in graphene,” Phys. Rev. B75, 165407 (2007).

[CrossRef]

Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in graphene,” Phys. Rev. Lett.99, 246803 (2007).

[CrossRef]

V. P. Gusynin and S. G. Sharapov, “Unconventional integer quantum hall effect in graphene,” Phys. Rev. Lett.95, 146801 (2005).

[CrossRef]
[PubMed]

K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004).

[CrossRef]
[PubMed]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett.90, 077405 (2003).

[CrossRef]
[PubMed]

J. Pendry and S. Ramakrishna, “Refining the perfect lens,” Physica B: Condensed Matter338, 329 – 332 (2003).

[CrossRef]

R. A. Jishi, M. S. Dresselhaus, and G. Dresselhaus, “Electron-phonon coupling and the electrical conductivity of fullerene nanotubules,” Phys. Rev. B48, 11385–11389 (1993).

[CrossRef]

Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in graphene,” Phys. Rev. Lett.99, 246803 (2007).

[CrossRef]

P.-Y. Chen and A. Alu, “Atomically thin surface cloak using graphene monolayers,” ACS Nano5, 5855–5863 (2011).

[CrossRef]
[PubMed]

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B86, 121108 (2012).

[CrossRef]

L. Gerhard, E. Moyen, T. Balashov, I. Ozerov, M. Portail, H. Sahaf, L. Masson, W. Wulfhekel, and M. Hanbucken, “A graphene electron lens,” Appl. Phys. Lett.100, 153106 (2012).

[CrossRef]

X. Ni, G. Naik, A. Kildishev, Y. Barnakov, A. Boltasseva, and V. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B103, 553–558 (2011).

[CrossRef]

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B87, 075416 (2013).

[CrossRef]

A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B86, 035148 (2012).

[CrossRef]

C. Chen, S. Rosenblatt, K. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. Stormer, T. Heinz, and J. Hone, “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nature Nanotech.4, 861–867 (2009).

[CrossRef]

Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in graphene,” Phys. Rev. Lett.99, 246803 (2007).

[CrossRef]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of al:zno as a plasmonic component for near-infrared metamaterials,” PNAS109, 8834–8838 (2012).

[CrossRef]
[PubMed]

J. Kim, V. Drachev, Z. Jacob, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Improving the radiative decay rate for dye molecules with hyperbolic metamaterials,” Opt. Express20, 8100–8116 (2012).

[CrossRef]
[PubMed]

X. Ni, G. Naik, A. Kildishev, Y. Barnakov, A. Boltasseva, and V. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B103, 553–558 (2011).

[CrossRef]

Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100, 215–218 (2010).

[CrossRef]

G. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett.4, 295–297 (2010).

[CrossRef]

D. Sounas and C. Caloz, “Gyrotropy and nonreciprocity of graphene for microwave applications,” IEEE Trans. Microw. Theory Techn.60, 901 –914 (2012).

[CrossRef]

D. L. Sounas and C. Caloz, “Electromagnetic nonreciprocity and gyrotropy of graphene,” Appl. Phys. Lett.98, 021911 (2011).

[CrossRef]

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B86, 205130 (2012).

[CrossRef]

S. Campione, S. Steshenko, M. Albani, and F. Capolino, “Complex modes and effective refractive index in 3d periodic arrays of plasmonic nanospheres,” Opt. Express19, 26027–26043 (2011).

[CrossRef]

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B86, 205130 (2012).

[CrossRef]

S. Campione, S. Steshenko, M. Albani, and F. Capolino, “Complex modes and effective refractive index in 3d periodic arrays of plasmonic nanospheres,” Opt. Express19, 26027–26043 (2011).

[CrossRef]

F. Capolino and M. Albani, “Truncation effects in a semi-infinite periodic array of thin strips: A discrete wiener-hopf formulation,” Radio Sci.44, RS2S91 (2009).

[CrossRef]

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100, 117401 (2008).

[CrossRef]
[PubMed]

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Sum rules for the optical and hall conductivity in graphene,” Phys. Rev. B75, 165407 (2007).

[CrossRef]

C. Chen, S. Rosenblatt, K. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. Stormer, T. Heinz, and J. Hone, “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nature Nanotech.4, 861–867 (2009).

[CrossRef]

P.-Y. Chen and A. Alu, “Atomically thin surface cloak using graphene monolayers,” ACS Nano5, 5855–5863 (2011).

[CrossRef]
[PubMed]

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B86, 121108 (2012).

[CrossRef]

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, and M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett.101, 091105 (2012).

[CrossRef]

Y. Guo, W. Newman, C. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Opto-Electron.2012, 452502 (2012).

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett.101, 131106 (2012).

[CrossRef]

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14, 063001 (2012).

[CrossRef]

Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in graphene,” Phys. Rev. Lett.99, 246803 (2007).

[CrossRef]

R. A. Jishi, M. S. Dresselhaus, and G. Dresselhaus, “Electron-phonon coupling and the electrical conductivity of fullerene nanotubules,” Phys. Rev. B48, 11385–11389 (1993).

[CrossRef]

R. A. Jishi, M. S. Dresselhaus, and G. Dresselhaus, “Electron-phonon coupling and the electrical conductivity of fullerene nanotubules,” Phys. Rev. B48, 11385–11389 (1993).

[CrossRef]

K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004).

[CrossRef]
[PubMed]

A. Vakil and N. Engheta, “One-atom-thick reflectors for surface plasmon polariton surface waves on graphene,” Opt. Comm.285, 3428 – 3430 (2012).

[CrossRef]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011).

[CrossRef]
[PubMed]

C. S. R. Kaipa, G. W. P. Y. R. Yakovlev, Alexander Hanson, M. F. Medina, and F., “Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies,” Phys. Rev. B85, 245407 (2012).

[CrossRef]

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B86, 195408 (2012).

[CrossRef]

L. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (Prentice-Hall, NJ, 1973).

K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004).

[CrossRef]
[PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. Garcia de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108, 047401 (2012).

[CrossRef]
[PubMed]

B. Wang, X. Zhang, F. J. Garcia-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett.109, 073901 (2012).

[CrossRef]
[PubMed]

K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004).

[CrossRef]
[PubMed]

L. Gerhard, E. Moyen, T. Balashov, I. Ozerov, M. Portail, H. Sahaf, L. Masson, W. Wulfhekel, and M. Hanbucken, “A graphene electron lens,” Appl. Phys. Lett.100, 153106 (2012).

[CrossRef]

A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B86, 035148 (2012).

[CrossRef]

M. Tamagnone, J. Gomez-Diaz, J. Mosig, and J. Perruisseau-Carrier, “Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets,” J. Appl. Phys.112, 114915 (2012).

[CrossRef]

K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004).

[CrossRef]
[PubMed]

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, and M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett.101, 091105 (2012).

[CrossRef]

T. Tumkur, L. Gu, J. Kitur, E. Narimanov, and M. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett.100, 161103–161103 (2012).

[CrossRef]

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B86, 205130 (2012).

[CrossRef]

Y. Guo, W. Newman, C. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Opto-Electron.2012, 452502 (2012).

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett.101, 131106 (2012).

[CrossRef]

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Sum rules for the optical and hall conductivity in graphene,” Phys. Rev. B75, 165407 (2007).

[CrossRef]

V. P. Gusynin and S. G. Sharapov, “Unconventional integer quantum hall effect in graphene,” Phys. Rev. Lett.95, 146801 (2005).

[CrossRef]
[PubMed]

L. Gerhard, E. Moyen, T. Balashov, I. Ozerov, M. Portail, H. Sahaf, L. Masson, W. Wulfhekel, and M. Hanbucken, “A graphene electron lens,” Appl. Phys. Lett.100, 153106 (2012).

[CrossRef]

C. S. R. Kaipa, G. W. P. Y. R. Yakovlev, Alexander Hanson, M. F. Medina, and F., “Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies,” Phys. Rev. B85, 245407 (2012).

[CrossRef]

G. W. Hanson, A. B. Yakovlev, and A. Mafi, “Excitation of discrete and continuous spectrum for a surface conductivity model of graphene,” J. Appl. Phys.110, 114305 (2011).

[CrossRef]

G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys.103, 064302 (2008).

[CrossRef]

C. Chen, S. Rosenblatt, K. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. Stormer, T. Heinz, and J. Hone, “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nature Nanotech.4, 861–867 (2009).

[CrossRef]

C. Chen, S. Rosenblatt, K. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. Stormer, T. Heinz, and J. Hone, “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nature Nanotech.4, 861–867 (2009).

[CrossRef]

Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in graphene,” Phys. Rev. Lett.99, 246803 (2007).

[CrossRef]

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B87, 075416 (2013).

[CrossRef]

J. Kim, V. Drachev, Z. Jacob, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Improving the radiative decay rate for dye molecules with hyperbolic metamaterials,” Opt. Express20, 8100–8116 (2012).

[CrossRef]
[PubMed]

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14, 063001 (2012).

[CrossRef]

Y. Guo, W. Newman, C. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Opto-Electron.2012, 452502 (2012).

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett.101, 131106 (2012).

[CrossRef]

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett.100, 181105 (2012).

[CrossRef]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336, 205–209 (2012).

[CrossRef]
[PubMed]

Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100, 215–218 (2010).

[CrossRef]

K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004).

[CrossRef]
[PubMed]

R. A. Jishi, M. S. Dresselhaus, and G. Dresselhaus, “Electron-phonon coupling and the electrical conductivity of fullerene nanotubules,” Phys. Rev. B48, 11385–11389 (1993).

[CrossRef]

Y. R. Padooru, A. B. Yakovlev, C. S. Kaipa, F. Medina, and F. Mesa, “Circuit modeling of multiband high-impedance surface absorbers in the microwave regime,” Phys. Rev. B84, 035108 (2011).

[CrossRef]

C. S. Kaipa, A. B. Yakovlev, F. Medina, F. Mesa, C. Butler, and A. P. Hibbins, “Circuit modeling of the transmissivity of stacked two-dimensional metallic meshes,” Opt. Express18, 13309–13320 (2010).

[CrossRef]
[PubMed]

C. S. R. Kaipa, G. W. P. Y. R. Yakovlev, Alexander Hanson, M. F. Medina, and F., “Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies,” Phys. Rev. B85, 245407 (2012).

[CrossRef]

C. S. R. Kaipa, A. B. Yakovlev, F. Medina, and F. Mesa, “Transmission through stacked 2d periodic distributions of square conducting patches,” J. Appl. Phys.112, 033101 (2012).

[CrossRef]

C. Chen, S. Rosenblatt, K. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. Stormer, T. Heinz, and J. Hone, “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nature Nanotech.4, 861–867 (2009).

[CrossRef]

J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett.98, 101901 (2011).

[CrossRef]

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic meta-materials: Strengths and limitations,” Phys. Rev. A85, 053842 (2012).

[CrossRef]

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Dipole radiation near hyperbolic metamaterials: applicability of effective-medium approximation,” Opt. Lett.36, 2530–2532 (2011).

[CrossRef]
[PubMed]

X. Ni, G. Naik, A. Kildishev, Y. Barnakov, A. Boltasseva, and V. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B103, 553–558 (2011).

[CrossRef]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of al:zno as a plasmonic component for near-infrared metamaterials,” PNAS109, 8834–8838 (2012).

[CrossRef]
[PubMed]

J. Kim, V. Drachev, Z. Jacob, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Improving the radiative decay rate for dye molecules with hyperbolic metamaterials,” Opt. Express20, 8100–8116 (2012).

[CrossRef]
[PubMed]

Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100, 215–218 (2010).

[CrossRef]

C. Chen, S. Rosenblatt, K. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. Stormer, T. Heinz, and J. Hone, “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nature Nanotech.4, 861–867 (2009).

[CrossRef]

Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in graphene,” Phys. Rev. Lett.99, 246803 (2007).

[CrossRef]

T. Tumkur, L. Gu, J. Kitur, E. Narimanov, and M. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett.100, 161103–161103 (2012).

[CrossRef]

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, and M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett.101, 091105 (2012).

[CrossRef]

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B87, 075416 (2013).

[CrossRef]

A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B86, 035148 (2012).

[CrossRef]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. Garcia de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108, 047401 (2012).

[CrossRef]
[PubMed]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336, 205–209 (2012).

[CrossRef]
[PubMed]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336, 205–209 (2012).

[CrossRef]
[PubMed]

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100, 117401 (2008).

[CrossRef]
[PubMed]

C. Chen, S. Rosenblatt, K. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. Stormer, T. Heinz, and J. Hone, “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nature Nanotech.4, 861–867 (2009).

[CrossRef]

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B86, 121108 (2012).

[CrossRef]

J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett.98, 101901 (2011).

[CrossRef]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of al:zno as a plasmonic component for near-infrared metamaterials,” PNAS109, 8834–8838 (2012).

[CrossRef]
[PubMed]

G. Lovat, “Equivalent circuit for electromagnetic interaction and transmission through graphene sheets,” IEEE Trans. Electromagn. Compat.54, 101 –109 (2012).

[CrossRef]

G. W. Hanson, A. B. Yakovlev, and A. Mafi, “Excitation of discrete and continuous spectrum for a surface conductivity model of graphene,” J. Appl. Phys.110, 114305 (2011).

[CrossRef]

L. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (Prentice-Hall, NJ, 1973).

L. Gerhard, E. Moyen, T. Balashov, I. Ozerov, M. Portail, H. Sahaf, L. Masson, W. Wulfhekel, and M. Hanbucken, “A graphene electron lens,” Appl. Phys. Lett.100, 153106 (2012).

[CrossRef]

C. S. R. Kaipa, A. B. Yakovlev, F. Medina, and F. Mesa, “Transmission through stacked 2d periodic distributions of square conducting patches,” J. Appl. Phys.112, 033101 (2012).

[CrossRef]

Y. R. Padooru, A. B. Yakovlev, C. S. Kaipa, F. Medina, and F. Mesa, “Circuit modeling of multiband high-impedance surface absorbers in the microwave regime,” Phys. Rev. B84, 035108 (2011).

[CrossRef]

C. S. Kaipa, A. B. Yakovlev, F. Medina, F. Mesa, C. Butler, and A. P. Hibbins, “Circuit modeling of the transmissivity of stacked two-dimensional metallic meshes,” Opt. Express18, 13309–13320 (2010).

[CrossRef]
[PubMed]

C. S. R. Kaipa, G. W. P. Y. R. Yakovlev, Alexander Hanson, M. F. Medina, and F., “Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies,” Phys. Rev. B85, 245407 (2012).

[CrossRef]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336, 205–209 (2012).

[CrossRef]
[PubMed]

C. S. R. Kaipa, A. B. Yakovlev, F. Medina, and F. Mesa, “Transmission through stacked 2d periodic distributions of square conducting patches,” J. Appl. Phys.112, 033101 (2012).

[CrossRef]

Y. R. Padooru, A. B. Yakovlev, C. S. Kaipa, F. Medina, and F. Mesa, “Circuit modeling of multiband high-impedance surface absorbers in the microwave regime,” Phys. Rev. B84, 035108 (2011).

[CrossRef]

C. S. Kaipa, A. B. Yakovlev, F. Medina, F. Mesa, C. Butler, and A. P. Hibbins, “Circuit modeling of the transmissivity of stacked two-dimensional metallic meshes,” Opt. Express18, 13309–13320 (2010).

[CrossRef]
[PubMed]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett.101, 131106 (2012).

[CrossRef]

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14, 063001 (2012).

[CrossRef]

K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004).

[CrossRef]
[PubMed]

M. Tamagnone, J. Gomez-Diaz, J. Mosig, and J. Perruisseau-Carrier, “Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets,” J. Appl. Phys.112, 114915 (2012).

[CrossRef]

L. Gerhard, E. Moyen, T. Balashov, I. Ozerov, M. Portail, H. Sahaf, L. Masson, W. Wulfhekel, and M. Hanbucken, “A graphene electron lens,” Appl. Phys. Lett.100, 153106 (2012).

[CrossRef]

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B87, 075416 (2013).

[CrossRef]

X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett.8, 323–327 (2008).

[CrossRef]

J. Kim, V. Drachev, Z. Jacob, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Improving the radiative decay rate for dye molecules with hyperbolic metamaterials,” Opt. Express20, 8100–8116 (2012).

[CrossRef]
[PubMed]

X. Ni, G. Naik, A. Kildishev, Y. Barnakov, A. Boltasseva, and V. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B103, 553–558 (2011).

[CrossRef]

Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100, 215–218 (2010).

[CrossRef]

G. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett.4, 295–297 (2010).

[CrossRef]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of al:zno as a plasmonic component for near-infrared metamaterials,” PNAS109, 8834–8838 (2012).

[CrossRef]
[PubMed]

J. Kim, V. Drachev, Z. Jacob, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Improving the radiative decay rate for dye molecules with hyperbolic metamaterials,” Opt. Express20, 8100–8116 (2012).

[CrossRef]
[PubMed]

T. Tumkur, L. Gu, J. Kitur, E. Narimanov, and M. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett.100, 161103–161103 (2012).

[CrossRef]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336, 205–209 (2012).

[CrossRef]
[PubMed]

Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100, 215–218 (2010).

[CrossRef]

I. Smolyaninov and E. Narimanov, “Metric signature transitions in optical metamaterials,” Phys. Rev. Lett.105, 67402 (2010).

[CrossRef]

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, and M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett.101, 091105 (2012).

[CrossRef]

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett.100, 181105 (2012).

[CrossRef]

Y. Guo, W. Newman, C. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Opto-Electron.2012, 452502 (2012).

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14, 063001 (2012).

[CrossRef]

X. Ni, G. Naik, A. Kildishev, Y. Barnakov, A. Boltasseva, and V. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B103, 553–558 (2011).

[CrossRef]

T. Tumkur, L. Gu, J. Kitur, E. Narimanov, and M. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett.100, 161103–161103 (2012).

[CrossRef]

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, and M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett.101, 091105 (2012).

[CrossRef]

K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004).

[CrossRef]
[PubMed]

L. Gerhard, E. Moyen, T. Balashov, I. Ozerov, M. Portail, H. Sahaf, L. Masson, W. Wulfhekel, and M. Hanbucken, “A graphene electron lens,” Appl. Phys. Lett.100, 153106 (2012).

[CrossRef]

Y. R. Padooru, A. B. Yakovlev, C. S. Kaipa, F. Medina, and F. Mesa, “Circuit modeling of multiband high-impedance surface absorbers in the microwave regime,” Phys. Rev. B84, 035108 (2011).

[CrossRef]

J. Pendry and S. Ramakrishna, “Refining the perfect lens,” Physica B: Condensed Matter338, 329 – 332 (2003).

[CrossRef]

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B86, 195408 (2012).

[CrossRef]

M. Tamagnone, J. Gomez-Diaz, J. Mosig, and J. Perruisseau-Carrier, “Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets,” J. Appl. Phys.112, 114915 (2012).

[CrossRef]

A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B86, 035148 (2012).

[CrossRef]

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, and M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett.101, 091105 (2012).

[CrossRef]

L. Gerhard, E. Moyen, T. Balashov, I. Ozerov, M. Portail, H. Sahaf, L. Masson, W. Wulfhekel, and M. Hanbucken, “A graphene electron lens,” Appl. Phys. Lett.100, 153106 (2012).

[CrossRef]

D. Pozar, Microwave engineering (John Wiley & Sons, 2009).

J. Pendry and S. Ramakrishna, “Refining the perfect lens,” Physica B: Condensed Matter338, 329 – 332 (2003).

[CrossRef]

F. Rana, “Graphene terahertz plasmon oscillators,” IEEE Trans. Nanotechnol.7, 91–99 (2008).

[CrossRef]

C. Chen, S. Rosenblatt, K. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. Stormer, T. Heinz, and J. Hone, “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nature Nanotech.4, 861–867 (2009).

[CrossRef]

L. Gerhard, E. Moyen, T. Balashov, I. Ozerov, M. Portail, H. Sahaf, L. Masson, W. Wulfhekel, and M. Hanbucken, “A graphene electron lens,” Appl. Phys. Lett.100, 153106 (2012).

[CrossRef]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett.90, 077405 (2003).

[CrossRef]
[PubMed]

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B87, 075416 (2013).

[CrossRef]

J. Kim, V. Drachev, Z. Jacob, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Improving the radiative decay rate for dye molecules with hyperbolic metamaterials,” Opt. Express20, 8100–8116 (2012).

[CrossRef]
[PubMed]

X. Ni, G. Naik, A. Kildishev, Y. Barnakov, A. Boltasseva, and V. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B103, 553–558 (2011).

[CrossRef]

Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100, 215–218 (2010).

[CrossRef]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of al:zno as a plasmonic component for near-infrared metamaterials,” PNAS109, 8834–8838 (2012).

[CrossRef]
[PubMed]

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Sum rules for the optical and hall conductivity in graphene,” Phys. Rev. B75, 165407 (2007).

[CrossRef]

V. P. Gusynin and S. G. Sharapov, “Unconventional integer quantum hall effect in graphene,” Phys. Rev. Lett.95, 146801 (2005).

[CrossRef]
[PubMed]

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic meta-materials: Strengths and limitations,” Phys. Rev. A85, 053842 (2012).

[CrossRef]

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Dipole radiation near hyperbolic metamaterials: applicability of effective-medium approximation,” Opt. Lett.36, 2530–2532 (2011).

[CrossRef]
[PubMed]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett.90, 077405 (2003).

[CrossRef]
[PubMed]

I. Smolyaninov and E. Narimanov, “Metric signature transitions in optical metamaterials,” Phys. Rev. Lett.105, 67402 (2010).

[CrossRef]

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett.100, 181105 (2012).

[CrossRef]

D. Sounas and C. Caloz, “Gyrotropy and nonreciprocity of graphene for microwave applications,” IEEE Trans. Microw. Theory Techn.60, 901 –914 (2012).

[CrossRef]

D. L. Sounas and C. Caloz, “Electromagnetic nonreciprocity and gyrotropy of graphene,” Appl. Phys. Lett.98, 021911 (2011).

[CrossRef]

C. Chen, S. Rosenblatt, K. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. Stormer, T. Heinz, and J. Hone, “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nature Nanotech.4, 861–867 (2009).

[CrossRef]

Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in graphene,” Phys. Rev. Lett.99, 246803 (2007).

[CrossRef]

J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett.98, 101901 (2011).

[CrossRef]

M. Tamagnone, J. Gomez-Diaz, J. Mosig, and J. Perruisseau-Carrier, “Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets,” J. Appl. Phys.112, 114915 (2012).

[CrossRef]

Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in graphene,” Phys. Rev. Lett.99, 246803 (2007).

[CrossRef]

B. Wang, X. Zhang, F. J. Garcia-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett.109, 073901 (2012).

[CrossRef]
[PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. Garcia de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108, 047401 (2012).

[CrossRef]
[PubMed]

T. Tumkur, L. Gu, J. Kitur, E. Narimanov, and M. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett.100, 161103–161103 (2012).

[CrossRef]

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, and M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett.101, 091105 (2012).

[CrossRef]

A. Vakil and N. Engheta, “One-atom-thick reflectors for surface plasmon polariton surface waves on graphene,” Opt. Comm.285, 3428 – 3430 (2012).

[CrossRef]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011).

[CrossRef]
[PubMed]

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100, 117401 (2008).

[CrossRef]
[PubMed]

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100, 117401 (2008).

[CrossRef]
[PubMed]

B. Wang, X. Zhang, F. J. Garcia-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett.109, 073901 (2012).

[CrossRef]
[PubMed]

X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett.8, 323–327 (2008).

[CrossRef]

L. Gerhard, E. Moyen, T. Balashov, I. Ozerov, M. Portail, H. Sahaf, L. Masson, W. Wulfhekel, and M. Hanbucken, “A graphene electron lens,” Appl. Phys. Lett.100, 153106 (2012).

[CrossRef]

C. S. R. Kaipa, A. B. Yakovlev, F. Medina, and F. Mesa, “Transmission through stacked 2d periodic distributions of square conducting patches,” J. Appl. Phys.112, 033101 (2012).

[CrossRef]

Y. R. Padooru, A. B. Yakovlev, C. S. Kaipa, F. Medina, and F. Mesa, “Circuit modeling of multiband high-impedance surface absorbers in the microwave regime,” Phys. Rev. B84, 035108 (2011).

[CrossRef]

G. W. Hanson, A. B. Yakovlev, and A. Mafi, “Excitation of discrete and continuous spectrum for a surface conductivity model of graphene,” J. Appl. Phys.110, 114305 (2011).

[CrossRef]

C. S. Kaipa, A. B. Yakovlev, F. Medina, F. Mesa, C. Butler, and A. P. Hibbins, “Circuit modeling of the transmissivity of stacked two-dimensional metallic meshes,” Opt. Express18, 13309–13320 (2010).

[CrossRef]
[PubMed]

C. S. R. Kaipa, G. W. P. Y. R. Yakovlev, Alexander Hanson, M. F. Medina, and F., “Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies,” Phys. Rev. B85, 245407 (2012).

[CrossRef]

B. Wang, X. Zhang, F. J. Garcia-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett.109, 073901 (2012).

[CrossRef]
[PubMed]

A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B86, 035148 (2012).

[CrossRef]

B. Wang, X. Zhang, F. J. Garcia-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett.109, 073901 (2012).

[CrossRef]
[PubMed]

Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in graphene,” Phys. Rev. Lett.99, 246803 (2007).

[CrossRef]

K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004).

[CrossRef]
[PubMed]

Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in graphene,” Phys. Rev. Lett.99, 246803 (2007).

[CrossRef]

X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett.8, 323–327 (2008).

[CrossRef]

J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett.98, 101901 (2011).

[CrossRef]

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic meta-materials: Strengths and limitations,” Phys. Rev. A85, 053842 (2012).

[CrossRef]

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Dipole radiation near hyperbolic metamaterials: applicability of effective-medium approximation,” Opt. Lett.36, 2530–2532 (2011).

[CrossRef]
[PubMed]

P.-Y. Chen and A. Alu, “Atomically thin surface cloak using graphene monolayers,” ACS Nano5, 5855–5863 (2011).

[CrossRef]
[PubMed]

Y. Guo, W. Newman, C. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Opto-Electron.2012, 452502 (2012).

Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100, 215–218 (2010).

[CrossRef]

X. Ni, G. Naik, A. Kildishev, Y. Barnakov, A. Boltasseva, and V. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B103, 553–558 (2011).

[CrossRef]

J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett.98, 101901 (2011).

[CrossRef]

D. L. Sounas and C. Caloz, “Electromagnetic nonreciprocity and gyrotropy of graphene,” Appl. Phys. Lett.98, 021911 (2011).

[CrossRef]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett.101, 131106 (2012).

[CrossRef]

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett.100, 181105 (2012).

[CrossRef]

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, and M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett.101, 091105 (2012).

[CrossRef]

T. Tumkur, L. Gu, J. Kitur, E. Narimanov, and M. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett.100, 161103–161103 (2012).

[CrossRef]

L. Gerhard, E. Moyen, T. Balashov, I. Ozerov, M. Portail, H. Sahaf, L. Masson, W. Wulfhekel, and M. Hanbucken, “A graphene electron lens,” Appl. Phys. Lett.100, 153106 (2012).

[CrossRef]

G. Lovat, “Equivalent circuit for electromagnetic interaction and transmission through graphene sheets,” IEEE Trans. Electromagn. Compat.54, 101 –109 (2012).

[CrossRef]

D. Sounas and C. Caloz, “Gyrotropy and nonreciprocity of graphene for microwave applications,” IEEE Trans. Microw. Theory Techn.60, 901 –914 (2012).

[CrossRef]

F. Rana, “Graphene terahertz plasmon oscillators,” IEEE Trans. Nanotechnol.7, 91–99 (2008).

[CrossRef]

G. W. Hanson, A. B. Yakovlev, and A. Mafi, “Excitation of discrete and continuous spectrum for a surface conductivity model of graphene,” J. Appl. Phys.110, 114305 (2011).

[CrossRef]

M. Tamagnone, J. Gomez-Diaz, J. Mosig, and J. Perruisseau-Carrier, “Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets,” J. Appl. Phys.112, 114915 (2012).

[CrossRef]

G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys.103, 064302 (2008).

[CrossRef]

C. S. R. Kaipa, A. B. Yakovlev, F. Medina, and F. Mesa, “Transmission through stacked 2d periodic distributions of square conducting patches,” J. Appl. Phys.112, 033101 (2012).

[CrossRef]

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14, 063001 (2012).

[CrossRef]

X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett.8, 323–327 (2008).

[CrossRef]

C. Chen, S. Rosenblatt, K. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. Stormer, T. Heinz, and J. Hone, “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nature Nanotech.4, 861–867 (2009).

[CrossRef]

A. Vakil and N. Engheta, “One-atom-thick reflectors for surface plasmon polariton surface waves on graphene,” Opt. Comm.285, 3428 – 3430 (2012).

[CrossRef]

J. Kim, V. Drachev, Z. Jacob, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Improving the radiative decay rate for dye molecules with hyperbolic metamaterials,” Opt. Express20, 8100–8116 (2012).

[CrossRef]
[PubMed]

C. S. Kaipa, A. B. Yakovlev, F. Medina, F. Mesa, C. Butler, and A. P. Hibbins, “Circuit modeling of the transmissivity of stacked two-dimensional metallic meshes,” Opt. Express18, 13309–13320 (2010).

[CrossRef]
[PubMed]

S. Campione, S. Steshenko, M. Albani, and F. Capolino, “Complex modes and effective refractive index in 3d periodic arrays of plasmonic nanospheres,” Opt. Express19, 26027–26043 (2011).

[CrossRef]

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Dipole radiation near hyperbolic metamaterials: applicability of effective-medium approximation,” Opt. Lett.36, 2530–2532 (2011).

[CrossRef]
[PubMed]

K. J. Webb and M. Yang, “Subwavelength imaging with a multilayer silver film structure,” Opt. Lett.31, 2130–2132 (2006).

[CrossRef]
[PubMed]

C. Rizza, A. Ciattoni, E. Spinozzi, and L. Columbo, “Terahertz active spatial filtering through optically tunable hyperbolic metamaterials,” Opt. Lett.37, 3345–3347 (2012).

[CrossRef]

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic meta-materials: Strengths and limitations,” Phys. Rev. A85, 053842 (2012).

[CrossRef]

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Sum rules for the optical and hall conductivity in graphene,” Phys. Rev. B75, 165407 (2007).

[CrossRef]

R. A. Jishi, M. S. Dresselhaus, and G. Dresselhaus, “Electron-phonon coupling and the electrical conductivity of fullerene nanotubules,” Phys. Rev. B48, 11385–11389 (1993).

[CrossRef]

Y. R. Padooru, A. B. Yakovlev, C. S. Kaipa, F. Medina, and F. Mesa, “Circuit modeling of multiband high-impedance surface absorbers in the microwave regime,” Phys. Rev. B84, 035108 (2011).

[CrossRef]

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B86, 195408 (2012).

[CrossRef]

C. S. R. Kaipa, G. W. P. Y. R. Yakovlev, Alexander Hanson, M. F. Medina, and F., “Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies,” Phys. Rev. B85, 245407 (2012).

[CrossRef]

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B87, 075416 (2013).

[CrossRef]

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B86, 121108 (2012).

[CrossRef]

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B86, 205130 (2012).

[CrossRef]

A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B86, 035148 (2012).

[CrossRef]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett.90, 077405 (2003).

[CrossRef]
[PubMed]

I. Smolyaninov and E. Narimanov, “Metric signature transitions in optical metamaterials,” Phys. Rev. Lett.105, 67402 (2010).

[CrossRef]

V. P. Gusynin and S. G. Sharapov, “Unconventional integer quantum hall effect in graphene,” Phys. Rev. Lett.95, 146801 (2005).

[CrossRef]
[PubMed]

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100, 117401 (2008).

[CrossRef]
[PubMed]

B. Wang, X. Zhang, F. J. Garcia-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett.109, 073901 (2012).

[CrossRef]
[PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. Garcia de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108, 047401 (2012).

[CrossRef]
[PubMed]

Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in graphene,” Phys. Rev. Lett.99, 246803 (2007).

[CrossRef]

G. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett.4, 295–297 (2010).

[CrossRef]

J. Pendry and S. Ramakrishna, “Refining the perfect lens,” Physica B: Condensed Matter338, 329 – 332 (2003).

[CrossRef]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of al:zno as a plasmonic component for near-infrared metamaterials,” PNAS109, 8834–8838 (2012).

[CrossRef]
[PubMed]

F. Capolino and M. Albani, “Truncation effects in a semi-infinite periodic array of thin strips: A discrete wiener-hopf formulation,” Radio Sci.44, RS2S91 (2009).

[CrossRef]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336, 205–209 (2012).

[CrossRef]
[PubMed]

K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004).

[CrossRef]
[PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011).

[CrossRef]
[PubMed]

L. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (Prentice-Hall, NJ, 1973).

D. Pozar, Microwave engineering (John Wiley & Sons, 2009).