Abstract

We present a workbench for the study of real-time quantum imaging by measuring the frame-by-frame quantum noise reduction of multi-spatial-mode twin beams generated by four wave mixing in Rb vapor. Exploiting the multiple spatial modes of this squeezed light source, we utilize spatial light modulators to selectively pass macropixels of quantum correlated modes from each of the twin beams to a high quantum efficiency balanced detector. In low-light-level imaging applications, the ability to measure the quantum correlations between individual spatial modes and macropixels of spatial modes with a single pixel camera will facilitate compressive quantum imaging with sensitivity below the photon shot noise limit.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science321, 544–547 (2008).
    [CrossRef] [PubMed]
  2. Q. Glorieux, J. B. Clark, A. M. Marino, Z. Zhou, and P. D. Lett, “Temporally multiplexed storage of images in a gradient echo memory,” Opt. Express20, 12350–12358 (2012).
    [CrossRef] [PubMed]
  3. D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Image transfer through two sequential four-wave-mixing processes in hot atomic vapor,” Phys. Rev. A85, 053815 (2012).
    [CrossRef]
  4. J. B. Clark, Z. Zhou, Q. Glorieux, A. M. Marino, and P. D. Lett, “Imaging using quantum noise properties of light,” Opt. Express20, 17050–17058 (2012).
    [CrossRef]
  5. E. Brambilla, L. Caspani, O. Jedrkiewicz, L. Lugiato, and A. Gatti, “High-sensitivity imaging with multi-mode twin beams,” Phys. Rev. A77, 053807 (2008).
    [CrossRef]
  6. V. Boyer, A. M. Marino, and P. D. Lett, “Generation of spatially broadband twin beams for quantum imaging,” Phys. Rev. Lett.100, 143601 (2008).
    [CrossRef] [PubMed]
  7. N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett.109, 043602 (2012).
    [CrossRef] [PubMed]
  8. M. I. Kolobov and C. Fabre, “Quantum limits on optical resolution,” Phys. Rev. Lett.85, 3789–3792 (2000).
    [CrossRef] [PubMed]
  9. M. Lassen, V. Delaubert, J. Janousek, K. Wagner, H.-A. Bachor, P. K. Lam, N. Treps, P. Buchhave, C. Fabre, and C. C. Harb, “Tools for multimode quantum information: Modulation, detection, and spatial quantum correlations,” Phys. Rev. Lett.98, 083602 (2007).
    [CrossRef] [PubMed]
  10. G. Brida, M. Genovese, and I. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nature Photon.4, 227–230 (2010).
    [CrossRef]
  11. O. Aytür and P. Kumar, “Squeezed-light generation with a mode-locked q-switched laser and detection by using a matched local oscillator,” Opt. Lett.17, 529–531 (1992).
    [CrossRef] [PubMed]
  12. D. Smithey, M. Beck, M. Belsley, and M. Raymer, “Sub-shot-noise correlation of total photon number using macroscopic twin pulses of light,” Phys. Rev. Lett.69, 2650–2653 (1992).
    [CrossRef] [PubMed]
  13. L. Jiying, Z. Jubo, L. Chuan, and H. Shisheng, “High-quality quantum-imaging algorithm and experiment based on compressive sensing,” Opt. Lett.35, 1206–1208 (2010).
    [CrossRef] [PubMed]
  14. O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” App. Phys. Lett.95, 131110 (2009).
    [CrossRef]
  15. P. Zerom, K. W. C. Chan, J. C. Howell, and R. W. Boyd, “Entangled-photon compressive ghost imaging,” Phys. Rev. A84, 061804 (2011).
    [CrossRef]
  16. T. Do, L. Gan, N. Nguyen, and T. Tran, “Fast and efficient compressive sensing using structurally random matrices,” IEEE Trans. Signal Process.60, 139–154 (2012).
    [CrossRef]
  17. D. Smith, J. Gore, T. Yankeelov, and E. Welch, “Real-time compressive sensing MRI reconstruction using GPU computing and split bregman methods,” Int. J. of Biomed. Imag.2012, 864827 (2012).
  18. R. Pooser, B. Lawrie, and W. Grice, “Compressive sampling low light beam profiler using structural random matrices with a semilocal randomizer,” In Preparation.
  19. E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory52, 489–509 (2006).
    [CrossRef]
  20. M. Figueiredo, R. Nowak, and S. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Sig. Process1, 586 –597 (2007).
    [CrossRef]
  21. C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented lagrangian method with applications to total variation minimization,” Tech. Rep. TR12-13, Computational and Applied Mathematics, Rice University, Houston, TX, (2012).

2012 (6)

Q. Glorieux, J. B. Clark, A. M. Marino, Z. Zhou, and P. D. Lett, “Temporally multiplexed storage of images in a gradient echo memory,” Opt. Express20, 12350–12358 (2012).
[CrossRef] [PubMed]

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Image transfer through two sequential four-wave-mixing processes in hot atomic vapor,” Phys. Rev. A85, 053815 (2012).
[CrossRef]

J. B. Clark, Z. Zhou, Q. Glorieux, A. M. Marino, and P. D. Lett, “Imaging using quantum noise properties of light,” Opt. Express20, 17050–17058 (2012).
[CrossRef]

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett.109, 043602 (2012).
[CrossRef] [PubMed]

T. Do, L. Gan, N. Nguyen, and T. Tran, “Fast and efficient compressive sensing using structurally random matrices,” IEEE Trans. Signal Process.60, 139–154 (2012).
[CrossRef]

D. Smith, J. Gore, T. Yankeelov, and E. Welch, “Real-time compressive sensing MRI reconstruction using GPU computing and split bregman methods,” Int. J. of Biomed. Imag.2012, 864827 (2012).

2011 (1)

P. Zerom, K. W. C. Chan, J. C. Howell, and R. W. Boyd, “Entangled-photon compressive ghost imaging,” Phys. Rev. A84, 061804 (2011).
[CrossRef]

2010 (2)

G. Brida, M. Genovese, and I. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nature Photon.4, 227–230 (2010).
[CrossRef]

L. Jiying, Z. Jubo, L. Chuan, and H. Shisheng, “High-quality quantum-imaging algorithm and experiment based on compressive sensing,” Opt. Lett.35, 1206–1208 (2010).
[CrossRef] [PubMed]

2009 (1)

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” App. Phys. Lett.95, 131110 (2009).
[CrossRef]

2008 (3)

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science321, 544–547 (2008).
[CrossRef] [PubMed]

E. Brambilla, L. Caspani, O. Jedrkiewicz, L. Lugiato, and A. Gatti, “High-sensitivity imaging with multi-mode twin beams,” Phys. Rev. A77, 053807 (2008).
[CrossRef]

V. Boyer, A. M. Marino, and P. D. Lett, “Generation of spatially broadband twin beams for quantum imaging,” Phys. Rev. Lett.100, 143601 (2008).
[CrossRef] [PubMed]

2007 (2)

M. Lassen, V. Delaubert, J. Janousek, K. Wagner, H.-A. Bachor, P. K. Lam, N. Treps, P. Buchhave, C. Fabre, and C. C. Harb, “Tools for multimode quantum information: Modulation, detection, and spatial quantum correlations,” Phys. Rev. Lett.98, 083602 (2007).
[CrossRef] [PubMed]

M. Figueiredo, R. Nowak, and S. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Sig. Process1, 586 –597 (2007).
[CrossRef]

2006 (1)

E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory52, 489–509 (2006).
[CrossRef]

2000 (1)

M. I. Kolobov and C. Fabre, “Quantum limits on optical resolution,” Phys. Rev. Lett.85, 3789–3792 (2000).
[CrossRef] [PubMed]

1992 (2)

O. Aytür and P. Kumar, “Squeezed-light generation with a mode-locked q-switched laser and detection by using a matched local oscillator,” Opt. Lett.17, 529–531 (1992).
[CrossRef] [PubMed]

D. Smithey, M. Beck, M. Belsley, and M. Raymer, “Sub-shot-noise correlation of total photon number using macroscopic twin pulses of light,” Phys. Rev. Lett.69, 2650–2653 (1992).
[CrossRef] [PubMed]

Aytür, O.

Bachor, H.-A.

M. Lassen, V. Delaubert, J. Janousek, K. Wagner, H.-A. Bachor, P. K. Lam, N. Treps, P. Buchhave, C. Fabre, and C. C. Harb, “Tools for multimode quantum information: Modulation, detection, and spatial quantum correlations,” Phys. Rev. Lett.98, 083602 (2007).
[CrossRef] [PubMed]

Beck, M.

D. Smithey, M. Beck, M. Belsley, and M. Raymer, “Sub-shot-noise correlation of total photon number using macroscopic twin pulses of light,” Phys. Rev. Lett.69, 2650–2653 (1992).
[CrossRef] [PubMed]

Belsley, M.

D. Smithey, M. Beck, M. Belsley, and M. Raymer, “Sub-shot-noise correlation of total photon number using macroscopic twin pulses of light,” Phys. Rev. Lett.69, 2650–2653 (1992).
[CrossRef] [PubMed]

Berchera, I.

G. Brida, M. Genovese, and I. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nature Photon.4, 227–230 (2010).
[CrossRef]

Boyd, R. W.

P. Zerom, K. W. C. Chan, J. C. Howell, and R. W. Boyd, “Entangled-photon compressive ghost imaging,” Phys. Rev. A84, 061804 (2011).
[CrossRef]

Boyer, V.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science321, 544–547 (2008).
[CrossRef] [PubMed]

V. Boyer, A. M. Marino, and P. D. Lett, “Generation of spatially broadband twin beams for quantum imaging,” Phys. Rev. Lett.100, 143601 (2008).
[CrossRef] [PubMed]

Brambilla, E.

E. Brambilla, L. Caspani, O. Jedrkiewicz, L. Lugiato, and A. Gatti, “High-sensitivity imaging with multi-mode twin beams,” Phys. Rev. A77, 053807 (2008).
[CrossRef]

Brida, G.

G. Brida, M. Genovese, and I. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nature Photon.4, 227–230 (2010).
[CrossRef]

Bromberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” App. Phys. Lett.95, 131110 (2009).
[CrossRef]

Buchhave, P.

M. Lassen, V. Delaubert, J. Janousek, K. Wagner, H.-A. Bachor, P. K. Lam, N. Treps, P. Buchhave, C. Fabre, and C. C. Harb, “Tools for multimode quantum information: Modulation, detection, and spatial quantum correlations,” Phys. Rev. Lett.98, 083602 (2007).
[CrossRef] [PubMed]

Candès, E.

E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory52, 489–509 (2006).
[CrossRef]

Caspani, L.

E. Brambilla, L. Caspani, O. Jedrkiewicz, L. Lugiato, and A. Gatti, “High-sensitivity imaging with multi-mode twin beams,” Phys. Rev. A77, 053807 (2008).
[CrossRef]

Chan, K. W. C.

P. Zerom, K. W. C. Chan, J. C. Howell, and R. W. Boyd, “Entangled-photon compressive ghost imaging,” Phys. Rev. A84, 061804 (2011).
[CrossRef]

Chuan, L.

Clark, J. B.

Corzo, N. V.

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett.109, 043602 (2012).
[CrossRef] [PubMed]

Delaubert, V.

M. Lassen, V. Delaubert, J. Janousek, K. Wagner, H.-A. Bachor, P. K. Lam, N. Treps, P. Buchhave, C. Fabre, and C. C. Harb, “Tools for multimode quantum information: Modulation, detection, and spatial quantum correlations,” Phys. Rev. Lett.98, 083602 (2007).
[CrossRef] [PubMed]

Ding, D.-S.

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Image transfer through two sequential four-wave-mixing processes in hot atomic vapor,” Phys. Rev. A85, 053815 (2012).
[CrossRef]

Do, T.

T. Do, L. Gan, N. Nguyen, and T. Tran, “Fast and efficient compressive sensing using structurally random matrices,” IEEE Trans. Signal Process.60, 139–154 (2012).
[CrossRef]

Fabre, C.

M. Lassen, V. Delaubert, J. Janousek, K. Wagner, H.-A. Bachor, P. K. Lam, N. Treps, P. Buchhave, C. Fabre, and C. C. Harb, “Tools for multimode quantum information: Modulation, detection, and spatial quantum correlations,” Phys. Rev. Lett.98, 083602 (2007).
[CrossRef] [PubMed]

M. I. Kolobov and C. Fabre, “Quantum limits on optical resolution,” Phys. Rev. Lett.85, 3789–3792 (2000).
[CrossRef] [PubMed]

Figueiredo, M.

M. Figueiredo, R. Nowak, and S. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Sig. Process1, 586 –597 (2007).
[CrossRef]

Gan, L.

T. Do, L. Gan, N. Nguyen, and T. Tran, “Fast and efficient compressive sensing using structurally random matrices,” IEEE Trans. Signal Process.60, 139–154 (2012).
[CrossRef]

Gatti, A.

E. Brambilla, L. Caspani, O. Jedrkiewicz, L. Lugiato, and A. Gatti, “High-sensitivity imaging with multi-mode twin beams,” Phys. Rev. A77, 053807 (2008).
[CrossRef]

Genovese, M.

G. Brida, M. Genovese, and I. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nature Photon.4, 227–230 (2010).
[CrossRef]

Glorieux, Q.

Gore, J.

D. Smith, J. Gore, T. Yankeelov, and E. Welch, “Real-time compressive sensing MRI reconstruction using GPU computing and split bregman methods,” Int. J. of Biomed. Imag.2012, 864827 (2012).

Grice, W.

R. Pooser, B. Lawrie, and W. Grice, “Compressive sampling low light beam profiler using structural random matrices with a semilocal randomizer,” In Preparation.

Guo, G.-C.

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Image transfer through two sequential four-wave-mixing processes in hot atomic vapor,” Phys. Rev. A85, 053815 (2012).
[CrossRef]

Harb, C. C.

M. Lassen, V. Delaubert, J. Janousek, K. Wagner, H.-A. Bachor, P. K. Lam, N. Treps, P. Buchhave, C. Fabre, and C. C. Harb, “Tools for multimode quantum information: Modulation, detection, and spatial quantum correlations,” Phys. Rev. Lett.98, 083602 (2007).
[CrossRef] [PubMed]

Howell, J. C.

P. Zerom, K. W. C. Chan, J. C. Howell, and R. W. Boyd, “Entangled-photon compressive ghost imaging,” Phys. Rev. A84, 061804 (2011).
[CrossRef]

Janousek, J.

M. Lassen, V. Delaubert, J. Janousek, K. Wagner, H.-A. Bachor, P. K. Lam, N. Treps, P. Buchhave, C. Fabre, and C. C. Harb, “Tools for multimode quantum information: Modulation, detection, and spatial quantum correlations,” Phys. Rev. Lett.98, 083602 (2007).
[CrossRef] [PubMed]

Jedrkiewicz, O.

E. Brambilla, L. Caspani, O. Jedrkiewicz, L. Lugiato, and A. Gatti, “High-sensitivity imaging with multi-mode twin beams,” Phys. Rev. A77, 053807 (2008).
[CrossRef]

Jiang, H.

C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented lagrangian method with applications to total variation minimization,” Tech. Rep. TR12-13, Computational and Applied Mathematics, Rice University, Houston, TX, (2012).

Jiying, L.

Jones, K. M.

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett.109, 043602 (2012).
[CrossRef] [PubMed]

Jubo, Z.

Katz, O.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” App. Phys. Lett.95, 131110 (2009).
[CrossRef]

Kolobov, M. I.

M. I. Kolobov and C. Fabre, “Quantum limits on optical resolution,” Phys. Rev. Lett.85, 3789–3792 (2000).
[CrossRef] [PubMed]

Kumar, P.

Lam, P. K.

M. Lassen, V. Delaubert, J. Janousek, K. Wagner, H.-A. Bachor, P. K. Lam, N. Treps, P. Buchhave, C. Fabre, and C. C. Harb, “Tools for multimode quantum information: Modulation, detection, and spatial quantum correlations,” Phys. Rev. Lett.98, 083602 (2007).
[CrossRef] [PubMed]

Lassen, M.

M. Lassen, V. Delaubert, J. Janousek, K. Wagner, H.-A. Bachor, P. K. Lam, N. Treps, P. Buchhave, C. Fabre, and C. C. Harb, “Tools for multimode quantum information: Modulation, detection, and spatial quantum correlations,” Phys. Rev. Lett.98, 083602 (2007).
[CrossRef] [PubMed]

Lawrie, B.

R. Pooser, B. Lawrie, and W. Grice, “Compressive sampling low light beam profiler using structural random matrices with a semilocal randomizer,” In Preparation.

Lett, P. D.

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett.109, 043602 (2012).
[CrossRef] [PubMed]

J. B. Clark, Z. Zhou, Q. Glorieux, A. M. Marino, and P. D. Lett, “Imaging using quantum noise properties of light,” Opt. Express20, 17050–17058 (2012).
[CrossRef]

Q. Glorieux, J. B. Clark, A. M. Marino, Z. Zhou, and P. D. Lett, “Temporally multiplexed storage of images in a gradient echo memory,” Opt. Express20, 12350–12358 (2012).
[CrossRef] [PubMed]

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science321, 544–547 (2008).
[CrossRef] [PubMed]

V. Boyer, A. M. Marino, and P. D. Lett, “Generation of spatially broadband twin beams for quantum imaging,” Phys. Rev. Lett.100, 143601 (2008).
[CrossRef] [PubMed]

Li, C.

C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented lagrangian method with applications to total variation minimization,” Tech. Rep. TR12-13, Computational and Applied Mathematics, Rice University, Houston, TX, (2012).

Lugiato, L.

E. Brambilla, L. Caspani, O. Jedrkiewicz, L. Lugiato, and A. Gatti, “High-sensitivity imaging with multi-mode twin beams,” Phys. Rev. A77, 053807 (2008).
[CrossRef]

Marino, A. M.

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett.109, 043602 (2012).
[CrossRef] [PubMed]

Q. Glorieux, J. B. Clark, A. M. Marino, Z. Zhou, and P. D. Lett, “Temporally multiplexed storage of images in a gradient echo memory,” Opt. Express20, 12350–12358 (2012).
[CrossRef] [PubMed]

J. B. Clark, Z. Zhou, Q. Glorieux, A. M. Marino, and P. D. Lett, “Imaging using quantum noise properties of light,” Opt. Express20, 17050–17058 (2012).
[CrossRef]

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science321, 544–547 (2008).
[CrossRef] [PubMed]

V. Boyer, A. M. Marino, and P. D. Lett, “Generation of spatially broadband twin beams for quantum imaging,” Phys. Rev. Lett.100, 143601 (2008).
[CrossRef] [PubMed]

Nguyen, N.

T. Do, L. Gan, N. Nguyen, and T. Tran, “Fast and efficient compressive sensing using structurally random matrices,” IEEE Trans. Signal Process.60, 139–154 (2012).
[CrossRef]

Nowak, R.

M. Figueiredo, R. Nowak, and S. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Sig. Process1, 586 –597 (2007).
[CrossRef]

Pooser, R.

R. Pooser, B. Lawrie, and W. Grice, “Compressive sampling low light beam profiler using structural random matrices with a semilocal randomizer,” In Preparation.

Pooser, R. C.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science321, 544–547 (2008).
[CrossRef] [PubMed]

Raymer, M.

D. Smithey, M. Beck, M. Belsley, and M. Raymer, “Sub-shot-noise correlation of total photon number using macroscopic twin pulses of light,” Phys. Rev. Lett.69, 2650–2653 (1992).
[CrossRef] [PubMed]

Romberg, J.

E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory52, 489–509 (2006).
[CrossRef]

Shi, B.-S.

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Image transfer through two sequential four-wave-mixing processes in hot atomic vapor,” Phys. Rev. A85, 053815 (2012).
[CrossRef]

Shisheng, H.

Silberberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” App. Phys. Lett.95, 131110 (2009).
[CrossRef]

Smith, D.

D. Smith, J. Gore, T. Yankeelov, and E. Welch, “Real-time compressive sensing MRI reconstruction using GPU computing and split bregman methods,” Int. J. of Biomed. Imag.2012, 864827 (2012).

Smithey, D.

D. Smithey, M. Beck, M. Belsley, and M. Raymer, “Sub-shot-noise correlation of total photon number using macroscopic twin pulses of light,” Phys. Rev. Lett.69, 2650–2653 (1992).
[CrossRef] [PubMed]

Tao, T.

E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory52, 489–509 (2006).
[CrossRef]

Tran, T.

T. Do, L. Gan, N. Nguyen, and T. Tran, “Fast and efficient compressive sensing using structurally random matrices,” IEEE Trans. Signal Process.60, 139–154 (2012).
[CrossRef]

Treps, N.

M. Lassen, V. Delaubert, J. Janousek, K. Wagner, H.-A. Bachor, P. K. Lam, N. Treps, P. Buchhave, C. Fabre, and C. C. Harb, “Tools for multimode quantum information: Modulation, detection, and spatial quantum correlations,” Phys. Rev. Lett.98, 083602 (2007).
[CrossRef] [PubMed]

Wagner, K.

M. Lassen, V. Delaubert, J. Janousek, K. Wagner, H.-A. Bachor, P. K. Lam, N. Treps, P. Buchhave, C. Fabre, and C. C. Harb, “Tools for multimode quantum information: Modulation, detection, and spatial quantum correlations,” Phys. Rev. Lett.98, 083602 (2007).
[CrossRef] [PubMed]

Welch, E.

D. Smith, J. Gore, T. Yankeelov, and E. Welch, “Real-time compressive sensing MRI reconstruction using GPU computing and split bregman methods,” Int. J. of Biomed. Imag.2012, 864827 (2012).

Wright, S.

M. Figueiredo, R. Nowak, and S. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Sig. Process1, 586 –597 (2007).
[CrossRef]

Yankeelov, T.

D. Smith, J. Gore, T. Yankeelov, and E. Welch, “Real-time compressive sensing MRI reconstruction using GPU computing and split bregman methods,” Int. J. of Biomed. Imag.2012, 864827 (2012).

Yin, W.

C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented lagrangian method with applications to total variation minimization,” Tech. Rep. TR12-13, Computational and Applied Mathematics, Rice University, Houston, TX, (2012).

Zerom, P.

P. Zerom, K. W. C. Chan, J. C. Howell, and R. W. Boyd, “Entangled-photon compressive ghost imaging,” Phys. Rev. A84, 061804 (2011).
[CrossRef]

Zhang, Y.

C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented lagrangian method with applications to total variation minimization,” Tech. Rep. TR12-13, Computational and Applied Mathematics, Rice University, Houston, TX, (2012).

Zhou, Z.

Zhou, Z.-Y.

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Image transfer through two sequential four-wave-mixing processes in hot atomic vapor,” Phys. Rev. A85, 053815 (2012).
[CrossRef]

Zou, X.-B.

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Image transfer through two sequential four-wave-mixing processes in hot atomic vapor,” Phys. Rev. A85, 053815 (2012).
[CrossRef]

App. Phys. Lett. (1)

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” App. Phys. Lett.95, 131110 (2009).
[CrossRef]

IEEE J. Sel. Top. Sig. Process (1)

M. Figueiredo, R. Nowak, and S. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Sig. Process1, 586 –597 (2007).
[CrossRef]

IEEE Trans. Inf. Theory (1)

E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory52, 489–509 (2006).
[CrossRef]

IEEE Trans. Signal Process. (1)

T. Do, L. Gan, N. Nguyen, and T. Tran, “Fast and efficient compressive sensing using structurally random matrices,” IEEE Trans. Signal Process.60, 139–154 (2012).
[CrossRef]

Int. J. of Biomed. Imag. (1)

D. Smith, J. Gore, T. Yankeelov, and E. Welch, “Real-time compressive sensing MRI reconstruction using GPU computing and split bregman methods,” Int. J. of Biomed. Imag.2012, 864827 (2012).

Nature Photon. (1)

G. Brida, M. Genovese, and I. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nature Photon.4, 227–230 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (3)

P. Zerom, K. W. C. Chan, J. C. Howell, and R. W. Boyd, “Entangled-photon compressive ghost imaging,” Phys. Rev. A84, 061804 (2011).
[CrossRef]

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Image transfer through two sequential four-wave-mixing processes in hot atomic vapor,” Phys. Rev. A85, 053815 (2012).
[CrossRef]

E. Brambilla, L. Caspani, O. Jedrkiewicz, L. Lugiato, and A. Gatti, “High-sensitivity imaging with multi-mode twin beams,” Phys. Rev. A77, 053807 (2008).
[CrossRef]

Phys. Rev. Lett. (5)

V. Boyer, A. M. Marino, and P. D. Lett, “Generation of spatially broadband twin beams for quantum imaging,” Phys. Rev. Lett.100, 143601 (2008).
[CrossRef] [PubMed]

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett.109, 043602 (2012).
[CrossRef] [PubMed]

M. I. Kolobov and C. Fabre, “Quantum limits on optical resolution,” Phys. Rev. Lett.85, 3789–3792 (2000).
[CrossRef] [PubMed]

M. Lassen, V. Delaubert, J. Janousek, K. Wagner, H.-A. Bachor, P. K. Lam, N. Treps, P. Buchhave, C. Fabre, and C. C. Harb, “Tools for multimode quantum information: Modulation, detection, and spatial quantum correlations,” Phys. Rev. Lett.98, 083602 (2007).
[CrossRef] [PubMed]

D. Smithey, M. Beck, M. Belsley, and M. Raymer, “Sub-shot-noise correlation of total photon number using macroscopic twin pulses of light,” Phys. Rev. Lett.69, 2650–2653 (1992).
[CrossRef] [PubMed]

Science (1)

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science321, 544–547 (2008).
[CrossRef] [PubMed]

Other (2)

R. Pooser, B. Lawrie, and W. Grice, “Compressive sampling low light beam profiler using structural random matrices with a semilocal randomizer,” In Preparation.

C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented lagrangian method with applications to total variation minimization,” Tech. Rep. TR12-13, Computational and Applied Mathematics, Rice University, Houston, TX, (2012).

Supplementary Material (3)

» Media 1: AVI (3232 KB)     
» Media 2: AVI (242 KB)     
» Media 3: AVI (2255 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of the quantum imaging experiment that utilized a DMD as an SLM to control the spatial modes present in the twin beams and either two CCD cameras or two DMDs and a balanced photodiode to analyze the image quality and quantum noise reduction after 4WM. (b) an energy diagram of the 4WM process at the D1 transition in 85Rb, and (c) a typical squeezing spectrum demonstrating quantum noise reduction 4.5 dB below the SQL.

Fig. 2
Fig. 2

(left) A bitmap image of a happy face 2 mm in diameter that was programmed onto the DMD spatially coincident with the incident probe beam, with the probe (middle) and conjugate (right) images acquired in the respective image planes after four-wave mixing.

Fig. 3
Fig. 3

The quantum noise reduction associated with various probe seed beam profiles. The images in the top row were imprinted on the probe beam prior to 4WM.

Fig. 4
Fig. 4

(a) Video of conjugate, pump and probe beam profiles from left to right at the probe image plane ( Media 1), (b) quantum noise reduction as a function of cross rotation angle ( Media 2), and (c) a corresponding video of the conjugate in the conjugate image plane ( Media 3).

Fig. 5
Fig. 5

(bottom) The quantum noise reduction associated with various masks introduced to the DMD, and (top) the quantum noise reduction spectrum associated with the leftmost bottom image. The total transmission (η) and predicted squeezing for a single spatial mode are shown for each image. The uncertainty associated with each squeezing value is 0.1 dB, while the uncertainty on each transmission measurement is 1%.

Fig. 6
Fig. 6

Thresholded images of the conjugate (a) and probe (b) gaussian beam profiles in white. The line on the conjugate beam profile was placed on the conjugate DMD in the center of the conjugate beam profile. The line on the probe beam profile was rastered across the probe on the probe DMD. The QNR spectrum (c) shows the quantum noise reduction of approximately 1 dB at 500 kHz that emerged when the mask was centered on the probe beam profile. The reduction of the width of the line by a factor of 2 yielded a dramatic reduction of squeezing even in the case where corresponding areas of the probe and conjugate were passed by the respective DMDs (d).

Fig. 7
Fig. 7

An example sampling matrix used in the compressive imaging algorithm (left); beam profiles of probe and conjugate ’E’ in probe image plane acquired with a CCD camera (middle left), beam profile of probe acquired with total variation minimization with equality constraints utilizing the probe DMD at the probe image plane (middle right), and the beam profile of the conjugate (right) acquired with compressive imaging techniques with the conjugate DMD placed at the conjugate image plane.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

x = Ψ α
y = A x + Γ

Metrics