Abstract

The coupling coefficients of the cladding-mode resonances of a tilted fiber Bragg grating (TFBG) are linearly increasing or decreasing in different wavelength regions. Based on the Kramers-Kronig relations, when the coupling coefficients are linearly increasing, the phase shifts are linearly increasing correspondingly. This feature is employed, for the first time, for the implementation of a multi-tap continuously tunable microwave photonic filter with complex coefficients by using a TFBG. By locating the optical carriers of single-sideband-modulated signals at the cladding-mode resonances of the TFBG which has linearly increasing depths, linearly increasing phase shifts are introduced to the optical carriers. By beating the optical carriers with the single sidebands, the phase shifts are translated to the microwave signals, and thus complex coefficients with the required linearly increasing phase shifts are generated. The tunability of the complex coefficients is realized by optically pumping the TFBG which is written in an erbium/ytterbium (Er/Yb) co-doped fiber. A proof-of-concept experiment is performed; a three- and four-tap filter with a frequency tunable range of 150 and 120 MHz, respectively, are demonstrated.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Seeds and K. J. Williams, “Microwave Photonics,” J. Lightwave Technol.24(12), 4628–4641 (2006).
    [CrossRef]
  2. J. P. Yao, “Microwave photonics,” J. Lightwave Technol.27(3), 314–335 (2009).
    [CrossRef]
  3. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol.24(1), 201–229 (2006).
    [CrossRef]
  4. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006).
    [CrossRef]
  5. J. P. Yao, “A tutorial on microwave photonics,” IEEE Photon. Soc. Newsletter26(2), 4–12 (2012).
  6. X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Widely tunable single-bandpass microwave photonic filter employing a non-sliced broadband optical source,” Opt. Express19(19), 18423–18429 (2011).
    [CrossRef] [PubMed]
  7. A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of Incoherent Microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett.18(16), 1744–1746 (2006).
    [CrossRef]
  8. Y. Yan and J. P. Yao, “A tunable photonic microwave filter with a complex coefficient using an optical RF phase shifter,” IEEE Photon. Technol. Lett.19(19), 1472–1474 (2007).
    [CrossRef]
  9. W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photon. Technol. Lett.21(3), 167–169 (2009).
    [CrossRef]
  10. J. Lloret, G. Morthier, F. Ramos, S. Sales, D. Van Thourhout, T. Spuesens, N. Olivier, J. M. Fédéli, and J. Capmany, “Broadband microwave photonic fully tunable filter using a single heterogeneously integrated III-V/SOI-microdisk-based phase shifter,” Opt. Express20(10), 10796–10806 (2012).
    [CrossRef] [PubMed]
  11. X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex-coefficients,” IEEE Trans. Microw. Theory Tech.58(11), 3088–3093 (2010).
    [CrossRef]
  12. M. Song, C. M. Long, R. Wu, D. Seo, D. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonics filters utilizing optical frequency combs,” IEEE Photon. Technol. Lett.23(21), 1618–1620 (2011).
    [CrossRef]
  13. J. Lloret, J. Sancho, M. Pu, I. Gasulla, K. Yvind, S. Sales, and J. Capmany, “Tunable complex-valued multi-tap microwave photonic filter based on single silicon-on-insulator microring resonator,” Opt. Express19(13), 12402–12407 (2011).
    [CrossRef] [PubMed]
  14. K. S. Lee and T. Erdogan, “Fiber mode coupling in transmissive and reflective tilted fiber gratings,” Appl. Opt.39(9), 1394–1404 (2000).
    [CrossRef] [PubMed]
  15. H. Shahoei and J. P. Yao, “Tunable microwave photonic phase shifter based on slow and fast light effects in a tilted fiber Bragg grating,” Opt. Express20(13), 14009–14014 (2012).
    [CrossRef] [PubMed]
  16. M. K. Davis, M. J. Digonnet, and R. Pantell, “Thermal effects in doped fibers,” J. Lightwave Technol.16(6), 1013–1023 (1998).
    [CrossRef]
  17. H. Shahoei, M. Li, and J. P. Yao, “Continuously tunable time delay using an optically pumped linearly chirped fiber Bragg grating,” J. Lightwave Technol.29(10), 1465–1472 (2011).
    [CrossRef]

2012 (3)

2011 (4)

2010 (1)

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex-coefficients,” IEEE Trans. Microw. Theory Tech.58(11), 3088–3093 (2010).
[CrossRef]

2009 (2)

J. P. Yao, “Microwave photonics,” J. Lightwave Technol.27(3), 314–335 (2009).
[CrossRef]

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photon. Technol. Lett.21(3), 167–169 (2009).
[CrossRef]

2007 (1)

Y. Yan and J. P. Yao, “A tunable photonic microwave filter with a complex coefficient using an optical RF phase shifter,” IEEE Photon. Technol. Lett.19(19), 1472–1474 (2007).
[CrossRef]

2006 (4)

A. J. Seeds and K. J. Williams, “Microwave Photonics,” J. Lightwave Technol.24(12), 4628–4641 (2006).
[CrossRef]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol.24(1), 201–229 (2006).
[CrossRef]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006).
[CrossRef]

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of Incoherent Microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett.18(16), 1744–1746 (2006).
[CrossRef]

2000 (1)

1998 (1)

Capmany, J.

Davis, M. K.

Digonnet, M. J.

Erdogan, T.

Fédéli, J. M.

Gasulla, I.

Huang, T. X. H.

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex-coefficients,” IEEE Trans. Microw. Theory Tech.58(11), 3088–3093 (2010).
[CrossRef]

Leaird, D.

M. Song, C. M. Long, R. Wu, D. Seo, D. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonics filters utilizing optical frequency combs,” IEEE Photon. Technol. Lett.23(21), 1618–1620 (2011).
[CrossRef]

Lee, K. S.

Li, M.

Lloret, J.

Loayssa, A.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of Incoherent Microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett.18(16), 1744–1746 (2006).
[CrossRef]

Long, C. M.

M. Song, C. M. Long, R. Wu, D. Seo, D. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonics filters utilizing optical frequency combs,” IEEE Photon. Technol. Lett.23(21), 1618–1620 (2011).
[CrossRef]

Minasian, R. A.

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex-coefficients,” IEEE Trans. Microw. Theory Tech.58(11), 3088–3093 (2010).
[CrossRef]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006).
[CrossRef]

Mora, J.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of Incoherent Microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett.18(16), 1744–1746 (2006).
[CrossRef]

Mork, J.

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photon. Technol. Lett.21(3), 167–169 (2009).
[CrossRef]

Morthier, G.

Olivier, N.

Ortega, B.

Pantell, R.

Pastor, D.

Pu, M.

Ramos, F.

Sagues, M.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of Incoherent Microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett.18(16), 1744–1746 (2006).
[CrossRef]

Sales, S.

Sancho, J.

Seeds, A. J.

Seo, D.

M. Song, C. M. Long, R. Wu, D. Seo, D. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonics filters utilizing optical frequency combs,” IEEE Photon. Technol. Lett.23(21), 1618–1620 (2011).
[CrossRef]

Shahoei, H.

Song, M.

M. Song, C. M. Long, R. Wu, D. Seo, D. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonics filters utilizing optical frequency combs,” IEEE Photon. Technol. Lett.23(21), 1618–1620 (2011).
[CrossRef]

Spuesens, T.

Van Thourhout, D.

Weiner, A. M.

M. Song, C. M. Long, R. Wu, D. Seo, D. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonics filters utilizing optical frequency combs,” IEEE Photon. Technol. Lett.23(21), 1618–1620 (2011).
[CrossRef]

Williams, K. J.

Wu, R.

M. Song, C. M. Long, R. Wu, D. Seo, D. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonics filters utilizing optical frequency combs,” IEEE Photon. Technol. Lett.23(21), 1618–1620 (2011).
[CrossRef]

Xue, W.

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photon. Technol. Lett.21(3), 167–169 (2009).
[CrossRef]

Xue, X.

Yan, Y.

Y. Yan and J. P. Yao, “A tunable photonic microwave filter with a complex coefficient using an optical RF phase shifter,” IEEE Photon. Technol. Lett.19(19), 1472–1474 (2007).
[CrossRef]

Yao, J. P.

Yi, X.

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex-coefficients,” IEEE Trans. Microw. Theory Tech.58(11), 3088–3093 (2010).
[CrossRef]

Yvind, K.

Zhang, H.

Zheng, X.

Zhou, B.

Appl. Opt. (1)

IEEE Photon. Soc. Newsletter (1)

J. P. Yao, “A tutorial on microwave photonics,” IEEE Photon. Soc. Newsletter26(2), 4–12 (2012).

IEEE Photon. Technol. Lett. (4)

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of Incoherent Microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett.18(16), 1744–1746 (2006).
[CrossRef]

Y. Yan and J. P. Yao, “A tunable photonic microwave filter with a complex coefficient using an optical RF phase shifter,” IEEE Photon. Technol. Lett.19(19), 1472–1474 (2007).
[CrossRef]

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photon. Technol. Lett.21(3), 167–169 (2009).
[CrossRef]

M. Song, C. M. Long, R. Wu, D. Seo, D. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonics filters utilizing optical frequency combs,” IEEE Photon. Technol. Lett.23(21), 1618–1620 (2011).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006).
[CrossRef]

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex-coefficients,” IEEE Trans. Microw. Theory Tech.58(11), 3088–3093 (2010).
[CrossRef]

J. Lightwave Technol. (5)

Opt. Express (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The transmission spectrum of a TFBG with a tilt angle of 6° and a Bragg wavelength of 1560 nm. The red solid line shows the linear slope of the resonances’ depth.

Fig. 2
Fig. 2

The phase responses of the TFBG and the placement of the wavelengths of the optical carriers for a three-tap filter at two pumping power levels of 0 and 70 mW. C1, C2 and C3 represent the three carriers, and SB1, SB2 and SB3 represent the three sidebands.

Fig. 3
Fig. 3

Experimental setup of the proposed multi-tap microwave photonic filter with complex coefficients. Att: optical attenuator, MZM: Mach–Zehnder modulator, LD: laser diode, WDM: 980/1550 nm wavelength division multiplexer, SMF: single mode fiber, EDFA: erbium-doped fiber amplifier, PD: photodetector, VNA: vector network analyzer.

Fig. 4
Fig. 4

Frequency response of the three-tap microwave photonic filter with complex coefficients at different pumping power levels (solid lines). The dashed lines show the simulated frequency response corresponding to a basic phase shift of + 105°, + 58°, + 100 and −36°. PP: pumping power.

Fig. 5
Fig. 5

Frequency response of the four-tap microwave photonic filter with complex coefficients at different pumping power levels (solid lines). The dashed lines show the simulated frequency response corresponding to a basic phase shift of −30°, + 36°, and + 90°. PP: pumping power.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

H( jω )= a 0 + a 1 e jθ e jωT +...+ a N1 e j( N1 )θ e jω( N1 )T = n=0 N1 a n e jnθ e jωnT

Metrics