Abstract

We report a viable method to generate complex beams, such as the non-diffracting Bessel and Weber beams, which relies on the encoding of amplitude information, in addition to phase and polarization, using polarization holography. The holograms are recorded in polarization sensitive films by the interference of a reference plane wave with a tailored complex beam, having orthogonal circular polarizations. The high efficiency, the intrinsic achromaticity and the simplicity of use of the polarization holograms make them competitive with respect to existing methods and attractive for several applications. Theoretical analysis, based on the Jones formalism, and experimental results are shown.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Nikolova and P. S. Ramanujam, Polarization Holography, (Cambridge University Press, 2009).
  2. C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett.89(12), 121105 (2006).
    [CrossRef]
  3. E. Nicolescu and M. J. Escuti, “Polarization-independent tunable optical filters using bilayer polarization gratings,” Appl. Opt.49(20), 3900–3904 (2010).
    [CrossRef] [PubMed]
  4. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater.18(01), 1–47 (2009).
    [CrossRef]
  5. H. Choi, J. H. Woo, J. W. Wu, D. W. Kim, T. K. Lim, and S. H. Song, “Holographic inscription of helical wavefronts in a liquid crystal polarization grating,” Appl. Phys. Lett.91(14), 141112 (2007).
    [CrossRef]
  6. Y. Li, J. Kim, and M. J. Escuti, “Controlling orbital angular momentum using forked polarization gratings,” Proc. SPIE7789, 77890F77890F-12 (2010).
    [CrossRef]
  7. M. Fratz, P. Fischer, and D. M. Giel, “Full phase and amplitude control in computer-generated holography,” Opt. Lett.34(23), 3659–3661 (2009).
    [CrossRef] [PubMed]
  8. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett.96(16), 163905 (2006).
    [CrossRef] [PubMed]
  9. D. McGloin and K. Dholakia, “Bessel beams: Diffraction in a new light,” Contemp. Phys.46(1), 15–28 (2005).
    [CrossRef]
  10. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett.25(20), 1493–1495 (2000).
    [CrossRef] [PubMed]
  11. M. A. Bandres, J. C. Gutiérrez-Vega, and S. Chávez-Cerda, “Parabolic nondiffracting optical wave fields,” Opt. Lett.29(1), 44–46 (2004).
    [CrossRef] [PubMed]
  12. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992).
    [CrossRef] [PubMed]
  13. K. Volke-Sepúlveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt.4(2), S82–S89 (2002).
    [CrossRef]
  14. V. Garcés-Chávez, K. Volke-Sepúlveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A66(6), 063402 (2002).
    [CrossRef]
  15. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett.58(15), 1499–1501 (1987).
    [CrossRef] [PubMed]
  16. Y. V. Kartashov, A. A. Egorov, V. A. Vysloukh, and L. Torner, “Shaping soliton properties in Mathieu lattices,” Opt. Lett.31(2), 238–240 (2006).
    [CrossRef] [PubMed]
  17. A. Ruelas, S. Lopez-Aguayo, and J. C. Gutiérrez-Vega, “Stable solitons in elliptical photonic lattices,” Opt. Lett.33(23), 2785–2787 (2008).
    [CrossRef] [PubMed]
  18. B. M. Rodriguez-Lara and R. Jauregui, “Dynamical constants for electromagnetic fields with elliptic-cylindrical symmetry,” Phys. Rev. A78(3), 033813 (2008).
    [CrossRef]
  19. B. M. Rodriguez-Lara and R. Jauregui, “A single structured light beam as an atomic cloud splitter,” Phys. Rev. A80(1), 011813 (2009).
    [CrossRef]
  20. V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated Phase Computer Holograms for the Accurate Encoding of Scalar Complex Fields,” J. Opt. Soc. Am. A24(11), 3500–3507 (2007).
    [CrossRef] [PubMed]
  21. G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, “Polarization holographic recording in amorphous polymer with photoinduced linear and circular birefringence,” J. Phys. Chem. B114(27), 8900–8904 (2010).
    [CrossRef] [PubMed]
  22. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys.9(3), 78 (2007).
    [CrossRef]
  23. A. Flores-Pérez, J. Hernández-Hernández, R. Jáuregui, and K. Volke-Sepúlveda, “Experimental generation and analysis of first-order TE and TM Bessel modes in free space,” Opt. Lett.31(11), 1732–1734 (2006).
    [CrossRef] [PubMed]

2010 (3)

Y. Li, J. Kim, and M. J. Escuti, “Controlling orbital angular momentum using forked polarization gratings,” Proc. SPIE7789, 77890F77890F-12 (2010).
[CrossRef]

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, “Polarization holographic recording in amorphous polymer with photoinduced linear and circular birefringence,” J. Phys. Chem. B114(27), 8900–8904 (2010).
[CrossRef] [PubMed]

E. Nicolescu and M. J. Escuti, “Polarization-independent tunable optical filters using bilayer polarization gratings,” Appl. Opt.49(20), 3900–3904 (2010).
[CrossRef] [PubMed]

2009 (3)

M. Fratz, P. Fischer, and D. M. Giel, “Full phase and amplitude control in computer-generated holography,” Opt. Lett.34(23), 3659–3661 (2009).
[CrossRef] [PubMed]

B. M. Rodriguez-Lara and R. Jauregui, “A single structured light beam as an atomic cloud splitter,” Phys. Rev. A80(1), 011813 (2009).
[CrossRef]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater.18(01), 1–47 (2009).
[CrossRef]

2008 (2)

B. M. Rodriguez-Lara and R. Jauregui, “Dynamical constants for electromagnetic fields with elliptic-cylindrical symmetry,” Phys. Rev. A78(3), 033813 (2008).
[CrossRef]

A. Ruelas, S. Lopez-Aguayo, and J. C. Gutiérrez-Vega, “Stable solitons in elliptical photonic lattices,” Opt. Lett.33(23), 2785–2787 (2008).
[CrossRef] [PubMed]

2007 (3)

V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated Phase Computer Holograms for the Accurate Encoding of Scalar Complex Fields,” J. Opt. Soc. Am. A24(11), 3500–3507 (2007).
[CrossRef] [PubMed]

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys.9(3), 78 (2007).
[CrossRef]

H. Choi, J. H. Woo, J. W. Wu, D. W. Kim, T. K. Lim, and S. H. Song, “Holographic inscription of helical wavefronts in a liquid crystal polarization grating,” Appl. Phys. Lett.91(14), 141112 (2007).
[CrossRef]

2006 (4)

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett.96(16), 163905 (2006).
[CrossRef] [PubMed]

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett.89(12), 121105 (2006).
[CrossRef]

Y. V. Kartashov, A. A. Egorov, V. A. Vysloukh, and L. Torner, “Shaping soliton properties in Mathieu lattices,” Opt. Lett.31(2), 238–240 (2006).
[CrossRef] [PubMed]

A. Flores-Pérez, J. Hernández-Hernández, R. Jáuregui, and K. Volke-Sepúlveda, “Experimental generation and analysis of first-order TE and TM Bessel modes in free space,” Opt. Lett.31(11), 1732–1734 (2006).
[CrossRef] [PubMed]

2005 (1)

D. McGloin and K. Dholakia, “Bessel beams: Diffraction in a new light,” Contemp. Phys.46(1), 15–28 (2005).
[CrossRef]

2004 (1)

2002 (2)

K. Volke-Sepúlveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt.4(2), S82–S89 (2002).
[CrossRef]

V. Garcés-Chávez, K. Volke-Sepúlveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A66(6), 063402 (2002).
[CrossRef]

2000 (1)

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

1987 (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett.58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Arlt, J.

K. Volke-Sepúlveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt.4(2), S82–S89 (2002).
[CrossRef]

Arrizón, V.

Bandres, M. A.

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Bernet, S.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys.9(3), 78 (2007).
[CrossRef]

Carrada, R.

Chávez-Cerda, S.

M. A. Bandres, J. C. Gutiérrez-Vega, and S. Chávez-Cerda, “Parabolic nondiffracting optical wave fields,” Opt. Lett.29(1), 44–46 (2004).
[CrossRef] [PubMed]

K. Volke-Sepúlveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt.4(2), S82–S89 (2002).
[CrossRef]

V. Garcés-Chávez, K. Volke-Sepúlveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A66(6), 063402 (2002).
[CrossRef]

J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett.25(20), 1493–1495 (2000).
[CrossRef] [PubMed]

Choi, H.

H. Choi, J. H. Woo, J. W. Wu, D. W. Kim, T. K. Lim, and S. H. Song, “Holographic inscription of helical wavefronts in a liquid crystal polarization grating,” Appl. Phys. Lett.91(14), 141112 (2007).
[CrossRef]

Cipparrone, G.

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, “Polarization holographic recording in amorphous polymer with photoinduced linear and circular birefringence,” J. Phys. Chem. B114(27), 8900–8904 (2010).
[CrossRef] [PubMed]

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett.89(12), 121105 (2006).
[CrossRef]

Dholakia, K.

D. McGloin and K. Dholakia, “Bessel beams: Diffraction in a new light,” Contemp. Phys.46(1), 15–28 (2005).
[CrossRef]

K. Volke-Sepúlveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt.4(2), S82–S89 (2002).
[CrossRef]

V. Garcés-Chávez, K. Volke-Sepúlveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A66(6), 063402 (2002).
[CrossRef]

Durnin, J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett.58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett.58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Egorov, A. A.

Escuti, M. J.

E. Nicolescu and M. J. Escuti, “Polarization-independent tunable optical filters using bilayer polarization gratings,” Appl. Opt.49(20), 3900–3904 (2010).
[CrossRef] [PubMed]

Y. Li, J. Kim, and M. J. Escuti, “Controlling orbital angular momentum using forked polarization gratings,” Proc. SPIE7789, 77890F77890F-12 (2010).
[CrossRef]

Fischer, P.

Flores-Pérez, A.

Fratz, M.

Fürhapter, S.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys.9(3), 78 (2007).
[CrossRef]

Garcés-Chávez, V.

V. Garcés-Chávez, K. Volke-Sepúlveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A66(6), 063402 (2002).
[CrossRef]

K. Volke-Sepúlveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt.4(2), S82–S89 (2002).
[CrossRef]

Giel, D. M.

González, L. A.

Gutiérrez-Vega, J. C.

Hernández-Hernández, J.

Iturbe-Castillo, M. D.

Jauregui, R.

B. M. Rodriguez-Lara and R. Jauregui, “A single structured light beam as an atomic cloud splitter,” Phys. Rev. A80(1), 011813 (2009).
[CrossRef]

B. M. Rodriguez-Lara and R. Jauregui, “Dynamical constants for electromagnetic fields with elliptic-cylindrical symmetry,” Phys. Rev. A78(3), 033813 (2008).
[CrossRef]

Jáuregui, R.

Jesacher, A.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys.9(3), 78 (2007).
[CrossRef]

Kartashov, Y. V.

Kim, D. W.

H. Choi, J. H. Woo, J. W. Wu, D. W. Kim, T. K. Lim, and S. H. Song, “Holographic inscription of helical wavefronts in a liquid crystal polarization grating,” Appl. Phys. Lett.91(14), 141112 (2007).
[CrossRef]

Kim, J.

Y. Li, J. Kim, and M. J. Escuti, “Controlling orbital angular momentum using forked polarization gratings,” Proc. SPIE7789, 77890F77890F-12 (2010).
[CrossRef]

Kimball, B. R.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater.18(01), 1–47 (2009).
[CrossRef]

Li, Y.

Y. Li, J. Kim, and M. J. Escuti, “Controlling orbital angular momentum using forked polarization gratings,” Proc. SPIE7789, 77890F77890F-12 (2010).
[CrossRef]

Lim, T. K.

H. Choi, J. H. Woo, J. W. Wu, D. W. Kim, T. K. Lim, and S. H. Song, “Holographic inscription of helical wavefronts in a liquid crystal polarization grating,” Appl. Phys. Lett.91(14), 141112 (2007).
[CrossRef]

Lopez-Aguayo, S.

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett.96(16), 163905 (2006).
[CrossRef] [PubMed]

Marrucci, L.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett.96(16), 163905 (2006).
[CrossRef] [PubMed]

Maurer, C.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys.9(3), 78 (2007).
[CrossRef]

McGloin, D.

D. McGloin and K. Dholakia, “Bessel beams: Diffraction in a new light,” Contemp. Phys.46(1), 15–28 (2005).
[CrossRef]

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett.58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Nersisyan, S. R.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater.18(01), 1–47 (2009).
[CrossRef]

Nicolescu, E.

Pagliusi, P.

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, “Polarization holographic recording in amorphous polymer with photoinduced linear and circular birefringence,” J. Phys. Chem. B114(27), 8900–8904 (2010).
[CrossRef] [PubMed]

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett.89(12), 121105 (2006).
[CrossRef]

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett.96(16), 163905 (2006).
[CrossRef] [PubMed]

Provenzano, C.

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, “Polarization holographic recording in amorphous polymer with photoinduced linear and circular birefringence,” J. Phys. Chem. B114(27), 8900–8904 (2010).
[CrossRef] [PubMed]

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett.89(12), 121105 (2006).
[CrossRef]

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys.9(3), 78 (2007).
[CrossRef]

Rodriguez-Lara, B. M.

B. M. Rodriguez-Lara and R. Jauregui, “A single structured light beam as an atomic cloud splitter,” Phys. Rev. A80(1), 011813 (2009).
[CrossRef]

B. M. Rodriguez-Lara and R. Jauregui, “Dynamical constants for electromagnetic fields with elliptic-cylindrical symmetry,” Phys. Rev. A78(3), 033813 (2008).
[CrossRef]

Ruelas, A.

Ruiz, U.

Shibaev, V. P.

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, “Polarization holographic recording in amorphous polymer with photoinduced linear and circular birefringence,” J. Phys. Chem. B114(27), 8900–8904 (2010).
[CrossRef] [PubMed]

Sibbett, W.

V. Garcés-Chávez, K. Volke-Sepúlveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A66(6), 063402 (2002).
[CrossRef]

Song, S. H.

H. Choi, J. H. Woo, J. W. Wu, D. W. Kim, T. K. Lim, and S. H. Song, “Holographic inscription of helical wavefronts in a liquid crystal polarization grating,” Appl. Phys. Lett.91(14), 141112 (2007).
[CrossRef]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Steeves, D. M.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater.18(01), 1–47 (2009).
[CrossRef]

Tabiryan, N. V.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater.18(01), 1–47 (2009).
[CrossRef]

Torner, L.

Volke-Sepúlveda, K.

A. Flores-Pérez, J. Hernández-Hernández, R. Jáuregui, and K. Volke-Sepúlveda, “Experimental generation and analysis of first-order TE and TM Bessel modes in free space,” Opt. Lett.31(11), 1732–1734 (2006).
[CrossRef] [PubMed]

V. Garcés-Chávez, K. Volke-Sepúlveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A66(6), 063402 (2002).
[CrossRef]

K. Volke-Sepúlveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt.4(2), S82–S89 (2002).
[CrossRef]

Vysloukh, V. A.

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Woo, J. H.

H. Choi, J. H. Woo, J. W. Wu, D. W. Kim, T. K. Lim, and S. H. Song, “Holographic inscription of helical wavefronts in a liquid crystal polarization grating,” Appl. Phys. Lett.91(14), 141112 (2007).
[CrossRef]

Wu, J. W.

H. Choi, J. H. Woo, J. W. Wu, D. W. Kim, T. K. Lim, and S. H. Song, “Holographic inscription of helical wavefronts in a liquid crystal polarization grating,” Appl. Phys. Lett.91(14), 141112 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. Choi, J. H. Woo, J. W. Wu, D. W. Kim, T. K. Lim, and S. H. Song, “Holographic inscription of helical wavefronts in a liquid crystal polarization grating,” Appl. Phys. Lett.91(14), 141112 (2007).
[CrossRef]

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett.89(12), 121105 (2006).
[CrossRef]

Contemp. Phys. (1)

D. McGloin and K. Dholakia, “Bessel beams: Diffraction in a new light,” Contemp. Phys.46(1), 15–28 (2005).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater.18(01), 1–47 (2009).
[CrossRef]

J. Opt. B Quantum Semiclassical Opt. (1)

K. Volke-Sepúlveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt.4(2), S82–S89 (2002).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (1)

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, “Polarization holographic recording in amorphous polymer with photoinduced linear and circular birefringence,” J. Phys. Chem. B114(27), 8900–8904 (2010).
[CrossRef] [PubMed]

New J. Phys. (1)

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys.9(3), 78 (2007).
[CrossRef]

Opt. Lett. (6)

Phys. Rev. A (4)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

B. M. Rodriguez-Lara and R. Jauregui, “Dynamical constants for electromagnetic fields with elliptic-cylindrical symmetry,” Phys. Rev. A78(3), 033813 (2008).
[CrossRef]

B. M. Rodriguez-Lara and R. Jauregui, “A single structured light beam as an atomic cloud splitter,” Phys. Rev. A80(1), 011813 (2009).
[CrossRef]

V. Garcés-Chávez, K. Volke-Sepúlveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A66(6), 063402 (2002).
[CrossRef]

Phys. Rev. Lett. (2)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett.58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett.96(16), 163905 (2006).
[CrossRef] [PubMed]

Proc. SPIE (1)

Y. Li, J. Kim, and M. J. Escuti, “Controlling orbital angular momentum using forked polarization gratings,” Proc. SPIE7789, 77890F77890F-12 (2010).
[CrossRef]

Other (1)

L. Nikolova and P. S. Ramanujam, Polarization Holography, (Cambridge University Press, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

First order BB. (a) Intensity distribution of the beam generated by the SLM, (b) intensity distribution of the beam reconstructed by the PH, (c) the propagated PH-reconstructed BB at the plane z = 30cm, and (d) 1D intensity profiles of the SLM-generated (black line) and PH-reconstructed (red line) BBs.

Fig. 2
Fig. 2

Third order odd parabolic beam. (a) Intensity distribution of the beam generated by the SLM, (b) intensity distribution of the beam reconstructed by the PH, (c) the propagated PH-reconstructed WB at the plane z = 30cm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E p = E 0 2 ( 1 i ) e iδ , E m = E 0 2 f(A)( 1 i ) e iϑ e iδ ,
E tot = E p + E m = E 0 2 ( e iδ +f(A) e iϑ e iδ i e iδ if(A) e iϑ e iδ ).
T= T 0 + T +1 + T 1 =[ 1 0 0 1 ]cos(M)+ 1 2 [ i 1 1 i ]sin(M) e i(2δϑ) + 1 2 [ i 1 1 i ]sin(M) e i(2δϑ) ,
E ±1 lin = i 2 sin(2kd β lin E 0 2 f(A)) e iϑ ( 1 ±i ), E ±1 circ = i 2 sin(2kd β lin E 0 2 f(A))Ψ e iϑ ( 1 i ),
sin(2kd β lin E 0 2 f(A))=ξA,
η Ω ( | E +1 | 2 + | E 1 | 2 )dΩ Ω | E in | 2 dΩ = η p Ω Ω | A | 2 dΩ,

Metrics