Abstract

Recently the cylindrically polarized beams have been gained highly attention in the fields of particle manipulation, material processing, nanoscale imaging, etc. So the methods to create the cylindrically polarized beams become more important. Here, based on the principle of the Glan polarizing prism, we design two types of the structures of the cylindrical polarization analyzer that can convert directly a linearly or circularly polarized beam into various cylindrical vector beams. The key optical element in the cylindrical polarization analyzer is the cylindrical polarizing prism with unique structure. We demonstrate the operating principle and the feasibility of the fabrication of the cylindrical polarization analyzer in detail. Analyses show that the cylindrical polarization analyzer designed by us not only have novel structures and excellent characteristics, such as the compact and stabile structures, high extinction ratio, high polarization purity, no requirements on the mode and the wavelength of the incident light (only for the first type), not changing the intensity distribution of the incident light, and easily integrated into the optical systems, but also is easy to be fabricated, especially for the second type.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express7(2), 77–87 (2000).
    [CrossRef] [PubMed]
  2. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
    [CrossRef] [PubMed]
  3. Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A24(6), 1793–1798 (2007).
    [CrossRef] [PubMed]
  4. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics2(8), 501–505 (2008).
    [CrossRef]
  5. Z. Zhang, J. Pu, and X. Wang, “Tight focusing of radially and azimuthally polarized vortex beams through a uniaxial birefringent crystal,” Appl. Opt.47(12), 1963–1967 (2008).
    [CrossRef] [PubMed]
  6. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon.1(1), 1–57 (2009).
    [CrossRef]
  7. Y. J. Yoon, W. C. Kim, N. C. Park, K. S. Park, and Y. P. Park, “Feasibility study of the application of radially polarized illumination to solid immersion lens-based near-field optics,” Opt. Lett.34(13), 1961–1963 (2009).
    [CrossRef] [PubMed]
  8. S. Sato and Y. Kozawa, “Hollow vortex beams,” J. Opt. Soc. Am. A26(1), 142–146 (2009).
    [CrossRef] [PubMed]
  9. K. Kitamura, K. Sakai, and S. Noda, “Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam,” Opt. Express18(5), 4518–4525 (2010).
    [CrossRef] [PubMed]
  10. X. Hao, C. Kuang, T. Wang, and X. Liu, “Phase encoding for sharper focus of the azimuthally polarized beam,” Opt. Lett.35(23), 3928–3930 (2010).
    [CrossRef] [PubMed]
  11. H. Dehez, A. April, and M. Piché, “Needles of longitudinally polarized light: guidelines for minimum spot size and tunable axial extent,” Opt. Express20(14), 14891–14905 (2012).
    [CrossRef] [PubMed]
  12. Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express19(17), 15947–15954 (2011).
    [CrossRef] [PubMed]
  13. B. Tian and J. Pu, “Tight focusing of a double-ring-shaped, azimuthally polarized beam,” Opt. Lett.36(11), 2014–2016 (2011).
    [CrossRef] [PubMed]
  14. Y. Kozawa and S. Sato, “Focusing of higher-order radially polarized Laguerre-Gaussian beam,” J. Opt. Soc. Am. A29(11), 2439–2443 (2012).
    [CrossRef] [PubMed]
  15. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express12(15), 3377–3382 (2004).
    [CrossRef] [PubMed]
  16. L. Huang, H. Guo, J. Li, L. Ling, B. Feng, and Z. Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett.37(10), 1694–1696 (2012).
    [CrossRef] [PubMed]
  17. N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett.85(25), 6239–6241 (2004).
    [CrossRef]
  18. K. Yoshiki, R. Kanamaru, M. Hashimoto, N. Hashimoto, and T. Araki, “Second-harmonic-generation microscope using eight-segment polarization-mode converter to observe three-dimensional molecular orientation,” Opt. Lett.32(12), 1680–1682 (2007).
    [CrossRef] [PubMed]
  19. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007).
    [CrossRef]
  20. G. Terakado, K. Watanabe, and H. Kano, “Scanning confocal total internal reflection fluorescence microscopy by using radial polarization in the illumination system,” Appl. Opt.48(6), 1114–1118 (2009).
    [CrossRef]
  21. T. J. Gould, J. R. Myers, and J. Bewersdorf, “Total internal reflection STED microscopy,” Opt. Express19(14), 13351–13357 (2011).
    [CrossRef] [PubMed]
  22. Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Opt. Express20(16), 17653–17666 (2012).
    [CrossRef] [PubMed]
  23. K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett.31(14), 2151–2153 (2006).
    [CrossRef] [PubMed]
  24. Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett.30(22), 3063–3065 (2005).
    [CrossRef] [PubMed]
  25. M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett.32(22), 3272–3274 (2007).
    [CrossRef] [PubMed]
  26. Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett.79(11), 1587–1589 (2001).
    [CrossRef]
  27. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt.29(15), 2234–2239 (1990).
    [CrossRef] [PubMed]
  28. N. Passilly, R. de Saint Denis, K. Aït-Ameur, F. Treussart, R. Hierle, and J. F. Roch, “Simple interferometric technique for generation of a radially polarized light beam,” J. Opt. Soc. Am. A22(5), 984–991 (2005).
    [CrossRef] [PubMed]
  29. P. Ma, P. Zhou, Y. Ma, X. Wang, R. Su, and Z. Liu, “Generation of azimuthally and radially polarized beams by coherent polarization beam combination,” Opt. Lett.37(13), 2658–2660 (2012).
    [CrossRef] [PubMed]
  30. R. Zheng, C. Gu, A. Wang, L. Xu, and H. Ming, “An all-fiber laser generating cylindrical vector beam,” Opt. Express18(10), 10834–10838 (2010).
    [CrossRef] [PubMed]
  31. X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett.32(24), 3549–3551 (2007).
    [CrossRef] [PubMed]
  32. S. C. McEldowney, D. M. Shemo, and R. A. Chipman, “Vortex retarders produced from photo-aligned liquid crystal polymers,” Opt. Express16(10), 7295–7308 (2008).
    [CrossRef] [PubMed]
  33. M. Bashkansky, D. Park, and F. K. Fatemi, “Azimuthally and radially polarized light with a nematic SLM,” Opt. Express18(1), 212–217 (2010).
    [CrossRef] [PubMed]
  34. Q. Zhan and J. R. Leger, “Microellipsometer with radial symmetry,” Appl. Opt.41(22), 4630–4637 (2002).
    [CrossRef] [PubMed]
  35. K. J. Moh, X. C. Yuan, J. Bu, R. E. Burge, and B. Z. Gao, “Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams,” Appl. Opt.46(30), 7544–7551 (2007).
    [CrossRef] [PubMed]
  36. A. Shoham, R. Vander, and S. G. Lipson, “Production of radially and azimuthally polarized polychromatic beams,” Opt. Lett.31(23), 3405–3407 (2006).
    [CrossRef] [PubMed]
  37. http://www.rpcphotonics.com/
  38. http://refractiveindex.info/?group=CRYSTALS&material=CaCO3

2012 (5)

2011 (3)

2010 (4)

2009 (4)

2008 (3)

2007 (6)

2006 (2)

2005 (2)

2004 (2)

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett.85(25), 6239–6241 (2004).
[CrossRef]

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express12(15), 3377–3382 (2004).
[CrossRef] [PubMed]

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett.79(11), 1587–1589 (2001).
[CrossRef]

2000 (1)

1990 (1)

Ahmed, M. A.

Aït-Ameur, K.

April, A.

Araki, T.

Bashkansky, M.

Bewersdorf, J.

Bomzon, Z.

Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett.79(11), 1587–1589 (2001).
[CrossRef]

Brown, T. G.

Bu, J.

Burge, R. E.

Chipman, R. A.

Chong, C. T.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics2(8), 501–505 (2008).
[CrossRef]

de Saint Denis, R.

Dehez, H.

Ding, J.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

Fatemi, F. K.

Feng, B.

Feurer, T.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007).
[CrossRef]

Ford, D. H.

Gao, B. Z.

Gould, T. J.

Graf, T.

Gu, C.

Gu, Z.

Guo, C. S.

Guo, H.

Hao, X.

Hashimoto, M.

Hashimoto, N.

Hasman, E.

Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett.79(11), 1587–1589 (2001).
[CrossRef]

Hayazawa, N.

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett.85(25), 6239–6241 (2004).
[CrossRef]

Hibi, T.

Hierle, R.

Horanai, H.

Huang, L.

Kanamaru, R.

Kano, H.

Kawata, S.

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett.85(25), 6239–6241 (2004).
[CrossRef]

Kim, W. C.

Kimura, W. D.

Kitamura, K.

Kleiner, V.

Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett.79(11), 1587–1589 (2001).
[CrossRef]

Kozawa, Y.

Kuang, C.

Kurihara, M.

Leger, J. R.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

Li, J.

Li, S.

Li, Z. Y.

Ling, L.

Lipson, S. G.

Liu, X.

Liu, Z.

Lukyanchuk, B.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics2(8), 501–505 (2008).
[CrossRef]

Ma, P.

Ma, Y.

McEldowney, S. C.

Meier, M.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007).
[CrossRef]

Ming, H.

Moh, K. J.

Myers, J. R.

Nemoto, T.

Ni, W. J.

Noda, S.

Park, D.

Park, K. S.

Park, N. C.

Park, Y. P.

Passilly, N.

Piché, M.

Pu, J.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

Roch, J. F.

Romano, V.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007).
[CrossRef]

Saito, Y.

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett.85(25), 6239–6241 (2004).
[CrossRef]

Sakai, K.

Sato, A.

Sato, S.

Shemo, D. M.

Sheppard, C.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics2(8), 501–505 (2008).
[CrossRef]

Shi, L.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics2(8), 501–505 (2008).
[CrossRef]

Shoham, A.

Su, R.

Terakado, G.

Tian, B.

Tidwell, S. C.

Treussart, F.

Vander, R.

Vogel, M. M.

Voss, A.

Wang, A.

Wang, H.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics2(8), 501–505 (2008).
[CrossRef]

Wang, H. T.

Wang, T.

Wang, X.

Wang, X. L.

Watanabe, K.

Xu, L.

Xue, Y.

Yokoyama, H.

Yonezawa, K.

Yoon, Y. J.

Yoshiki, K.

Youngworth, K. S.

Yuan, X. C.

Zhan, Q.

Zhang, Z.

Zheng, R.

Zhou, P.

Adv. Opt. Photon. (1)

Appl. Opt. (5)

Appl. Phys. Lett. (2)

Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett.79(11), 1587–1589 (2001).
[CrossRef]

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett.85(25), 6239–6241 (2004).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007).
[CrossRef]

J. Opt. Soc. Am. A (4)

Nat. Photonics (1)

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics2(8), 501–505 (2008).
[CrossRef]

Opt. Express (10)

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express7(2), 77–87 (2000).
[CrossRef] [PubMed]

K. Kitamura, K. Sakai, and S. Noda, “Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam,” Opt. Express18(5), 4518–4525 (2010).
[CrossRef] [PubMed]

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express12(15), 3377–3382 (2004).
[CrossRef] [PubMed]

H. Dehez, A. April, and M. Piché, “Needles of longitudinally polarized light: guidelines for minimum spot size and tunable axial extent,” Opt. Express20(14), 14891–14905 (2012).
[CrossRef] [PubMed]

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express19(17), 15947–15954 (2011).
[CrossRef] [PubMed]

R. Zheng, C. Gu, A. Wang, L. Xu, and H. Ming, “An all-fiber laser generating cylindrical vector beam,” Opt. Express18(10), 10834–10838 (2010).
[CrossRef] [PubMed]

T. J. Gould, J. R. Myers, and J. Bewersdorf, “Total internal reflection STED microscopy,” Opt. Express19(14), 13351–13357 (2011).
[CrossRef] [PubMed]

Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Opt. Express20(16), 17653–17666 (2012).
[CrossRef] [PubMed]

S. C. McEldowney, D. M. Shemo, and R. A. Chipman, “Vortex retarders produced from photo-aligned liquid crystal polymers,” Opt. Express16(10), 7295–7308 (2008).
[CrossRef] [PubMed]

M. Bashkansky, D. Park, and F. K. Fatemi, “Azimuthally and radially polarized light with a nematic SLM,” Opt. Express18(1), 212–217 (2010).
[CrossRef] [PubMed]

Opt. Lett. (11)

A. Shoham, R. Vander, and S. G. Lipson, “Production of radially and azimuthally polarized polychromatic beams,” Opt. Lett.31(23), 3405–3407 (2006).
[CrossRef] [PubMed]

K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett.31(14), 2151–2153 (2006).
[CrossRef] [PubMed]

Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett.30(22), 3063–3065 (2005).
[CrossRef] [PubMed]

M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett.32(22), 3272–3274 (2007).
[CrossRef] [PubMed]

X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett.32(24), 3549–3551 (2007).
[CrossRef] [PubMed]

P. Ma, P. Zhou, Y. Ma, X. Wang, R. Su, and Z. Liu, “Generation of azimuthally and radially polarized beams by coherent polarization beam combination,” Opt. Lett.37(13), 2658–2660 (2012).
[CrossRef] [PubMed]

B. Tian and J. Pu, “Tight focusing of a double-ring-shaped, azimuthally polarized beam,” Opt. Lett.36(11), 2014–2016 (2011).
[CrossRef] [PubMed]

L. Huang, H. Guo, J. Li, L. Ling, B. Feng, and Z. Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett.37(10), 1694–1696 (2012).
[CrossRef] [PubMed]

K. Yoshiki, R. Kanamaru, M. Hashimoto, N. Hashimoto, and T. Araki, “Second-harmonic-generation microscope using eight-segment polarization-mode converter to observe three-dimensional molecular orientation,” Opt. Lett.32(12), 1680–1682 (2007).
[CrossRef] [PubMed]

X. Hao, C. Kuang, T. Wang, and X. Liu, “Phase encoding for sharper focus of the azimuthally polarized beam,” Opt. Lett.35(23), 3928–3930 (2010).
[CrossRef] [PubMed]

Y. J. Yoon, W. C. Kim, N. C. Park, K. S. Park, and Y. P. Park, “Feasibility study of the application of radially polarized illumination to solid immersion lens-based near-field optics,” Opt. Lett.34(13), 1961–1963 (2009).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

Other (2)

http://www.rpcphotonics.com/

http://refractiveindex.info/?group=CRYSTALS&material=CaCO3

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic (a) of the cylindrical polarization analyzer and its equivalent optical path (b). (c) Diagram of the structure of the cylindrical polarizing prism 5. Other optical elements are: the convex 45 o conical reflectors 1 and 4, the concave 45 o conical reflectors 2 and 3, the cylindrical polarizing prism 5, the spiral phase plate P 1 , the λ/2 plates P 2 and P 3 ..

Fig. 2
Fig. 2

(a) Schematic of the cylindrical polarization analyzer. (b) Diagram of propagating procedure of the o- and e-rays when the incident light transverses the optical elements 5 and 2. Other optical elements are: the 45 o planar reflecting prism 1, the concave α[calculated by Eq. (12)] conical reflector 2, the concave 45 o conical reflector 3, the convex 45 o conical reflector 4, the cylindrical polarizing prism 5, the transparent optical plate 6, the spiral phase plate P 1 , the λ/2 plates P 2 and P 3 .. The blue-black dot and the purple short line denote the polarization directions of the o and e-rays, respectively. Note that, except for the 45 o planar reflecting prism 1, all other optical elements are coaxial and cylindrical symmetry about the c axis.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

T 1 = T 2 = T 3 = T 4 =[ 1 0 0 1 ].
P o =[ 0 0 0 1 ],
P e =[ 1 0 0 0 ],
R=[ cosφ sinφ sinφ cosφ ].
M o = R T T 4 T 3 T 2 P o T 1 R,
M e = R T T 4 T 3 T 2 P e T 1 R,
M o =[ sin 2 φ sinφcosφ sinφcosφ cos 2 φ ],
M e =[ cos 2 φ sinφcosφ sinφcosφ sin 2 φ ].
E o x =sinφ [ sinφ cosφ ] T ,
E e x =cosφ [ cosφ sinφ ] T .
E o y =cosφ [ sinφ cosφ ] T ,
E e y =sinφ [ cosφ sinφ ] T .
E o c =iexp(iφ) [ sinφ cosφ ] T ,
E e c =exp(iφ) [ cosφ sinφ ] T .
T=[ cos(2Δφ) sin(2Δφ) sin(2Δφ) cos(2Δφ) ],
n sin θ e = n o sin θ o ,
n = n o n e n o 2 sin 2 θ+ n e 2 cos 2 θ ,
θ=π θ o θ e ,
n sin( π 2 θ e )= n 0 sin θ i ,
β+α=π/2 ,
α+ π 4 =( π 2 θ i )+β,
α= 3π 8 1 2 θ i ,

Metrics